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Abstract—We address the problem of communication over
arbitrarily permuted parallel Gaussian channels, where the
permutation is known only to the receiver. We present a practical
transmission scheme, that allows to transmit over this channel
using off-the-shelf codes, in conjunction with linear processing
and successive interference cancellation. The scheme is based on
the approach of joint matrix triangularization. Explicit precoding
matrices are derived for up to six parallel channels.

I. INTRODUCTION

The problem of transmitting information over arbitrarily
permuted parallel channels was studied by Willems and
Gorokhov [1] and by Hof et al. [2]. In this point-to-point
scenario, the transmitter is connected to the receiver via K
parallel memoryless channels (see Figure 1 for the case of
K = 3), sharing the same input alphabet, the transition
matrices of which are known but not their order. Namely, at
each time instance, the transmitter generates K input symbols
to be sent over the K parallel channels, and these symbols are
then permuted by a one-to-one-mapping (permutation) π from
{1, . . . ,K} onto itself.

The permutation π is arbitrary, yet constant,1 and is known
to the receiver but not to the transmitter. The aim of the
receiver is to recover the transmitted message with arbitrarily
small error probability. This channel model is of relevance
in scenarios where the gains of the channels are generated
according to an i.i.d. distribution; thus, the histogram (when
the number of channels is large) is known, but the permutation
is not. For details see [1, Section VII].

When the permutation is constant during the whole trans-
mission period (as considered in [1], [2]), this setting falls
under the framework of compound channels,2 the capacity of
which is well known (see, e.g., [3]).

Willems and Gorokhov [1] constructed an MDS-like scheme
for treating this case, where the receiver uses joint typicality
decoding. In [2] a scheme based on polar codes along with
MDS codes was proposed for the case where the channels are
binary-input and output-symmetric (BIOS). Another approach
to tackle this problem in the Gaussian case is using approxi-
mately universal codes [4], which assumes high signal-to-noise
ratio (SNR) regime.

∗ This work was supported in part by the Israel Science Foundation under
Grant No. 1557/12.

1The case of time-varying permutation will be addressed in Section VI.
2In the classical compound channel setting the receiver is not aware of the

compound parameter as well. However, the capacity in both cases is the same;
see [3, Sec. 8].
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Fig. 1. Permuted Parallel Channels

In this paper we construct a practical capacity-achieving
scheme for the Gaussian case, described by

yi = αixi + zi , i = 1, 2, . . . ,K , (1)

where xi is the input to the i-th channel which is subject to a
power constraint3

E
(

|xi|2
)

≤ 1 ,

yi is the output of the i-th channel, and {zi} are i.i.d.
circularly-symmetric Gaussian variables with unit variance,
independent of {xi}. The gains {αi} are known to the receiver,
whereas the transmitter knows the gains up to an unknown
permutation. Namely, the transmitter knows the gains but
does not know their order. The scheme is based on codes
designed for a point-to-point additive white Gaussian noise
(AWGN) channel with known (fixed) SNR, in conjunction
with successive interference cancellation.

Since the capacity-achieving input distribution for all the
channels is identical (circularly-symmetric complex normal
with unit variance), the capacity of the compound channel is:

C =

K
∑

i=1

log
(

1 + |αi|2
)

. (2)

An interesting special case of the permuted parallel channels
problem is that of parallel Gaussian erasure channels, where a
constant number of channels is “erased” at each time instance.
In the notation of the Gaussian permutation channel, this cor-
responds to the case of the coefficients αi (1) equaling either
the same constant channel gain α or 0 (in case of an erasure).
For this special case, capacity in the compound setting can be
efficiently achieved using MDS codes concatenated with codes
which are good for scalar AWGN channels. However, except

3Alternatively, the individual power constraints can be replaced by a
common power constraint. However, in our case of interest, both cases reduce
to the same result.



for this extreme case, practical capacity-achieving schemes are
not known.

In this paper, we develop a space–time modulation tech-
nique that, in conjunction with successive interference cancel-
lation (SIC), gives rise to effective (scalar) parallel AWGN
channels with the same gains (and order) for all possible
permutations. Thus, by using off-the-shelf (fixed-rate) AWGN
codes over the effective channels, capacity is achieved. We
present exact solutions for K ≤ 6 parallel channels, and
discuss the generalization for larger K.

II. BACKGROUND: TWO-USER MULTICAST VIA JOINT
MATRIX TRIANGULARIZATION

In this section we review the scheme proposed in [5]
for multicasting a common message over MIMO Gaussian
channels. This scheme uses joint matrix triangularization,
along with SIC, to transform the channel into parallel single-
input single-output (SISO) AWGN channels, with rates that
are known at the transmitter.

The channel model in [5] is the two-user common-message
Gaussian broadcast channel:

yk = Hkx+ zk , k = 1, 2 ,

where x is the channel input of dimensions nt × 1 subject
to an average power constraint P , yk is the channel output
vector of receiver k (k = 1, 2) of dimensions n

(k)
r × 1; Hk is

the channel matrix to receiver k of dimensions n
(k)
r × nt and

zk is an additive circularly-symmetric Gaussian noise vector
of dimensions n

(k)
r × 1.

The aim of the transmitter is to multicast the same (com-
mon) message to all the receivers. The capacity of this scenario
equals the (worst-case) capacity of the compound channel (see,
e.g., [3]), with the compound parameter being the channel
matrix index:

C = max
Cx

min
k=1,2

log det
(

I +HkCxH
†
k

)

, (3)

where maximization is carried over all admissible channel
input covariance matrices Cx � 0, subject to the power
constraint.

The transmission scheme of [5] is based on applying a
unitary triangularization to two augmented matrices:

Gk ,

(

Hk

√
Cx

I

)

, k = 1, 2

Tk = U †
kGkV,

(4)

where V is an nt × nt precoding unitary matrix applied at
the transmitter (and thus, cannot depend on k), U †

k is an nt ×
(n

(k)
r )+nt) matrix with orthonormal rows which is known at

the receiver (and may differ between the receivers), and Tk is
an nt × nt upper-triangular matrix.

The transmitter sends the signal:

x = C1/2
x

V x̃ ,

where the vector x̃ is formed by taking one symbol from each
of nt parallel codebooks, of equal powers 1/nt.

Receiver k applies the matrix Ũ †
k to the channel output,

where Ũ †
k is an nt × n

(k)
r matrix consisting of the left n(k)

r

columns of U †
k ,

ỹk = Ũ †
kyk .

This results in the equivalent channel:

ỹk = Ũ †
k(Hk

√

CkV x̃+ z)

= Ũ †
kHk

√

CkV x̃+ Ũ †
kz

, T̃kx̃+ z̃.

Finally, SIC is performed, i.e., the codebooks are decoded
from last (j = nt) to first (j = 1), where each codebook is
recovered from y′j , ỹj −

∑nt

l=j+1 T̃j,l
ˆ̃xl , where ˆ̃xl is the

decoded symbol from the l-th codebook.
As is shown in [5], this scheme achieves the rate:

R = 2

nt
∑

i=1

min
k=1,2

{log |[Tk]ii|} ,

where [A]ij denotes the (i, j)-th element of the matrix A. If
all the matrices Tk have the same diagonal values, then:

R = 2

nt
∑

i=1

log |[Tk]ii| = log det(I +H†
kCxHk) ,

namely, the scheme achieves the capacity (3).
Finally, it is shown in [5] that there always exists such

a decomposition, which is coined joint equi-diagonal trian-
gularization (JET). Moreover, an explicit construction of the
matrices V, U1, U2 is given. As a result, this scheme can
always be used in order to achieve the capacity of the two-
user common message Gaussian MIMO broadcast channel (3).
However, an exact JET is known to exist only for K = 2 for
general matrices, and it is not known how to generalize it to
larger values of K.

III. PROBLEM REFORMULATION

In this section we reformulate the problem of arbitrarily
permuted parallel Gaussian channels in terms of a common-
message MIMO broadcast problem for K! users, where K is
the number of parallel channels.

The K parallel channels (1) can be regarded as a single
MIMO channel:

y = Hx+ z

where x is the channel input vector of length K, and z is a
circularly-symmetric white Gaussian random vector of length
K and identity covariance matrix.

The channel matrix H is a K ×K diagonal matrix, which
is known at the receiver:

H =









α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αK









. (5)

The transmitter knows the matrix H , up to the unknown order
of the diagonal elements.



The latter is, in turn, equivalent to multicasting the same
(common) message to K! receivers simultaneously, where the
channel matrices of the various users are all of the form:

Hi ,









απk(1) 0 · · · 0
0 απk(2) · · · 0
...

...
. . .

...
0 0 · · · απk(K)









,

and πk ∈ SK is a permutation which is different for each user.
The transmission scheme is obtained, similarly to the two-

user scheme (4), by applying a joint unitary triangularization
to the augmented matrices, with Cx = I :

Gk ,

(

Hk

I

)

, Tk = U †
kGkV, (6)

where V is a precoding unitary matrix which is known at the
transmitter (and thus, cannot depend on k), Uk is a matrix
with orthogonal columns which is applied by receiver k, and
Tk is an upper-triangular matrix.

As discussed in Section II, this scheme achieves the rate:

R = 2

K
∑

i=1

min
i

{log |[Tk]ii|} .

In the case where all the matrices {Tk} have the same diagonal
values, the following rate is achieved:

R = 2
K
∑

i=1

log
∣

∣[Tk]ii
∣

∣ = log det(I +H
†
k
Hk) =

K
∑

i=1

log(1 + |αi|2) ,
which, according to (2), is equal to the capacity of the channel.

Note that Uk and Tk in (6) constitute the QR decomposition
of the matrix GkV . Consequently, the matrix Tk is the
Cholesky factor of the matrix V †(I +H†

kHk)V :
V †(I +H†

kHk)V = T †
kTk , k = 1, 2, . . . ,K! . (7)

To summarize, the proposed scheme allows to achieve the
capacity (2) using codes designed for scalar AWGN channels
with known SNRs, provided that there exists a unitary matrix
V such that the Cholesky decomposition (7) holds for every
k, {Tk} being upper-triangular with the same diagonal values.

For K = 2 this is achievable using the JET, as discussed
in Section II. However, as mentioned above, JET is known
to exist for only K = 2 (for general matrices), and it is
not known how to generalize it to larger values of K. In
the following section, we show that in the special case of
arbitrarily permuted channels (5), the decomposition (7) exists
for K = 2 and K = 3. Later, we review the concept of
space–time triangularization, introduced in [6], and show that
it can be used to obtain a practical scheme which achieves the
capacity for 4 ≤ K ≤ 6.

IV. SPACE-ONLY TRIANGULARIZATION

A. Two Parallel Channels (K = 2)

We now consider the special case of two parallel channels
(K = 2). The channel can be in one of two “states”:

I +H†
1H1 =

(

a 0
0 b

)

,

I +H†
2H2 =

(

b 0
0 a

)

,

where a, b ≥ 1 are known.
The special case a = 1 (or b = 1) corresponds to a Gaussian

erasure, where there occurs exactly one erasure in every two
symbols, but the location of the erasure is unknown at the
transmitter.

Since there are only two options for the channel matrix H ,
the capacity in this case can be achieved by using the JET
described in Section II.

Specifically, we show next that the decomposition (7) is
obtained by choosing the precoding matrix to be the (scaled)
Hadamard matrix (which coincides with the 2×2 DFT matrix):

V =
1√
2

(

1 1
1 −1

)

.

In our case, there are two possible channel matrices H :

V
†(I +H

†
1H1)V =

1

2

(

a+ b a− b
a− b a+ b

)

(8)

V
†(I +H

†
2H2)V =

1

2

(

a+ b b− a
b− a a+ b

)

. (9)

Cholesky decompositions (7) of the above two matrices yield

T1 =





√

a+b
2

a−b√
2(a+b)

0
√

2ab
a+b



 (10)

T2 =





√

a+b
2

b−a√
2(a+b)

0
√

2ab
a+b



 . (11)

Alternatively, we can use the fact that the diagonal values of
the Cholesky factor of a matrix can be expressed as the ratios
between the determinants of its principal minors (see, e.g.,
[7]). In our case, the determinants of the principal minors of
both (8) and (9) are M1 = 1

2 (a+ b) and M2 = ab. Therefore,
the diagonal values of the Cholesky factors are

[Tk]11 =
√

M1 , [Tk]22 =

√

M2

M1
,

which coincide with (10) and (11), respectively.
Since T1 and T2 have the same diagonal values, the same

SISO codewords can be used to simultaneously achieve the
capacities of both channels H1 and H2.

Note that the precoding matrix V used by the transmitter
does not depend on a or b. Nonetheless, the rates of the SISO
codebooks need to be known at both transmission ends.

B. Three Parallel Channels (K = 3)

We now treat the case of three parallel channels (K = 3).
In this case, we have:

I +H†H =





a 0 0
0 b 0
0 0 c



 ,

where a, b, c ≥ 1 are known, up to an unknown permutation.
In this case, we propose the following precoding matrix,

which is the 3× 3 DFT matrix:

V =
1√
3





1 1 1
1 e e−1

1 e−1 e



 ,



where e , e2πi/3.
Using the matrix V in (7) yields
V

†(I +H
†
H)V =

1

3





a+ b+ c a+ be+ ce−1 a+ be−1 + ce

a+ be−1 + ce a+ b+ c a+ be+ ce−1

a+ be+ ce−1 a+ be−1 + ce a+ b+ c



 .(12)

The diagonal values of the Cholesky factors of (12) are

[Tk]11 =
√

M1 , [Tk]22 =

√

M2

M1
, [Tk]33 =

√

M3

M2
,

where M1,M2,M3 are the determinants of the principal
minors of (12):

M1 =
1

3
(a+ b+ c)

M2 =
1

3
(ab+ ac+ bc)

M3 = abc .

Since M1,M2,M3 are invariant to the order of (a, b, c), so
are the diagonal values d1, d2, d3. Thus, the proposed scheme,
using the precoding matrix V , achieves the capacity (2)
simultaneously for all the possible permutations πk.

Note that a 3 × 3 linear transformation over the complex
field can be regarded as a 6 × 6 transformation over the
reals. Thus, in the case that the parallel channels (1) are real-
valued (rather than complex valued), we can, nonetheless, use
the proposed scheme, by treating two consecutive real-valued
input symbols as a single complex-valued symbol. In fact, as
explained in the next section, this is a special case of the time–
space triangularization approach.

Unfortunately, the above two special cases do not carry over
to the case of K = 4: using the 4 × 4 complex-valued DFT
matrix does not yield equal diagonal values after Cholesky
decomposition of V †(I +H†

kHk)V . For this reason, we need
to extend the space–time approach beyond the complex field,
using quaternions, as detailed in the next section.

V. SPACE–TIME TRIANGULARIZATION

In order to obtain a transmission scheme for more than three
parallel channels, we utilize space–time triangularization,
which was proposed in [6] for the general case.

For illustration, assume we have three parallel channels with
gains α1, α2, α3. The parallel channels can be represented by
the 3× 3 channel matrix

H = diag(α1, α2, α3) ,





α1 0 0
0 α2 0
0 0 α3



 .

However, we can also regard it is a 6 × 6 MIMO channel,
where in each channel-use six symbols are being transmitted,
two symbols on each one of the parallel channels. Thus, the
channel matrix of this 6× 6 channel is:

H = diag(α1, α1, α2, α2, α3, α3) .

This will be referred to as an extended channel matrix with
two duplications. Extended matrices with more than two
duplications are defined in a similar manner.

Using extended channel matrices, the scheme described in
Section II can be employed, where the channel matrices Hk

are replaced by their extended versions Hk. As we shall see
in the sequel, this allows to achieve the channel capacity of
K parallel channels beyond the case of K = 3 channels.

In order to achieve the capacity for 4 ≤ K ≤ 6, we will
use extended matrices with two duplications, where each pair
of two consecutive complex-valued symbols will be regarded
as a single quaternion-valued symbol.

A quaternion w ∈ H can be regarded as a collection of four
real-valued symbols [8]

w = a+ bi+ cj + dk .

The quaternions form a vector space over the real numbers.
There also exists an associative product of two quaternions,
which is defined by the products of the basis elements 1, i, j, k:

12 = 1 , i
2 = j

2 = k
2 = −1 ,

1i = i1 = i , 1j = j1 = j , 1k = k1 = k ,

ij = −ji = k , jk = −kj = i , ki = −ik = j .

The transformation of multiplying a quaternion on the left
by the quaternion w, W (x) , wx, is a linear transformation
from H to H over the field R. Using the basis {1, i, j, k}, this
transformation is given by the following matrix:

W =







a −b −c −d
b a −d c
c d a −b
d −c b a






.

Alternatively, the same quaternion can be regarded as a
collection of two complex-valued symbols:

w = (a+ bi) + j(c− di) .

Using the basis {1, j}, the transformation W (x) = wx over
the field C is also linear, and is represented by:

W =

(

a+ bi −c− di
c− di a− bi

)

.

A. Four Parallel Channels (K = 4)

We now show how quaternion-valued matrices allow the de-
sign of a precoding matrix for four permuted parallel channels
(K = 4). Using extended matrices with two duplications, the
channel matrix (over the complex field) is:

I +H
†
H = diag(a, a, b, b, c, c, d, d) ,

which is an 8× 8 matrix. By combining every two complex-
valued symbols into a single quaternion-valued symbol, we
arrive at the following 4×4 matrix over the quaternion division
ring:

I +H†H =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









.

Consider the following quaternion-valued precoding matrix V :

V =
1

2









1 1 1 1
1 x i iy
1 z −1 −z
1 y −i −ix









,



where
x =

1

3
(−1− 2i−

√
2j +

√
2k)

y =
1

3
(−1 + 2i−

√
2j −

√
2k)

z =
1

3
(−1 + 2

√
2j) .

Applying the Cholesky decomposition (7) with this V yields

T =









d1 ∗ ∗ ∗
0 d2 ∗ ∗
0 0 d3 ∗
0 0 0 d4









,

where
d
2
1 =

1

4
(a+ b+ c+ d)

d
2
1d

2
2 =

1

6
(ab+ ac+ ad+ bc+ bd+ cd)

d
2
1d

2
2d

2
3 =

1

4
(abc+ abd+ acd+ bcd)

d
2
1d

2
2d

2
3d

2
4 = abcd

and ∗ represents some value (which may differ from entry to
entry). Again, the diagonal values are invariant to reordering
of the values (a, b, c, d), hence this scheme achieves capacity.

B. Five Parallel Channels (K = 5)
For five parallel channels, there also exists a capacity-

achieving precoding matrix over the quaternions. The capacity
(2) is achieved using the following quaternion precoding
matrix:

V =
1√
5













1 1 1 1 1
1 w q q2 T (w)
1 x q2 q4 T (x)
1 y q3 q6 T (y)
1 z q4 q8 T (z)













,

where T (w+xi+yj+zk) , w+xi−yj−zk and q , e
2πi

5 .
The values w, x, y, z were obtained numerically:

w ≈ −0.25 − 0.7694i − 0.1904j − 0.5561k

x ≈ −0.25 + 0.1816i − 0.7606j + 0.5710k

y ≈ −0.25 − 0.1816i + 0.7781j + 0.5469k

z ≈ −0.25 + 0.7694i + 0.1729j − 0.5618k .

The diagonal values after Cholesky factorization are
d
2
1 =

1

5
(a+ b+ c+ d+ e)

d
2
1d

2
2 =

1

10
(ab+ ac+ ad+ · · · )

d
2
1d

2
2d

2
3 =

1

10
(abc+ abd+ abe+ · · · )

d
2
1d

2
2d

2
3d

2
4 =

1

5
(abcd+ abce+ · · · )

d
2
1d

2
2d

2
3d

2
4d

2
5 = abcde ,

(13)

which are again invariant to permutations of a, b, c, d, e.

C. Six Parallel Channels (K = 6)
For K = 6, a 6× 6 quaternion precoding matrix was found

numerically, but we do not have explicit expressions for the
entries of this matrix. The matrix, which is given in [9], yields
diagonal values of a form similar to (13).

VI. EXTENSIONS

For a larger number of parallel channels, algebras of higher
dimensions need to be considered. to achieve a Cholesky
decomposition with a form similar to (13). Another approach
could be to use nearly-optimal precoding matrices, as de-
scribed in [10] for general channel matrices. However, this
is not practical, even for relatively small number of channels.
For example, for K = 7 there can be 7! = 5040 possible
matrices {Hk} (in case that all the channel gains αi are
different), so that using this scheme for joint triangularization
would suggest an enormous amount of duplications, which
becomes impractical. Nearly optimal schemes for permuted
parallel Gaussian channels (i.e., this special class of matrices)
is an interesting avenue for future research.

Finally, we note that the proposed scheme can also be
applied to the case of arbitrarily varying permuted Gaussian
channels, where the permutation π may vary between channel
uses. Suppose that we obtained a joint triangularization (6),
where Tk is upper-triangular with diagonal elements not de-
pending on k. Since the receiver multiplies the received input
signal y by U †

π and performs SIC of the various codewords,
the scheme allows the channel Hk (and therefore the unitary
matrix Uk) to vary from symbol to symbol. Note, however,
that this applies only for K = 2, 3, where one sample is
processed at a time. In cases where several channel outputs
ought to be grouped and processed together, the permutation
π needs to be constant during several consecutive channel
uses. This requirement is reminiscent of the requirement in
Alamouti space–time coding [11]. If, for example, quaternion
precoding is being used, then π need to be constant during
every two consecutive channel uses.
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