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Abstract—We consider the problem of controlling an unstable
scalar linear plant over a power-constrained additive white
Gaussian noise (AWGN) channel, where the controller/receiver
has access to an additional noisy measurement of the state of the
control system. To that end, we view the noisy measurement
as side information and recast the problem to that of joint
source–channel coding with side information at the receiver. We
argue that judicious modulo-based schemes improve over their
linear counterparts and allow to avoid a large increase in the
transmit power due to the ignorance of the side information
at the sensor/transmitter. We demonstrate the usefulness of our
technique for the settings where i) the sensor is oblivious of the
control objectives, control actions and previous controller state
estimates, ii) the system output tracks a desired reference signal
that is available only at the controller via integral control action.

I. INTRODUCTION

Recent advances in wireless communications have brought
us to the verge of the era of the Internet of Things, which
raises, in turn, the demand for new and improved techniques
for control of cyberphysical systems over noisy communi-
cation media [1]–[12]. In contrast to traditional control, in
which the system components (sensor, plant, and controller)
are colocated, the components of CPS may be non-colocated
and communicate instead over noisy channels.

In this work, we consider the setting where the controller
observes the system state corrupted by noise via an internal
sensor, while it also receives descriptions of the observations
of the state from an external sensor over an additive white
Gaussian noise (AWGN) channel. We concentrate on a sim-
ple fully-observable discrete-time linear quadratic Gaussian
(LQG) control setting.

To exploit the internal measurements of the controller, we
view them as side information (SI) that is known at the
controller (that also acts as a receiver) but not at the (external)
sensor (that also acts as a transmitter). This interpretation
allows us to appeal to to zero-delay joint source–channel
coding (JSCC) techniques. Specifically, we build on techniques
that utilize modular arithmetic [13]–[15], which allow to
mimic the operation of two-sided SI schemes despite not
knowing the SI at the transmitter, and avoid most of the power
increase (alternatively, distortion increase) due to the lack of
SI knowledge at the sensor. We incorporate these techniques
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into the schemes previously developed for LQG control over
AWGN channels without SI [3], [9], [12], and show an
improvement over linear techniques, recently suggested by
Stavrou and Skoglund [10], thus prove that linear techniques
are suboptimal in the presence of controller SI.

In many practical scenarios, the sensor is oblivious of
past control actions, controller state estimates and control-
objectives—the linear quadratic regulator (LQR) weights. By
viewing these signals as additional SI that is known to the
controller and the sensor, we show that our proposed technique
readily applies to this scenario as we as well.

We then extend our treatment to the setting where the
controller aims the system state to track a desired reference
trajectory (unknown at the sensor) instead of driving the
former to zero (as per simple LQG control) via integral action
[16, Ch. 6.4]. To that end, we recast this problem, again, as that
of control with controller SI, where the reference trajectory
takes the role of SI.

The rest of the paper is organized as follows. We present
the notation used in this work in Sec. I-A and formulate
the problem of interest in Sec. II. Schemes for low-delay
JSCC with SI are detailed in Sec. III, and are subsequently
subsequently used in Sec. IV to develop control policy with
controller SI. We then use these technique to develop a scheme
that for the setting of a sensor that is oblivious of the control
actions, controller state estimates and control objectives (LQR
weights), in Sec. V. We further extend the technique to
work for the setting where the controller aims the system
state to track a desired reference trajectory (unknown at the
sensor) in Sec. VI. The exposition of the proposed technique
and schemes in Secs. IV–VI is supplemented by simulations
that demonstrate the improvement of the modular-arithmetic
schemed over their linear counterparts. We conclude the paper
with a discussion about extensions to vector systems and
channels in Sec. VII.

A. Notations
Throughout the paper, ‖·‖ denotes the Euclidean norm. We

denote temporal sequences by a1:t , (a1, . . . , at). Random
values are denoted by capital letters. We denote a‖b ,
ab/(a + b), and [·]∆ denotes the the modulo-∆ operation,
i.e., [x]∆ = x − ∆ · round (x/∆). We use the notation
fα,β,∆(X) for the class of modulo-based encoding functions
fα,β,∆(X) , α(X − [X]∆) + β[X]∆ for parameters α, β,∆.

II. PROBLEM STATEMENT

The control–communications setting treated in this work is
depicted in Fig. 1.

We consider a discrete-time scalar linear plant dynamics
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Fig. 1: Scalar discrete-time linear plant controlled over an
AWGN channel with SI that is available at the controller. Rt
is a reference trajectory, set by the controller.

Xt+1 = λXt +Wt + Ut , t = 0, . . . , T , (1)

across a finite time horizon T , where Xt ∈ R is the (scalar)
state at time t, Wt ∈ R is an additive white Gaussian noise
(AWGN) (system disturbance) of power σ2

W , λ is the (known)
scalar open-loop gain, and Ut ∈ R is the control action applied
at time t. We assume zero initial state conditions: X0 = 0.

In contrast to traditional control settings, the sensor is not
colocated with the controller and transmits to it over AWGN

Bt = At +Nt (2)

per each control sample, where Bt is the channel output, At
is the channel input subject to a power constraint E

[
A2
t

]
≤ 1,

and Nt is an AWGN of power 1/SNR, where SNR > 0 is
the channel signal-to-noise ratio (SNR).

We further assume a SI signal that is available to the
controller, but not to the sensor. This signal might be available,
for example, when the controller observes the system state via
an internal sensor. The SI is assumed to be a noisy version of
the current source sample Xt, and is given by

Yt = Xt + Zt, (3)

where Zt is an AWGN of power σ2
Z independent of

{(Xt, Nt)}.
Remark 1 (Stabilizability). Since the external SI measurements
(3) constitutes a noisy observation of the state variable Xt,
the system is stabilizable based on this measurement alone
[without any transmission over the channel (2)]. Thus, the
system is stable for any SNR ≥ 0 in (2), in contrast to the
setting without SI where the SNR has to be high enough for
the system to be stabilizable (see, e.g., [12]).

Remark 2 (Two-sided SI). The scenario where the SI Yt is
known to both the sensor and the controller (two-sided SI) is
equivalent to the case without SI of e.g. [9], [11], [12], w.r.t.
to a (Gaussian) source that is equal to Xt given Y1:t.

As in traditional LQG control, we wish to minimize the
following average-stage control cost:

J̄T =
1

T
E

[
qT+1XT+1 +

T∑
t=1

(
qtX

2
t + rtU

2
t

)]
, (4)

for some non-negative control weights {qt}, {rt}.

It will be further instructive to consider the fixed-weights
steady-state regime: qt ≡ q, rt ≡ r, T →∞. We denote by

J̄∞ , lim
T→∞

J̄T (5)

the steady-state average-stage control cost, for this setting.
To that end, we next review known results on low-delay

joint source–channel coding (JSCC) with SI.

III. ZERO-DELAY JSCC WITH SI

In this section, we review known results for transmitting a
zero-mean Gaussian source sample X of power PX over a
single AWGN channel use (2), where the receiver is equipped
with Gaussian SI

Y = X + Z (6)

that is available at the receiver but not at the transmitter [17,
Ch. 11], where Z is Gaussian independent of X of power PZ .

The goal of the transmitter is to convey the source sample
X to the receiver with minimal average quadratic distortion

D , E
[
(X − X̂)2

]
, (7)

where X̂ is the estimate of the receiver given the channel
output B and the SI Y .

Since the distortion is proportional to the signal power PX ,
a popular metric to compare between different JSCC schemes
is the signal-to-distortion ratio (SDR) which is defined as

SDR ,
PX
D

.

A. Without SI

Without side information (6), the optimal distortion (7) of
transmitting a single Gaussian source sample over a single
AWGN channel use is given as follows.

Theorem 1. The minimal distortion D∗noSI (7) in conveying a
single Gaussian source sample of average power PX over a
single AWGN channel use with SNR SNR is equal to

D∗noSI =
PX

1 + SNR
,

and the corresponding SDR is SDR∗noSI = 1 + SNR.

The converse part of this proof is a straightforward conse-
quence of the source–channel separation principle [17, Ch 3.9],
whereas the direct is established by transmitting the source as
is over the channel up to a power adjustment [18].

B. With Two-Sided SI

The setting where the SI is available at both the transmitter
and the receiver is a simple adaptation of the no-SI setting,
as it is equivalent to conveying a Gaussian source sample
without SI of power V ar(X|Y ) = PX‖PZ , as the latter
is the minimum mean square error power of the (Gaussian)
estimation error of X given Y .

Lemma 1. The minimal distortion D∗both (7) in conveying a
single Gaussian source sample of average power PX over a



Fig. 2: SDR vs SNR for the model in Sec. III with
σ2
Z = 1/9. “Chen–Tuncel” and “Kochman–Zamir” are

the schemes from [13], [15] with parameters (∆, α, β) =
(3.15, 0.8,−1.15), (2.15, 1.05, 0), respectively.

single AWGN channel use with SNR SNR, where the receiver
has access to a side information (6) is equal to

D∗both(PX , PZ) =
PX‖PZ

1 + SNR
, (8)

and the corresponding SDR is given by

SDR∗both(PX , PZ ,SNR) =

(
1 +

PX
PZ

)
· (1 + SNR).

C. With Receiver SI

We now consider the setting where the SI (6) is available
to the receiver but not to the transmitter.

Clearly, the distortion D∗Rx of this setting is bounded
between those with two-sided SI and without SI:

D∗both ≤ D∗Rx ≤ D∗noSI , (9)

which is equivalent to SDR∗noSI ≤ SDR∗Rx ≤ SDR∗both.
Moreover, in the infinite-delay setting where multiple i.i.d.

Gaussian source samples are processes and transmitted over
multiple AWGN channel uses, the lower bound in (9) is
attained. However, when restricted to our (causal) case of
interest, this lower bound is unattainable [?], [19], although
the exact value of D∗Rx remains unknown.

In the rest of the section, we presents schemes for the zero-
delay JSCC with receiver SI setting.

We first present a simple analog transmission.

Scheme 1 (Linear).
Transmitter: Sends A =

1√
PX

X .

Receiver: Upon receiving the channel output B = A + N
and the SI signal Y = X+Z, calculates the resulting minimum
mean square error (MMSE) estimator

(10)
X̂ =

1

PZ + PX+PZ

SNR

(√
PXPZB +

PX
SNR

Y

)
,

whose SDR is equal to SDRLin =
PX
DLin

, where

DLin =
PX

1 + SNR + PX/PZ
= PX

∥∥∥∥PZ∥∥∥∥ PXSNR
(11)

Clearly, DLin of (11) is strictly higher than D∗Both of (8).
Moreover, linear schemes in the presence of receiver SI are
known to be sub-optimal [13]–[15]. We describe next modulo-
based JSCC schemes with SI.

Scheme 2 (Modulo-based).
Transmitter: Sends

A = α
(
X̄ −

[
X̄
]
∆

)
+ β

[
X̄
]
∆
, fα,β,∆

(
X̄
)
, (12)

where X̄ , X√
PX

and α, β and ∆ are chosen such that
E
[
A2
]
≤ 1.

Decoder: Upon receiving the channel output B and the SI
Y , evaluates the MMSE estimate: X̂ = E [X|B, Y ].

Note that Sch. 2 subsumes the schemes suggested by
Kochman and Zamir [13], and by Chen and Tuncel [15]
for different choices of α, β, and ∆, who, addition to the
optimal (MMSE) decoder, suggested also suboptimal decoders
that are more amenable to analysis. Furthermore, by choosing
∆→∞, α = P

−1/2
X , and β = 0, Sch. 2 reduces to Sch. 1.

Further note that, for every specific choice of α, β,∆ and
decoder X̂(B, Y ), the scheme yields different SDR values
which, in general, are not amenable to an analytical calculation
but can be calculated numerically instead. We denote the
distortion and the SDR of Sch. 2, by (resp.)

Dα,β,∆(PX , PZ ,SNR) and SDRα,β,∆(PX , PZ ,SNR).(13)

Indeed, as is evident from Fig. 2, the schemes of Chen and
Tuncel [15], and Kochman and Zamir [13] outperform the
linear scheme.

IV. CONTROL POLICIES WITH CONTROLLER SI

In this section, we construct control policies that aim to
minimize the control cost (4), by relying on the schemes of
Sec. III and the traditional (without noisy channels) LQG
control setup [20]. We assume in this section, that the sensor
knows the LQR weights {qt, rt} and is made aware of X̂r

t−1

at time t (and can therefore construct Ut−1 and X̂r
t|t−1) for the

construction of At. We part with these assumptions in Sec. V.
We start by presenting a simple linear scheme that achieves

the optimum for the case where the SI Yt is available both at
the sensor and the controller via a simple adaptation of the
scheme of [9], [12], [20], in Sec. IV-A. We then construct
schemes for the setting where only the controller has access
to the SI Yt by employing the schemes of Sec. III-C.

A. With Two-sided SI

Here we assume that the SI Y1:t is known also at the sensor,
and design a simple linear scheme that is optimal in this
scenario. This scheme will be used as a benchmark to test
the performance of other schemes (with lesser sensor SI).



The scheme and its optimality are simple adaptations of the
setting without SI [9], [12]: In the presence of two-sided SI,
the scheme is equivalent to the setting without SI with respect
to source process Xt given the side information process Yt.
Thus, by looking at the state innovations given Yt the scheme
is equivalent to the setting without SI.

Scheme 3 (Linear scheme with Two-sided SI).
Sensor: At time t:
• Calculates the prediction error (innovation) X̃t|t−1 of the

controller given the SI Yt and the prediction error X̂r
t|t−1

before receiving Yt = X̂r
t|t−1 + X̃r

t|t−1 + Zt:

X̃t|t−1 = Xt − E
[
Xt|Y1:t, X̂

r
t|t−1

]
= X̃r

t|t−1 − ρt
(
Yt − X̂r

t|t−1

)
= (1− ρt)X̃r

t|t−1 − ρtZt ,

whose average power is

Pt|t−1 , E
[(
X̃t|t−1

)2
]

= σ2
Z

∥∥∥P rt|t−1 , (14)

and where

ρt ,
P rt|t−1

P rt|t−1 + σ2
Z

=
Pt|t−1

σ2
Z

is the correlation coefficient between Yt and X̃r
t|t−1.

• Transmits the prediction error X̃t|t−1 given the SI with
appropriate power adjustment:

At =
X̃t|t−1√
Pt|t−1

.

Controller: At time t:
• Estimates the prediction error X̃t|t−1 via MMSE estima-

tion given

Bt = At +Nt =
X̃t|t−1√
Pt|t−1

+Nt

as follows.

ˆ̃Xt|t−1 =

√
Pt|t−1

1 + 1/SNR
Bt.

• Constructs an estimate X̂r
t|t given ˆ̃Xt|t−1, the SI Yt and

X̂r
t|t−1 (which are a sufficient statistic of (Y1:t, B1:t)):

X̂r
t|t = X̂r

t|t−1 + ρt

(
Yt − X̂r

t|t−1

)
+ ˆ̃Xt|t−1,

and calculates its MMSE:

P rt|t =
σ2
Z‖P rt|t−1

1 + SNR
=

Pt|t−1

1 + SNR
.

• Generates the control action, the state-prediction at time
(t+ 1) and its MMSE according to

Ut = −LtX̂r
t|t, (15a)

X̂r
t+1|t = λX̂r

t|t + Ut, (15b)

P rt+1|t = λ2P rt|t + σ2
W , (15c)

where the control gain Lt is given by the Riccati recursion
(see, e.g. [20]) with boundary condition sT = qT+1:

Lt =
λst+1

st+1 + rt+1
, st =

λ2rt+1st+1

st+1 + rt+1
+ qt+1 . (16)

B. With Receiver SI
Here we assume that the SI Yt at time t is available at the

controller but not at the sensor. We first introduce a naı̈ve linear
scheme, followed by an improved modulo-based scheme.

Scheme 4 (Linear-based).
Sensor: At time t,
• Calculates the prediction error of the receiver, X̃r

t|t−1 ,

Xt − X̂r
t|t−1, and its power, P rt|t−1 = E

[(
X̃r
t|t−1

)2
]

.

• Transmits the prediction error with appropriate power
adjustment: At = 1√

P r
t|t−1

X̃r
t|t−1 .

Controller: At time t:
• Estimates the prediction error X̃r

t|t−1 via MMSE estima-
tion1 given

Bt = At +Nt =
1√
P rt|t−1

X̃r
t|t−1 +Nt,

and the SI Ỹt = Yt − X̂r
t|t−1 = X̃r

t|t−1 + Zt, as in (10):

ˆ̃Xr
t|t−1 =

1

σ2
Z +

P r
t|t−1

+σ2
Z

SNR

[√
P rt|t−1σ

2
ZBt +

P rt|t−1

SNR
Ỹt

]
• Updates the state estimate and its mean square error

(MSE):

X̂r
t|t = X̂r

t|t−1 + ˆ̃Xt|t−1, (17a)

P rt|t = P rt|t−1

∥∥∥∥σ2
Z

∥∥∥∥P rt|t−1

SNR
=

(1− ρt)P rt|t−1

1 + (1− ρt)SNR
(17b)

where (17b) is according to (11) and ρt is given in (14);
it is evident from (17a) that ˆ̃Xr

t|t−1 = X̃r
t|t−1 − X̃

r
t|t.

• Generates the control action and the next-state prediction
according to (15).

We now improve the linear scheme by employing Sch. 2
instead of Sch. 1.

Scheme 5 (modulo-based).
Sensor: At time t:
• Calculates the prediction error of the receiver, X̃r

t|t−1 ,

Xt − X̂r
t|t−1, and its power, P rt|t−1 = E

[(
X̃r
t|t−1

)2
]

.

• Applies fα,β,∆ of (12) to the prediction error after
normalizing its power

At = fα,β,∆

 X̃r
t|t−1√
P rt|t−1

,
1Since we employ only linear operations at the sensor, all variables are

jointly Gaussian and hence all the MMSE estimators are linear.



with coefficients (∆, α, β) that satisfy the power con-
straint E

[
A2
t

]
≤ 1 (to be determined in the sequel).

Controller: At time t:
• Constructs a state estimate given the SI and channel-

output histories, Y1:t and B1:t, respectively:

X̂r
t|t = E [Xt|B1:t, Y1:t] = X̂r

t|t−1 + E
[
X̃r
t|t−1|B1:t, Ỹ1:t

]
= X̂r

t|t−1 + E
[
X̃r
t|t−1|Bt, Ỹt

]
. (18)

Where (18) holds as long as the estimation errors and
the encoder output forms a Markov chain, and thus is
true whenever the assumption on perfect feedback of the
estimations X̂r

t|t−1 holds.
• Updates the state estimate MSE according to the SDR of

the underlying JSCC scheme Sch. 2 [recall Rem. 4, (13)]

P rt|t =
P rt|t−1

SDRα,β,∆(P rt|t−1, PZ ,SNR)
. (19)

• Generates the control action and the next-state prediction
according to (15).

We are left with determining the coefficients α, β,∆. As
the prediction error power P rt|t−1 changes across time (during
its initial transient response, until it converges to steady-state
operation), one may use time-varying coefficients αt, βt,∆t by
optimizing them with respect to the instantaneous correlation
coefficient ρt.

However, since the system converges to steady-state opera-
tion, we use time-constant coefficients instead, in Sch. 5, that
are optimized for steady-state operation and satisfy the average
power constraint 1

T

∑T
t=1 E

[
A2
t

]
≤ 1.

Remark 3. In contrast to the linear schemes (Schs. 3 and 4)
where all the signals and the estimation errors are jointly Gaus-
sian, the estimation errors in the (non-linear) modulo-based
scheme (Sch. 5) are not Gaussian. Nonetheless, numerical
investigation suggests that they are nearly Gaussian and the
design for Gaussian variables works essentially the same as
if they were Gaussian. A similar observation was reported in
the rate-mismatched setting in [12].

C. Fixed-Coefficients Steady-State Operation

For the case of constant cost coefficients qt ≡ q, rt ≡ r the
next theorems holds. Their proofs are essentially the same as
those for the setting without SI [11], [12] and are therefore
omitted in the interest of space.

Theorem 1 (Achievability). The infinite-horizon average-
stage control cost J̄∞ (5) of the system of model Sec. II is
bounded from above by

J̄∞ ≤ Sσ2
W +

Q+ (λ2 − 1)S

SDR∞ − λ2
σ2
W ,

where S is the steady state solution of the Riccati equation
(16), and SDR∞ is the SDR of the underlying JSCC scheme
in steady-state.

Fig. 3: Control cost evolution across time for Schs. 3–5 for
SNR = 6dB, σ2

W = 1, σ2
Z = 1/8, λ = 2, Q = 5, R = 1. The

parameters used in Sch. 5 for transmission are α = 0.75, β =
−1.18,∆ = 3.2. The plots are averaged over 210 runs.

Theorem 2 (Impossibility). The optimal achievable infinite-
horizon average-stage LQG cost of the scalar control system
Sec. II is bounded from below by

J̄∞ ≥ Sσ2
W +

Q+ (λ2 − 1)S

SDRboth
∞ − λ2

σ2
W ,

where

SDRboth
∞ = lim

t→∞

P rt|t−1

Dboth(P rt|t−1, σ
2
Z)

=
1 + SNR

1− ρ∞

and ρ∞ = limt→∞ ρt.

Remark 4. We use the more common (biased) variant of
the SDR definition throughout this work, in contrast to the
correlation-unbiased estimator (CUBE) SDR, SDRCUBE, that
was preferred in [12], the relation between the two being
SDR = 1 + SDRCUBE.

D. Simulations

We simulate a system with λ = 2 and σ2
W = 1. We further

use Q = 5, R = 1 (all parameters are assumed to be known
at both nodes). The noise in the receiver SI channel (3) is
taken to be with power σ2

Z = 1/8. The performance of Schs.
3–5 for these parameters are presented in Fig. 3, where the
optimized parameters that were selected in Sch. 5 are α =
0.75, β = −1.18,∆ = 3.2. This figure clearly demonstrates a
performance boost due to the introduction of the modulo-based
component.

V. CONTROL WITHOUT CONTROL-OBJECTIVES OR
CONTROL-ACTIONS KNOWLEDGE AT THE SENSOR

In the previous section, we have assumed that the weights
{qt} and {rt} are known both to the sensor and the controller,
and that the state estimates and control actions of the controller
are sent back via a perfect feedback to the sensor for the
generation of the next channel input.



However, in many practical scenarios, the sensor is unlikely
to known the control objectives {qt} and {rt} (up to maybe
a region to which these may belong to) that are determined
by the controller according to the system requirements and
might be changed during operation, or have perfect (continues-
amplitude) feedback of the control action and/or state estimate
of the controller.

In this section, we construct schemes that are oblivious to
the control objectives of the controller (albeit know to what
region they may belong to) and lack any feedback of the
control actions and/or state estimates of the controller. To that
end, we view the control actions and controller state estimates
as additional SI in Schs. 4 and 5 of Sec. IV.

A. Problem Statement

We assume that the sensor is not aware of the control objec-
tives, i.e., {qt} and {rt}, but knows that the resulting (optimal)
LQR coefficient Lt of (16) is in the region [Lmin

t , Lmax
t ]. The

sensor, further has no access to ut or X̂t|t−1.
The aim of the sensor is to transmit to the controller in a

way that will be robust to this lack of knowledge. To that end,
we reinterpret the lack of knowledge as additional SI that is
known at the controller but not at the sensor, as follows.

Xt = λXt−1 +Wt + Ut (20a)

= λ(Xt−1 − X̂r
t−1|t−1) +Wt + (λ− Lt)X̂r

t−1|t−1 (20b)

= X̃r
t|t−1 + (λ− Lt)X̂r

t−1|t−1︸ ︷︷ ︸
SI

. (20c)

With the state power breaking down as

PXt
= P rt|t−1 + (λ− Lt)2PX̂t−1|t−1

(21a)

= σ2
W + (λ− Lt)2PXt−1

+ Lt(2λ− Lt)P rt−1|t−1(21b)

where PXt
and PX̂t−1|t−1

are the powers of Xt and X̂t−1|t−1,
respectively, (21a) is due to (20c) and the orthogonality princi-
pal, and (21b) is due to (15c) and the orthogonality principal.

B. Control Design

To circumvent the the uncertainty in the control cost due
to the lack of knowledge of the SI in (20), we consider two
setups for the choice of the transmit power over the channel:
• Worst-case scaling: Under this conservative setup, the

sensor works with respect to the value Lt ∈ [Lmin
t , Lmax

t ]
that induces the largest transmit power, namely, as if
Lt = Lmin

t .
• Randomized scaling: Under this regime, a probability

distribution over Lt is assumed. Here, for simplicity of
exposition, we assume that Lt is uniformly distributed
over its uncertainty interval [Lmin

t , Lmax
t ].

The controller designs its estimate based on the selected
setup, by calculating the transmit power according to (21).

The suggested control schemes are extensions of Schs. 4–5.

Scheme 6 (Control under cost uncertainty).
Sensor: At time t:

• Calculates the current state power PXt
according to (21)

with the scaling chosen with respect to the setup used.
• Applies fα,β,∆ of (12) to the state variable after normal-

izing its power:

At = fα,β,∆

(
Xt√
PXt

)

= fα,β,∆

(
X̃r
t|t−1 + (λ− Lt)X̂r

t|t−1√
PXt

)
.

Controller: At time t:
• Constructs a state estimate given the external SI Yt, the

state prediction X̂r
t|t−1 and the channel output Bt:

X̂r
t|t = X̂r

t|t−1 + E
[
X̃r
t|t−1|Bt, Ỹt, X̂

r
t|t−1

]
. (22)

• Updates the state estimate MSE according to (19).
• Generates the control action and the next-state prediction

according to (15).

Note that when ∆ → ∞, α = P
−1/2
X the function fα,β,∆

turns to simple linear encoder and (22) turns to the MMSE
estimator (10).
Remark 5. Since we do not assume perfect feedback from the
controller to the sensor, the encoder output is not a Markov
chain and thus (22) is the true MMSE estimate only when
the encoder is linear. Furthermore, following Rem. 3, the
estimation errors in the (non-linear) modulo-based scheme are
not Gaussian. Nonetheless, numerical investigation suggests
that they are nearly Gaussian and the design for Gaussian
variables works essentially the same as if they were Gaussian.

C. Simulations
As we have seen in Sec. IV-D, the modulo-based scheme

enjoys better performance compared to its linear counterpart.
Under the current model, in which the SI is stronger, the
performance boost promised by the modulo-based scheme is
expected to be even greater. Indeed, by carrying simulations
for the same parameters as in Sec. IV-D, we observe in Fig. 4 a
greater gap between the modulo- and linear-based schemes; we
use Lmin

t = Lt/3 and Lmax
t = 3Lt, where Lt is the true value.

VI. EXTENSION: LQG CONTROL WITH INTEGRAL
CONTROL ACTION AND UNKNOWN REFERENCE INPUT

In this section, we extend our treatment to the setting where
the controller aims the system state Xt to track a reference
signal that is known (or determined) by the controller but is
unknown at the sensor—a common setup in practice.

To that end, we appeal to the traditional LQG control with
integral action [16, Ch. 6.4], in which the system state is aug-
mented by the integral of the reference-tracking error signal;2

this method allows tracking a general reference input, without
calibrating the controller to a predefined reference level.

Since the reference signal is known only at the controller
but unlikely to be known at the sensor, we recast this signal
as additional SI.

2The integration is analogous to the integral component in PID controllers.



Fig. 4: Control cost evolution across time for Sch. 6 and its
linear counterpart for SNR = 6dB, σ2

W = 1, σ2
Z = 1/6, λ = 2,

Q = 5, R = 1, Lmin
t = Lt/3, L

max
t = 3Lt. The parameters

used in the modulo-based scheme for transmission are α =
0.75, β = −1.18,∆ = 3.2. The performances of both schemes
is simulated under both scaling setups and are compared to
the two-sided scheme (Sch. 3) with perfect control-objectives
knowledge at the sensor. The plots are averaged over 210 runs.

A. Problem Statement

We consider the setup of Sec. V, namely, the model of
Sec. II, where the sensor is not aware of the control ob-
jectives {qt}, {rt}, nor of the control action and controller
state estimate signals Yt and (λ − Lt)X̂t−1|t−1, respectively.
However, instead of driving the state Xt to zero, the controller
wishes Xt to follow a reference trajectory Rt that may change
across time. Since the reference Rt is time-varying, one cannot
simply replace the term E

[
qtX

2
t

]
in the control cost (4) with

E
[
qt(Xt −Rt)2

]
, as the design should be universal (robust)

with respect to the values of the signal Rt.
Following the traditional LQG control framework for this

setting [16, Ch. 6.4], we augment the state space (1) by the
accumulated sum of tracking error signal, ηt:

ηt = ηt−1 +Rt−1 −Xt−1, η0 = R0.

The augmented state space model is given by

Xt+1 = AXt + BUt +

(
Wt

0

)
+

(
0
Rt

)
(23a)

Xt =

(
Xt

ηt

)
, A =

(
λ 0
−1 1

)
, B =

(
1
0

)
. (23b)

For the construction of Ut, (15a) is replaced with

Ut = −LTt X̂
r

t|t. (24)

where X̂
r

t|t ,
(
X̂r
t|t η̂rt|tk

)T
is the estimated state vector.

The augmented LQG cost that we wish to minimize is given

by

J̄T =
1

T
E

[
XT
TQT+1XT +

T∑
t=1

(
XT
t QtXt + rtU

2
t

)]
where Qt is a positive semidefinite weight matrix, and rt ≥ 0.

B. Control Design

The main difference with respect to the SI schemes pre-
sented in Sec. V is the vector form of the problem, and the
calculation of the state power PXt . Throughout the derivation
we use the notations:

X̃
r

t|t , Xt − X̂
r

t|t ,

(
X̃r
t|t

η̃rt|t

)
, CXt , E

[
XtX

T
t

]
,

Crt|t , E
[(

X̃
r

t|t

)(
X̃
r

t|t

)T]
,

(
P rt|t 0

0 P r,ηt|t

)
,

where Crt|t is diagonal since the tracking-error estimate at time
t depends on the state estimates up to time t− 1, and thus is
uncorrelated with the state estimate at time t, according to [7,
Lem. 3.2]. By substituting (24) into (23), we get:

Xt+1 = AXt −BLTt (Xt − X̃
r

t|t) +

(
Wt

0

)
+

(
0
Rt

)
The state mean is, therefore,3

E [Xt+1] =
(
A−BLTt

)
E [Xt] +

(
0
Rt

)
(25)

and the state covariance is equal to

E

[{
Xt+1 −

(
0
Rt

)}{
Xt+1 −

(
0
Rt

)}T]
−
(
σ2
W 0
0 0

)
+
(
A−BLTt

)
CXt

(
A−BLTt

)T
+ BLTt C

r
t|tLtB

T (26)

+
(
A−BLTt

)
Crt|tLtB

T + BLTt C
r
t|t

(
A−BLTt

)T
.

By rearranging (25) and (26), we get a recursive description
of the state covariance Ct and consequently also a recursive
formula for PXt = E

[
X2
t

]
. As the control objectives and the

reference Rt are unknown to the sensor, we may work with
the same scaling setups of Sec. V-B also with respect to the
reference trajectory Rt which can be assumed to belong to
[Rmin
t , Rmax

t ].

Scheme 7 (Control with Integral Action).
Sensor: At time t:
• Calculates the current state power PXt according to (26)

and (25) with the scaling chosen with respect to the setup
used.

• Applies fα,β,∆ of (12) to the state variable after normal-
izing its power:

At = fα,β,∆

(
Xt√
PXt

)
.

3Recall that Rt is a signal determined by the controller and is therefore
not random but rather deterministic but unknown to the sensor.



Fig. 5: Control cost evolution across time for Sch. 7 and its
linear counterpart for SNR = 9dB, σ2

W = 1, σ2
Z = 12, λ = 2,

Qt = 5I2, rt = 1, Rt = 10, Lmin
t = Lt/3, L

max
t =

3Lt, R
min
t = Rt/3, R

max
t = 3Rt. The parameters used in the

modulo-based scheme are α = 0.75, β = −1.18,∆ = 3.2.
The performances of both schemes is simulated under both
scaling setups and are compared to the two-sided scheme
(Sch. 3) with perfect control-objectives and reference knowl-
edge at the sensor. The plots are averaged over 210 runs.

Controller: At time t:

• Constructs a state estimate given the external SI Yt, the
state predictions X̂

r

t|t−1 and the channel output Bt:

X̂r
t|t = X̂r

t|t−1 + E
[
X̃r
t|t−1|Bt, Ỹt, X̂

r

t|t−1

]
.

• Predicts the next tracking error (with η̂0 = R0):

η̂t+1 = η̂t + (Rt − X̂t|t),

• Updates the state-estimation MSE P rt|t according to (19),
and the tracking-error MSE according to

P r,ηt|t = P r,ηt−1|t−1 + P rt−1|t−1.

• Computes the control action according to the standard
vector LQR recursion [20]:

St = ATSt+1A−
(ATSt+1B)(BTSt+1A)

rt + BTSt+1B
+ Qt,

Lt+1 =
BTStA

BTStB + rt
, Ut = −LTt X̂

r

t|t, ST = QT+1.

• Predicts the next state according to (15b) and (15c).

C. Simulations

Simulation of the last scheme, for Rt = 10,Qt = 5I2,
rt = 1, and uncertainty regions [Lt

3 , 3Lt], [
Rt

3 , 3Rt], is given
in Fig. 5. For the sake of presentation we plot only the state
part of the cost. We see that the modulo-based schemes shows
improvement over their linear counterparts.

VII. FUTURE RESEARCH

Modulo-based schemes are widely used in information the-
ory in multi-user multi-input multi-output (MIMO) commu-
nication setups, where inter-channel and inter-source interfer-
ence effects are reduced by treating them as SI that is known
at the transmitter or receiver [21]. Extending the schemes
presented in this work for MIMO systems and channels seems,
therefore, plausible and is currently under investigation.
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[8] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Sta-
bilization and Optimization Under Information Constraints. Boston:
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