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Abstract—Multicasting is the general method of conveying the
same information to multiple users over a broadcast channel.
In this work, the Gaussian MIMO broadcast channel is con-
sidered, with multiple users and any number of antennas at
each node. A “closed loop” scenario is assumed, for which a
practical capacity-achieving multicast scheme is constructed. In
the proposed scheme, linear modulation is carried over time and
space together, which allows to transform the problem into that of
transmission over parallel scalar sub-channels, the gains of which
are equal, except for a fraction of sub-channels that vanishes with
the number of time slots used. Over these sub-channels, off-the-
shelf fixed-rate AWGN codes can be used to approach capacity.

I. INTRODUCTION

A recurring theme in digital communications is the use
of a standard “off-the-shelf” coding module in combination
with appropriate linear pre/post processing which is tailored
to the specific channel model. Such methods are appealing
due to their low complexity of implementation as well as
conceptually, since the task of coding and modulation are
effectively decoupled.

Underlying such decoupling schemes is the existence of a
diagonalization transformation. For time-invariant scalar sys-
tems, this is possible via the Fourier transform. The singular-
value decomposition (SVD) plays a similar role for Gaussian
multiple-input multiple-output (MIMO) channels. In recent
years, as coding and decoding for single-user scalar channels
has reached a mature stage, research effort has shifted to
tackling the more ambitious goal of efficient multi-user (and
multi-antenna) communication networks.

Extension of the decoupling approach which is at the heart
of single-user scalar systems to a multiple-user MIMO net-
work requires, however, overcoming a major hurdle: (unitary)
simultaneous diagonalization is in general not possible.1

Hence, different practical approaches were proposed over
the years for the problem of multicasting over Gaussian MIMO
broadcast channels. However, none of these approaches is ca-
pacity achieving in general, even for simple cases. To illustrate
this, consider the following simple three-user example:

yi = Hix+ zi , i = 1, 2, 3 ,

where zi are white Gaussian noises with unit power (for each
element), x is the channel vector subject to an average power
constraint P , and Hi are the complex-valued channel matrices

H1 =

(

α 0
0 α

)

, H2 =
(

β 0
)

, H3 =
(

0 β
)

(1)
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1Even if all matrices are diagonal, constructing a practical capacity-

achieving scheme is hard, since using scalar coding over the resulting parallel
channels is limited to working w.r.t. the minimal gain over each sub-channel.

where α and β are chosen such that the (individual) capacities
of all channels are equal, viz.

Cp2p , 2 log(1 + |α|2P/2) = log(1 + |β|2P ) . (2)
This example models a “near–far” scenario in which the

two “near” users have one antenna each, where each receives
a different transmit antenna stream, whereas the “far” user is
equipped with two antennas to compensate for the distance
attenuation, such that the capacities of all channels are equal.

A naı̈ve approach would be to use Vertical Bell-Laboratories
Space–Time coding (V-BLAST) [1] or generalized decision
feedback equalization (GDFE) [2]. This approach is based
upon the QR decomposition, in which the output of the
channel is multiplied by a unitary matrix, resulting in an
effective triangular channel matrix. In the case of the example,
however, repetition coding across the antennas must be used,
to convey the (common) message to users 2 and 3. This, in
turn, implies that the far user (user 1) cannot enjoy any of its
multiplexing gain (which is equal to two in this case), due to
the repetition that is carried across the two transmit antennas.
Again, in the high SNR regime, this suggests a loss of
approximately half of the optimal achievable rate. Moreover,
for this example the “max–min beamforming” technique (see,
e.g., [3] and references therein) reduces to this scheme as well,
meaning that it suffers the same losses in performance.

Another approach considered in the literature for this prob-
lem is that of using a “pure open-loop” approach, namely
Alamouti [4] — for the two-transmit antenna case, and space–
time coding [5] — for more. The performance of these
schemes does not depend on the number of receivers. However,
this universality comes at the price of a substantial rate loss
for MIMO channels having several receive antennas, as these
schemes use only a single stream, thus failing to achieve the
multiplexing gain offered by the MIMO channel.2

Finally note that time/frequency sharing suggest a great loss
in performance (up to two thirds of the capacity in this case).

In general, to the best of our knowledge known practical
schemes are limited to the smallest number of degrees of
freedom (“multiplexing gain“) of the different users, or alter-
natively incorporate time- or frequency-sharing, which again
lose degrees of freedom. Thus, these schemes achieve only a
fraction of the available degrees of freedom.

In this work we develop a scheme that achieves the degrees
of freedom of each individual channel, by enabling the trans-
mission of several streams as is done in V-BLAST/GDFE in

2Moreover, for more than two transmit antennas, the space–time codes of
[5] attain strictly less than one degree of freedom.



the point-to-point case. This is done by designing a special
space–time coding structure that is tailored for the specific
channel matrices, where the number of channel uses that is
needed to be jointly processed depends on the number of
users in the system. However, in contrast to the open-loop
space–time coding structures, which strive for an “orthogonal
design” structure (see, e.g., [5]), the space–time structure
presented in this work results in triangular forms, similar to
V-BLAST/GDFE, but having equal diagonals, which suggests
in turn, the optimality of the scheme. This gives rise to ef-
fective parallel scalar additive white Gaussian noise (AWGN)
channels, over which standard codes can be used to approach
capacity. Thus, the proposed scheme could be thought of as
an interpolation between the open-loop space–time coding
technique and the point-to-point V-BLAST one.

II. CHANNEL MODEL

The K-user Gaussian MIMO broadcast channel consists of
one transmit and K receive nodes, where each received signal
is related to the transmitted signal through a MIMO link:

yi = Hix+ zi , i = 1, . . . ,K ,

where x is the channel input of dimensions nt × 1 subject
to an average power constraint P ;3 yi is the channel output
vector of receiver i (i = 1, . . . ,K) of dimensions n(i)

r ×1; Hi

is the channel matrix to user i of dimensions n
(i)
r × nt and

zi is an additive circularly-symmetric Gaussian noise vector
of dimensions n

(i)
r × 1, where, without loss of generality, we

assume that the noise elements are mutually independent and
identically distributed with unit power.

The aim of the transmitter is to multicast the same (com-
mon) message to all the receivers. The capacity of this
scenario is long known to equal the (worst-case) capacity of
the compound channel (see, e.g., [6]), with the compound
parameter being the channel matrix index:

C
(

{Hi}
K
i=1 , P

)

= max
Cx

min
i=1,...,K

I(Hi, Cx) , (3)

where I(Hi, Cx) is the mutual information between the
channel input x and the channel output yi, obtained by taking
x to be Gaussian with covariance matrix Cx:

I(H,Cx) , log det
(

I +HiCxH
†
i

)

,

and the maximization is carried over all admissible input
covariance matrices Cx, satisfying the power constraint.

III. BACKGROUND

In this section we recall the transmission and receiving
scheme for the single- and two-user cases, and explain how
this scheme can be generalized to the multi-user case.

A. Unitary Matrix Triangularization

The proposed scheme in this section is based on several
forms of matrix decompositions, one of which is the geometric
mean decomposition (GMD) [7]. For simplicity, we will only
consider the decomposition of square matrices throughout
this work. As we show in the sequel, this does not pose

3Alternatively, one can consider an input covariance constraint E
[

xx
†
]

�
C, where by C1 � C2 we mean that (C2 − C1) is positive semi-definite.

any restriction on the communication problem addressed. The
GMD [7] of a square complex invertible matrix A is given by:

A = UTV
†
,

where U , V are unitary matrices, and T is an upper-triangular
matrix such that all its diagonal values equal to the geometric
mean of the singular values of A, which is real and positive.

Building on the GMD, the following decomposition, which
will be referred to as Joint Equi-diagonal Triangularization
(JET), was introduced in [8]. Let A1 and A2 be two in-
vertible complex matrices of dimensions n × n such that
| det(A1)| = | det(A2)|. Then, the joint triangularization of A1

and A2 is given by:
A1 = U1R1V

†

A2 = U2R2V
†
,

(4)

where U1, U2, V are n × n unitary matrices, and R1, R2 are
upper-triangular n × n matrices with the same real-valued,
non-negative diagonal values, namely,

[R1]ii = [R2]ii ∀i = 1, . . . , n .

B. Point-to-Point MIMO Scheme via Matrix Triangularization

We now review the transmission scheme known as the
uniform channel decomposition (UCD) [9], which is in turn
based upon the derivation of the MMSE version of Vertical
Bell-Laboratories Space–Time coding (V-BLAST), see, e.g.,
[10]. Later in the paper we take the triangularization to be
one which is simultaneously good for several users.

Define the following augmented matrix:4

G̃ ,

(

HC
1/2
x

Int

)

,

where Int
is the nt × nt identity matrix.

Next, the matrix G̃ is transformed into a square matrix, by
means of the QR decomposition:

G̃ = QG,

where Q is an (nr+nt)×nt matrix with orthonormal columns
and G is an nt × nt upper-triangular matrix with real-valued
positive diagonal elements. Now the matrix G is decomposed
according to the GMD:

G = UTV
†
,

where T is upper-triangular whose diagonal values are equal
to nt

√

det (G), which are, in turn, equal to the effective signal-
to-noise ratios of the scalar sub-channels.

The transmission scheme is as follows:
1) Construct nt codewords of equal rates for a scalar AWGN

channel of signal-to-noise ratio (SNR) nt

√

det (G).
2) In each channel use, an nt-length vector x̃ is formed

using one sample from each codebook. The transmitted
vector x is then obtained using the following precoder:

x = C
1/2
x V x̃ .

3) The receiver calculates

ỹ = U †Q̃†y ,

4C
1/2
x

is any matrix B satisfying: BB† = Cx, and can be found, e.g.,
via the Cholesky decomposition.



where Q̃ consists of the first nt rows of Q.
4) Finally, the codebooks are decoded using successive in-

terference cancellation, starting from the nt-th codeword
and ending with the first one: The nt-th codeword is de-
coded first, using the nt-th element of ỹ, treating the other
codewords as AWGN. The effect of the nt-th element of
x̃ is then subtracted out from the remaining elements of
ỹ. Next, the (nt − 1)-th codeword is decoded, using the
(nt − 1)-th element of ỹ — and so forth.

The optimality of this scheme, i.e., that it is capacity achieving,
was proved in [8, Sec. IV].

IV. MIMO MULTICAST SCHEME

The scheme of Section III-B can be generalized to the K-
user case in a straightforward manner.5 However, in order to
approach the capacity (3), using the same scalar codebook
over all scalar sub-channel, as in Section III-B, the existence
of a joint unitary matrix decomposition of the form

Ai = UiTiV
† , i = 1, . . . ,K ,

is required, assuming Ai are square invertible matrices with
equal determinants (up to phase), of dimensions n×n, where
Ui are unitary matrices (corresponding to operations per-
formed at the receivers), V is unitary as well (corresponding to
an operation performed by the transmitter) and Ti are upper-
triangular matrices with constant diagonals. Unfortunately,
such a decomposition does not exist in general for more than
one matrix since there are not enough degrees of freedom
offered by the unitary matrices, as the unitary matrix on the
right, V , is the same for all decomposed matrices {Ai} (corre-
sponding to the common operation carried at the transmitter);
for more details see [11]. To overcome this problem, in order to
gain more degrees of freedom, we propose to utilize multiple
channel uses of the same channel realization and process
them together. The idea of mixing the same symbols between
multiple channel uses has much in common with space–time
codes [4], [5]. In the next section we show how, using this
idea, nearly optimal joint triangularization may be obtained.

V. SPACE–TIME TRIANGULARIZATION

We now show how to utilize a space–time structure in order
to obtain nearly-optimal joint triangularization of K matrices,
such that the resulting triangular matrices have constant diag-
onals, up to a small portion of the diagonal extreme elements.
The resulting scheme becomes asymptotically optimal for
large values of N , where N is the number of channel uses
grouped together for the purpose of joint decomposition. This
result is stated in the following theorem.

Theorem 1 (Nearly-Optimal K-GMD): Let A1, . . . , AK be
complex-valued n× n matrices satisfying | det(Ai)| = 1, and
define the following nN × nN extended matrices:

5A similar scheme for the two-user MIMO multicast case was proposed in
[8], where JET (4) was used, implying the need of using scalar codebooks of
different rates.

Ai =









Ai 0 0 · · · 0
0 Ai 0 · · · 0
... · · ·

...
. . .

...
0 0 0 · · · Ai









, i = 1, . . . , K .

Then there exist matrices U1, . . . ,UK ,V, of dimensions nN×
n
(

N − (nK−1 − 1)
)

, with orthonormal columns, such that:

U
†
iAiV =













1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 1













, i = 1, . . . , K ,

where N ≥ nK−1 and ∗ represents some value (which may
differ within each matrix as well as between different ones).

By using this decomposition, the same scheme as in Sec-
tion III can be employed, such that the N channel uses are
effectively transformed into n

(

N − (nK−1 − 1)
)

equal-rate
scalar AWGN channels. The sum of the capacities of these
channels tends to the capacity of the original channel for large
values of N , where the only loss comes from edge effects
(truncation of the extreme

(

nK − n
)

elements).
Remark 1: For the case where the matrices have non-equal

determinants, the K-GMD Theorem 1 results in K triangular
matrices, each with a constant diagonal with entries that are
equal to n

√

| det (Ai)|.
Remark 2: It was shown in [11, Lemma 1] that K-GMD is

equivalent to (K+1)-JET. Hence, nearly-optimal (K+1)-JET
can be obtained with the same parameters as in Theorem 1.

We provide a proof in the form of a constructive algorithm
for a special case, which demonstrates the essence for the
general case. The algorithm for the general case is available
in [12], [13] (as implementations in Matlab and Python,
respectively) and is not provided here due to space constraints.

Definition 1: Let A and B be matrices of dimensions n×m
and 2×2, respectively. We define the operation of “extraction”
of indices i and j from A by:

A bi, je ,

(

Aii Aji

Aji Ajj

)

,

where bi, je , {(i, j), (i, i), (j, i), (j, j)}.
We further define the “embedding” operation

IBn (
⋃

i bmi, nie) as the replacement of the elements
in the identity matrix In in the index-pairs contained
in bm1, n1e bm2, n2e bm3, n3e , . . . ,6 with the elements
contained in B, where index overlap is forbidden, i.e., all the
indices {mi} ∪ {ni} are unique. For example, the embedding
IB4 (b1, 3e b2, 4e) of

B =

(

11 2
3 4

)

into the four-dimensional identity matrix I4 is






11 0 2 0
0 11 0 2
3 0 4 0
0 3 0 4






.

6By bi, je bk, le we denote bi, je ∪ bk, le.



Algorithm for n = 2,K = 3,N = 4: Denote by {Ai}
the augmented matrices corresponding to N = 4 channel uses.

Stage 1: Start by applying a 1-GMD for each block (corre-
sponding to a single channel use) of the first matrix A1:

(

U
(1)
1

)†

A1V
(1) =

(

1 ∗
0 1

)

,

which corresponds, in turn, to applying the following extended
unitary matrices

(

U
(1)
1

)†

, I

(

U
(1)
1

)†

8 (b1, 2e b3, 4e b5, 6e b7, 8e)

V
(1)

, I
V (1)

8 (b1, 2e b3, 4e b5, 6e b7, 8e) .

and results in the extended triangular matrix

T
(1)
1 =

(

U
(1)
1

)†

A1V
(1)

=





















1 ∗ 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 ∗ 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





















.

Note that the same matrix V(1) has to be applied to
all matrices (since the encoder is shared by all users). We
decompose the resulting matrices (after multiplying them by
V(1)) according to the QR decomposition, resulting in unitary

matrices
(

U
(1)
i

)†

such that:

T
(1)
i =

(

U
(1)
i

)†

AiV
(1)

=

























ri1 ∗ 0 0 0 0 0 0
0 ri2 0 0 0 0 0 0
0 0 ri1 ∗ 0 0 0 0
0 0 0 ri2 0 0 0 0
0 0 0 0 ri1 ∗ 0 0
0 0 0 0 0 ri2 0 0
0 0 0 0 0 0 ri1 ∗
0 0 0 0 0 0 0 ri2

























,

where ri1 r
i
2 = 1 and i = 2, 3.

Stage 2: In the second stage we apply the 1-GMD decom-
position to the matrices T

(1)
2 b2, 5e and T

(1)
2 b4, 7e. In both

cases the two-by-two matrices are of the same form:
(

U
(2)
2

)†
(

r22 0
0 r21

)

V
(2) =

(

1 ∗
0 1

)

.

Now note that the matrix corresponding to these elements in
T

(1)
1 have the identity matrix form I2. Thus, V (2) on the right

and
(

V (2)
)†

on the left result in the identity matrix:
(

1 0
0 1

)

=
(

V
(2)

)†
(

1 0
0 1

)

V
(2)

.

For the third matrix, we apply the QR decomposition with
(

U
(2)
3

)†

(assuming no special structure). Define:
(

U
(2)
2

)†

, I

(

U
(2)
2

)†

8 (b2, 5e b4, 7e)

V
(2)

, I
V (2)

8 (b2, 5e b4, 7e) .

Thus, we attain the following matrices after the completion
of the second stage:

T
(2)
2 =

(

U
(2)
2

)†

T
(1)
2 V

(2)

=























r21 ∗ 0 0 ∗ 0 0 0
0 1 0 0 ∗ ∗ 0 0
0 0 r21 ∗ 0 0 ∗ 0
0 0 0 1 0 0 ∗ ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 r22























,

T
(2)
1 =

(

V
(2)

)†

T
(1)
1 V

(2)

=





















1 ∗ 0 0 ∗ 0 0 0
0 1 0 0 0 ∗ 0 0
0 0 1 ∗ 0 0 ∗ 0
0 0 0 1 0 0 0 ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





















,

T
(2)
3 =

(

U
(2)
3

)†

T
(1)
3 V

(2)

=























r31 ∗ 0 0 ∗ 0 0 0
0 d2 0 0 ∗ ∗ 0 0
0 0 r31 ∗ 0 0 ∗ 0
0 0 0 d2 0 0 ∗ ∗
0 0 0 0 d1 ∗ 0 0
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 d1 ∗
0 0 0 0 0 0 0 r32























,

where d1 d2 = 1.
Stage 3: Finally, apply the 1-GMD to T

(2)
3 b4, 5e:

(

U
(3)
3

)†
(

d2 0
0 d1

)

V
(3) =

(

1 ∗
0 1

)

.

Again, note that the corresponding sub-matrices of T
(3)
1 and

T
(3)
2 are equal to I2. Hence, multiplying them by V (3) on the

right and
(

V (3)
)†

on the left, gives rise to the identity matrix
I2. By defining

(

U
(3)
3

)†

, I

(

U
(3)
3

)†

8 (b4, 5e) , V
(3)

, I
V (3)

8 (b4, 5e)
(

U
(3)
1

)†

=
(

U
(3)
2

)†

,

(

V
(3)

)†

we arrive at the following three triangular matrices:

T
(3)
3 =

(

U
(3)
3

)†

T
(2)
3 V

(3)

=























r31 ∗ 0 ∗ ∗ 0 0 0
0 d2 0 ∗ ∗ ∗ 0 0
0 0 r31 ∗ ∗ 0 ∗ 0
0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 d1 ∗
0 0 0 0 0 0 0 r32























,

T
(3)
2 =

(

V
(3)

)†

T
(2)
2 V

(3)



=























r21 ∗ 0 ∗ ∗ 0 0 0
0 1 0 ∗ ∗ ∗ 0 0
0 0 r21 ∗ ∗ 0 ∗ 0
0 0 0 1 0 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 r22























,

T
(3)
1 =

(

V
(3)

)†

T
(2)
1 V

(3)

=





















1 ∗ 0 ∗ ∗ 0 0 0
0 1 0 0 0 ∗ 0 0
0 0 1 ∗ ∗ 0 ∗ 0
0 0 0 1 0 ∗ 0 ∗
0 0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





















,

By taking the middle rows and columns (rows and columns
4 and 5) we achieve the desired decomposition with diagonal
elements equaling to 1 in all three triangular matrices simulta-
neously.7 Formally we do so by defining the next matrix which
is composed of rows 4 and 5 of the identity matrix I8,

O
† =

(

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

)

,

and calculating

O
†
T

(3)
i O =

(

1 ∗
0 1

)

.

Thus, the total matrices to be applied are
V = V

(1)
V

(2)
V

(3)
O

U1 = U
(1)
1 V

(2)
V

(3)
O

U2 = U
(1)
2 U

(2)
2 V

(3)
O

U3 = U
(1)
3 U

(2)
3 U

(3)
3 O .

VI. DISCUSSION

According to Theorem 1, even when the number of users
K is not very large, a large number of channel uses need
to by combined and processed together in order to approach
the capacity. We demonstrate this phenomenon by considering
the example of the introduction (1) where the gains α and β
and the power constraint P satisfy (2), i.e., that the individual
capacities are equal.

For this case, the best achievable rate of the existing prac-
tical schemes, described in the introduction, is single-stream
beamforming, which is therefore taken to be the benchmark
which we aim to improve. Nonetheless, this scheme does not
utilize the two degrees of freedom offered by the first channel
H1. This becomes more significant in the high SNR regime, in
which this benchmark rate achieves only half of the available
(multicast) capacity (3). For the proposed scheme in this paper,
we provide in Table I the number of channel uses needed to be
combined and processed together to achieve given portions of
the capacity, where for comparison, we present in the table the
benchmark rate and the rate achieved by time-sharing between

7Over the diagonal elements which equal 1, we transmit using SISO codes,
in our proposed scheme, whereas we make no use of the remaining elements
as they may take arbitrary values.

the users, for the case of P → ∞ and the case in which the
individual capacities (2) equal to Cp2p = 10

[ bits
channel use

]

.8

% Capacity 33 37 50 60 67 75 80 90
Channel uses for GMD 5 5 6 8 9 12 15 30
Channel uses for JET 2 2 2 3 3 4 5 10

TABLE I: Number of channel uses, when using K-GMD and K-
JET, processed together to achieve a given portion of the capacity.
For P → ∞, time-sharing between the users achieves 33% of the
capacity, and the benchmark — 50%; for Cp2p = 10

[ bits
channel use

]

, time-
sharing achieves 37% of the capacity whereas the benchmark — 67%.

For more users (larger K), the ratio between the benchmark
rate and the capacity deteriorates rapidly as K grows large.
However, the number of channel uses needed to achieve a
certain percentage of the capacity, using the approach devel-
oped in this paper, grows rapidly. Yet, based on numerical
evidence, we believe that the number of required channel aug-
mentations can be reduced. Furthermore, for special families
of MIMO channels, very significant reduction is possible, as
demonstrated in [14].
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