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Abstract—The problem of transmitting a common message
over a multiple-input multiple-output (MIMO) Gaussian broad-
cast channel with multiple receivers is well understood in terms
of capacity. Nevertheless, existing optimal (capacity-achieving)
schemes for this scenario require joint decoding of the multiple
streams transmitted, entailing high computational complexity. In
this paper, a low-complexity scheme requiring only single stream
decoding is proposed. The scheme uses a matrix decomposition,
which allows, by linear pre- and post-processing, to simultane-
ously transform both channel matrices to triangular forms, where
the diagonal entries of both channels are equal. In conjunction
with successive interference cancellation at each receiver, parallel
channels are created, over each of which scalar coding and
decoding may be used. We prove that this channel transformation
conserves mutual information, and hence any sub-optimality of
the proposed scheme is governed solely by the gap-to-capacity of
the scalar coding scheme over the parallel channels.

Index Terms—Broadcast channel, MIMO channel, geometric
mean decomposition, successive decoding, MMSE, zero-forcing,
GDFE, successive interference cancellation.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) Gaussian
broadcast (BC) channel has gained much attention over the
past decade. Unlike the single-input single-output (SISO) case,
the Gaussian MIMO BC channel is not degraded. Neverthe-
less, capacity regions were established for some scenarios,
such as private-messages only, and for a common message
with a single private message, and bounds were derived for
others, see [1]–[5] and references therein.

In this work we concentrate on the common-message
problem, the capacity which is long known to equal the
(worst-case) capacity of the compound channel [6], with the
compound parameter being the channel matrix index.

Direct capacity-achieving implementation for MIMO chan-
nels involves joint decoding of all antenna signals. In point-
to-point (single-user) communication, such high-complexity
schemes, e.g., using bit-interleaved coded modulation (BICM)
in conjunction with sphere detection, essentially require the
same resources as if working in an “open loop” mode.
Thus, the complexity involved is similar to that required for
approaching the isotropic mutual information of the channel,
when only the receiver knows the channel. Nonetheless, it is
well known that for the MIMO point-to-point channel, when
the channel is known at both ends, capacity may be approached
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with greatly reduced complexity by applying “scalar coding”
- the combination of scalar additive white Gaussian noise
(AWGN) codebooks, linear processing, and possibly also suc-
cessive interference cancellation (SIC). Such solutions include
using the singular-value decomposition (SVD) to establish par-
allel virtual AWGN channels, see [7]. Alternatively, SIC-based
schemes such as generalized decision feedback equalization
(GDFE) and Vertical Bell-Laboratories Space-Time coding (V-
BLAST) may be used, see [8], [9]. Similarly, scalar-coding
(in this case dirty-paper coding) techniques also achieve the
private-message MIMO BC capacity, see, e.g., [10].

In the presence of a common message, however, to our
knowledge, no scalar capacity-approaching coding solutions
are known. QR-based schemes fail, since requiring the individ-
ual streams to be simultaneously decodable at all the receivers
implies that the rate per stream is governed by the smallest
of the corresponding diagonal elements, (potentially) inflicting
an unbounded rate penalty. Adapting SVD to this scenario is
problematic since the decomposition requires multiplying by
a channel-dependent (unitary) matrix at the encoder, which
prevents from using this decomposition for more than one
channel simultaneously.1 As a result of these difficulties, other
techniques were proposed, which are suboptimal in general,
see, e.g., [12], [13].

In this work, we present an optimal successive-decoding
(low-complexity) scheme for a two-user common-message
Gaussian MIMO BC channel. The result is derived by in-
troducing a decomposition, novel to the best of our knowl-
edge, which allows to simultaneously decompose any two
non-singular square matrices with equal determinants into
triangular forms with equal diagonals, by multiplying by
the same unitary matrix on the right and different unitary
matrices on the left.2 The proposed scheme is based upon
using this decomposition, in conjunction with SIC and good
scalar AWGN codes.3

By applying the above decomposition directly to the channel

1Indeed, the generalized singular-value decomposition (GSVD) [11] allows
to use a single transformation for two different channels at one of the ends, but
for each virtual parallel channel it yields a different gain for each user, thus not
solving the inefficiency mentioned above. In fact, using GSVD may result in
worse performance than using a QR-based decoder without any transformation
at the encoder.

2This decomposition applies as well to the more general (non-square) case,
as discussed in the sequel.

3For an example of the use of successive decoding of virtual channels in
point-to-point MIMO schemes, see [14].



matrices, the proposed scheme can approach the common-
message capacity in the high signal-to-noise ratio (SNR)
limit. For general SNR, applying the same decomposition
to modified matrices, amounts to optimal linear pre- and
post-processing, corresponding to beamforming and minimum
mean-squared error (MMSE) estimation, respectively. This in
turn allows us to establish a capacity-achieving scheme for any
two (not necessarily same-rank or square) channel matrices.

Beyond the pure common-message scenario, for the two-
user case, the proposed approach can also be used for trans-
mission of a combination of private and common messages;
in which case the best known achievable rate region may be
achieved.

The rest of the paper is organized as follows. In Section II
we present the aforementioned decomposition. In Section III
we formally define the communication problem, and in Sec-
tion IV we apply the decomposition to derive a “zero-forcing”
(ZF) scheme that is optimal at high SNR. In Section V we
prove that a variant of the scheme is optimal at any SNR.
Finally, we discuss extensions in Section VI.

II. JOINT EQUI-DIAGONAL TRIAGONALIZATION

To construct the joint equi-diagonal triagonalization we use
the geometric mean decomposition (GMD) [15], according to
which any matrix A of dimensions m× n and rank k can be
decomposed as

A = U1DU †
2 , (1)

where U1 and U2 are m×k and n×k (respectively) matrices
with orthonormal columns and D is a k × k upper-triangular
matrix with a constant diagonal equal to the geometric mean
of the non-zero singular values of A. We shall also use the QR
and RQ decompositions (see, e.g., [16]) according to which
A can be factorized as

A = QR , (2)

or alternately as

A = R̃V T , (3)

where Q and V are m × m and n × n unitary matrices,
respectively, and R and R̃ are m × n “generalized upper
triangular” matrices (matrices with zero entries beneath the
main diagonal, i.e., [R]ij = 0 for i > j) with non-negative
diagonals.

These decompositions allow to prove the following theorem.
Theorem 1: Let A1 and A2 be complex-valued matrices,

of dimensions m1 ×n and m2 × n, respectively. Assume that
m1,m2 ≥ n and that the matrices have full rank (rank n).
Then A1 and A2 can be jointly decomposed as

A1 = a1U1D1V
†

A2 = a2U2D2V
† , (4)

and

ai , n

√

√

√

√

n
∏

j=1

σi,j ,

where U1, U2 and V are unitary of dimensions m1 × m1,
m2 ×m2 and n×n, respectively; D1 and D2 are generalized
upper-triangular matrices with non-negative equal diagonal
elements, and where {σi,j}nj=1

are the singular values of Ai.
Remark 1: The condition on the dimension of the matrices

is not necessary, neither do they need to be full rank. It suffices
that both have the same rank k, regardless of the dimensions
m1, m2 and n (though in that case, the coefficients a1 and
a2 may vary). However, these conditions greatly simplify
the proof, and are sufficient for proving our main result in
Section V.

Remark 2: The decomposition in Theorem 1 is not unique
in general. This stems from, inter alia, the fact that GMD,
which is used in the construction of the decomposition of
Theorem 1, is not unique in general; see [15].

Remark 3: In the real case, viz. when A1 A2 are real-
valued matrices, the joint triagonalization of Theorem 1 is
achieved with orthogonal (real) matrices U1, U2, V and real-
valued matrices D1, D2.

Proof: Before considering the general case, we start by
proving the theorem for the case when the matrices are square.

square case (m1 = m2 = n):

In this case A1 and A2 are invertible. Denote ai ,
n

√

| det(Ai)|. Thus, one may apply the GMD to the matrix
B, defined below:

B ,
A1

a1

(

A2

a2

)−1

= U1RU †
2 , (5)

where the matrices U1, U2, R are as in (1).
Now, apply RQ decompositions to U †

i Ai/ai (i = 1, 2) to
achieve

U †
i

Ai

ai
= DiV

†
i , (6)

where Di and Vi are as in (3). By substituting (6) into (5) we
have

U1D1V
†
1 V2D

−1
2 U †

2 = U2RU †
2 ,

which is equivalent to

V †
1 V2 = D−1

1 RD2 . (7)

We note that the l.h.s. of (7) is unitary, whereas its r.h.s. is
an upper-triangular matrix with a non-negative diagonal. An
equality between such matrices can hold only if both matrices
are equal to the identity matrix of the appropriate dimensions
(n× n). Thus, we have

V , V1 = V2 .

[D1]ii = [R]ii [D2]ii , i = 1, ..., n ,

where [X ]ij denotes the (i, j) entry of the matrix X .
Since the diagonal of R is constant and is equal to the

geometric mean of the singular values of B, which, in turn,
is equal to [R]ii = 1 (for all i), we have

[D1]ii = [D2]ii ,
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Fig. 1. Two-user MIMO BC channel. Even though both users may have similar
channel quality, the actual channel matrices H1, H2 differ.

Thus, we established the desired decomposition (4).

Larger row dimension case (m1,m2 ≥ n):

We start by decomposing Ai using QR decompositions:

Ai = QiRi , i = 1, 2 ,

where Qi and Ri are as in (2). Since Ai is full-rank and
mi ≥ n, the diagonal elements of Ri are all (strictly) positive
and the entries on its lower (mi−n) rows are all zeros. Denote
the n×n upper sub-matrices of Ri by R̃i. Since R̃i are non-
singular square matrices, invoking the proof for the square
case (above), we may decompose them as

R̃1 = a1Ũ1D̃1V
†

R̃2 = a2Ũ2D̃2V
† .

Now, construct the augmented unitary matrices Wi:

Wi ,

(

Ũi 0
0 Imi−n

)

,

and the generalized triangular matrices Di of dimensions
mi × n:

Di ,

(

D̃i

0

)

.

Thus, we arrive at the desired decomposition of A1 and A2

(4), with Ui , QiWi.

III. PROBLEM DEFINITION: COMMON-MESSAGE MIMO
BC

The two-user Gaussian MIMO BC channel, depicted in
Figure 1, is given by

yi = Hix+ ni , i = 1, 2 , (8)

where x is the complex-valued channel input vector of size
Nt × 1, yi (i = 1, 2) are the received vectors of sizes
N i

r × 1, Hi are the N i
r × Nt complex channel matrices and

ni are mutually-independent identically-distributed circularly-
symmetric complex Gaussian random vectors of sizes N i

r,
i.e., ni ∼ N

(

0, INi
r

)

. The transmit signal x is subject to
an average total power constraint E

[

x†x
]

≤ P . 4

4Alternatively, one can consider an input covariance constraint Cx ,

E
[

xx
†
]

� C, where by C1 � C2 we mean that the matrix (C2 − C1)
is positive semi-definite and C† denotes the Hermitian transpose of C.

The common-message capacity is the maximum achievable
rate of a codebook that can be decoded with vanishing error
probability by both users. It is given by the compound-channel
(worst-case) capacity expression:

C = max
Cx

min
i=1,2

log
{

det
(

I +HiCxH
†
i

)}

, (9)

where the maximization is over all covariance matrices Cx
subject to the power constraint.

IV. ZERO-FORCING SCHEME

In the common-message problem above, assume that the
number of receive antennas at each user is at least as large
as the number of transmit antennas, and that both channel
matrices are full rank, i.e. have rank Nt. 5 Assume that both
matrices lead to the same capacity in the high-SNR limit and
w.l.o.g. use the normalization

det
(

HiH
†
i

)

= 1 , i = 1, 2.

It is easy to verify that in the high-SNR limit, the capacity
C(P ) under a power constraint P satisfies

lim
P→∞

[

C(P )−Nt log
P

Nt

]

= 0 . (10)

Thus no unequal power-allocation (beamforming or “water-
filling”) and no MMSE estimation are needed, in this limit.

By applying the joint triagonalization of Theorem 1 to both
channel matrices Hi, normalized by the transmit power, we
have

√
PHi = UiDiV

† , i = 1, 2 , (11)

where U1, U2 and V are unitary, and D1 and D2 are N1
r ×Nt

and N2
r ×Nt (respectively) generalized upper-triangular with

the same real positive diagonal d satisfying

Nt
∏

j=1

dj√
P

= 1 . (12)

We shall use this decomposition to transform the MIMO
BC channel into k parallel virtual SISO BC channels with
respective gains dj , j = 1, . . . , Nt, and input power 1/Nt

over each, allowing transmission rates greater than

Rj = log
d2j
Nt

. (13)

The resulting total rate,

R ,

Nt
∑

j=1

Rj = Nt log
P

Nt

(14)

is indeed optimal in the high SNR limit, c.f. (10). We now
describe in detail a transmission scheme which allows to
achieve this rate.

5These assumptions will be dropped when we present the optimal
MMSE scheme in the next section. Even for the zero-forcing scheme
the only necessary assumption is that the matrices have the same rank
k ≤ min(Nt, N

1
r
, N2

r
). See Remark 1 after Theorem 1.



Split the total rate into sub-messages of power 1/Nt and
rates Rj as specified in (13), and use k independent codebooks
of equal power 1/Nt, each of which is capacity-achieving
for an AWGN channel of appropriate rate. Denote the vector
formed by taking the n-th element of each codebook by x̃ (we
suppress here and onward the time index n and reserve the
vector notation for the spatial dimension). Using Theorem 1
form (11), the corresponding transmit vector is given by:

x =
√
PV x̃ . (15)

Since V is unitary, the power constraint P is satisfied. At
receiver i we may obtain

ỹi , U †
i yi = Dix̃+ ñi , i = 1, 2 , (16)

where ñi , U †
i ni are circularly-symmetric complex Gaussian

with covariance matrices INt
, since Ui are unitary. Hence, we

transformed the channel into an effective triangular channel.
Note that for the last sub-channel, Nt, we have a virtual
AWGN channel of capacity RNt

. It can thus be decoded with
arbitrarily low probability of error, and subtracted out for the
sake of decoding the subchannel Nt − 1. In general, we can
use SIC:

[y′
i]j = [ỹi]j −

Nt
∑

l=j+1

[Di]j,l[ˆ̃xi]l , (17)

where [ˆ̃xi]l is the decoded l-th codebook at receiver i. Assum-
ing correct decoding, we obtain an effective AWGN channel
of equal rate Rj to each user,

[y′
i]j = dj [x̃]j + [ñi]j , i = 1, 2 .

We conclude that the total rate (14) is indeed achievable by
a scheme which only uses scalar coding, linear operations and
successive interference cancellation. Of course, if one of the
matrices yields larger capacity, the performance corresponding
with the smaller is achievable; the proposed decomposition
of Theorem 1 will yield a fixed sub-channel gain a2/a1 which
will not be used in a common-message setting (but can be
utilized when adding a private message to the “strong” user
via dirty-paper coding, see Section VI).

Remark 4: In comparison, consider applying the QR de-
composition to the channel matrices at the decoder, without
using a suitable matrix V at the encoder. In this case, the
triangular matrices D1 and D2 will have arbitrary diagonals
d1 and d2, each satisfying (12). Using these matrices along
with SIC and scalar coding over the parallel channels, will
achieve a rate according to the minimum of [d1]j and [d2]j
for the j-th channel. Thus, we obtain an achievable rate of

Nt log
P

Nt

+

Nt
∑

j=1

log
min

{

[d1]
2

j , [d2]
2

j

}

P
.

Comparing to (10), this approach will result in a loss in the
high SNR limit, unless the diagonals are equal.

V. OPTIMAL MMSE SCHEME

The scheme described in Section IV is of a zero-forcing
nature, in the sense that the inter-channel interference is
completely cancelled. Although this approach is optimal in
the high-SNR limit, an MMSE receiver which strikes a bal-
ance between residual interference and noise can improve
performance. We now present a scheme which achieves the
optimum rate (9). The derivation follows the general lines of
the extension from the geometric mean decomposition (GMD)
to the universal channel decomposition (UCD) as developed
in [14], which in turn builds upon the MMSE version of V-
BLAST [17].

For a given channel input covariance matrix Cx (of trace at
most P ), let Fi = Hi

√
Cx for i = 1, 2. We define augmented

matrices and apply to them the decomposition of Theorem 1:
[

Fi

I

]

, Gi = αiUiDiV
† i = 1, 2, (18)

where the identity matrix I has dimensions Nt ×Nt. Without
loss of generality, assume that |α2

1| ≥ |α2
2| = 1. The

transmission is given by

x =
√

CxV x̃, (19)

where x̃ is the codeword vector as in Section IV, for code-
books of power 1/Nt and rates Rj (13). At each receiver we
compute

ỹi = Ũiyi, (20)

where Ũi consists of the first Nt rows of Ui. Finally, succes-
sive decoding is performed as in (17). Define the signal-to-
interference and noise ratio (SINR) for the decoding of the
j-th codebook in decoder i in this process to be:

Si,j = Var
(

[x̃]j

∣

∣

∣
ỹi, [x̃]

Nt

j+1

)

. (21)

The following shows optimality of the scheme.
Theorem 2: Let V , U1 and U2 be given by (18). Let d be

the diagonal of the corresponding D1 or D2, and let Ũi be the
first Nt rows of Ui. The rates (13) and SINRs (21) are related
by

Rj = log(1 + S1,j) = log(1 + S2,j) ∀j = 1, . . . , Nt (22)

and furthermore
Nt
∑

j=1

Rj = log
{

det
(

I +HiCxH
†
i

)}

. (23)

Proof: The received signal is

yi = FiV x̃+ z , F̃i + z.

Recalling (18), we can define an augmented matrix for the F̃i

channels:

G̃i ,

[

F̃i

I

]

=

[

I 0
0 V †

]

GiV =

[

I 0
0 V †

]

UiDi

, WiDi.



We now note that Wi is unitary, and thus we have arrived at a
QR decomposition of G̃i. Also note that the first Nt rows of
Wi equal Ũi. Following the exposition in [14, Section III-D]
(see also e.g. [17, Section II]), each of the decoders is exactly
the MMSE-VBLAST decoder for F̃i. Now (22) follows (for
each decoder) by [14, Lemma III.3]. Furthermore,

Nt
∑

j=1

Rj = log det
(

I + F̃iF̃
†
i

)

= log det
(

I + FiF
†
i

)

,

where the first equality follows by [14, Corollary III.4], and
the second holds since V is unitary. Since this is equivalent
to (23), the proof is completed.

By (22), the successive decoding procedure will succeed
with arbitrarily low probability of error for rates approaching
Rj . By (23), the sum of the codebook rates equals the mutual
information over the channels. Taking Cx be the covariance
matrix maximizing (9), capacity is achieved.

VI. DISCUSSION AND GENERALIZATIONS

In this work, the problem of broadcasting over a MIMO
channel was considered. In the special case where the channel
matrices are both diagonal, this is equivalent to broadcasting
over SISO channels of different colors (i.e., different frequency
responses), where the channel spectra are piecewise constant
(but since the dimension is not restricted, any “well-behaved”
spectrum can be approached). Thus, we have also presented a
practical optimal scheme for colored broadcasting (of course, it
is straightforward to do that in the fortunate special case where
the channel is degraded). Interestingly, the scheme gives up the
orthogonality between frequency bins and creates dependence
which can be successively cancelled; this can be viewed as
“frequency-domain decision feedback equalization”.

As mentioned in the introduction, the proposed scheme
can be extended to the case where both common and private
messages are present. For one private message, the capacity is
given by superposition, and this approach also yields the best
known achievable rate for two messages, see [5]. Since the
joint triagonalization is information-lossless, we can always
use it, and then add on top of it a private-message layer using
dirty-paper coding. Interestingly, in that case we would have
interference cancellation both at the encoder and the decoders.

Another natural extension would be to the case of more than
two receivers; this is currently under research.

The MIMO BC problem is just one example of a network
setting where jointly decomposing two channel matrices yields
simple transmission schemes. Another example is the rateless
problem, addressed in [18]. Moreover, in some scenarios this
approach can help in deriving new achievability results; see
[19] for such work regarding the Gaussian two-way MIMO
relay channel.
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