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Abstract— A dirty paper channel is considered, where the
transmitter knows the interference sequence up to a constant
multiplicative factor, known only to the receiver. We derive lower
bounds on the achievable rate of communication by proposing
a coding scheme that partially compensates for the imprecise
channel knowledge. We focus on a communication scenario where
the Gaussian noise is small while the interference is strong. Our
approach is based on analyzing the performance achievable using
extended Tomlinson-Harashima like coding schemes.

When the power of the interference is finite, we show that this
may be achieved by a judicious choice of the scaling parameter at
the receiver. We further show that the communication rate may
be improved, for finite as well as infinite interference power, by
allowing randomized scaling at the transmitter.

I. INTRODUCTION

The dirty-paper (DP) channel, first introduced by Costa [3],
provides an information theoretical framework for the study of
interference cancellation techniques for interference known to
the transmitter. The DP channel model has since been further
studied and applied to different communication scenarios such
as ISI channels, the MIMO Gaussian broadcast channel and
information embedding. The DP channel is given by

Y = X + S + N, (1)

where X is the channel input and is subject to an average
power constraint PX , N is AWGN with variance PN and
S is interference which is known causally (“dirty-tape”) or
noncausally (“dirty-paper”) to the transmitter but not to the
receiver. In this work we consider both the case where S is
i.i.d. (of some distribution) with power PS (Section IV-A) as
well as arbitrary (Section IV-B).

Costa [3] showed that, for an i.i.d. Gaussian interference
with an arbitrary power, the capacity in the noncausal scenario
is equal to that of the interference-free AWGN channel, i.e.,
1
2 log(1 + SNR), where SNR , PX/PN . This result was
extended in [5], [2] to the case of arbitrary interference.

In this work we focus our attention to the causal (or scalar)
scenario, both since it results in simpler coding schemes but
also since the benefit from using a vector approach (at least
using the methods we propose) diminishes in the presence of
imprecise channel knowledge.

The capacity for the causal case is not known but upper
and lower bounds were found in [5], which coincide in the
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Fig. 1. The compound dirty-paper channel.

high-SNR regime, thus establishing the capacity for this case
to be 1

2 log(1 + SNR) − 1
2 log( 2πe

12 ). That is, a rate loss of
1
2 log( 2πe

12 ), relative to the capacity of the AWGN channel.
This result implies that in the limit of strong interference and
high SNR, the well-known Tomlinson-Harashima precoding
(THP) technique [11], [7] is optimal. For general SNRs, the
lattice-based coding techniques of [1], [4], [5] are an extension
of Tomlinson-Harashima precoding where a scaling parameter
is introduced in the transmitter and receiver. In this work the
term Tomlinson-Harashima precoding is used in this wider
sense.

In many cases of interest, the transmitter has imprecise
channel knowledge. For instance in a multi-user broadcast
scenario, the interference sequence S corresponds to the signal
intended to another user multiplied by a channel gain. While
the transmitter knows the transmitted interfering signal, only
an estimate of the channel gain is known (for instance by
quantized feedback; see, e.g., [8]). This leads to the question
of how sensitive is DP coding to imprecise channel knowledge.

II. CHANNEL MODEL AND MOTIVATION

We consider the channel model:

Y = X +
S

β
+ N, (2)

where β ∈ Iδ = [1− δ, 1 + δ] is constant and is unknown to
the transmitter. Thus, δ is a measure of the degree of channel
uncertainty.

Consider the limit of high SNR. At first glance, one might
assume that a reasonable approach could be to use standard
THP as the SNR is high. This would correspond to pre-
subtracting the interference S at the transmitter, applying a
modulo operation and treating the residual interference as
noise. However, the residual interference, namely (1 − 1

β )S,
left at the receiver may be large if the power of the interference
is large. In fact, in the limit PS →∞, the achievable rate for
reliable communication using this approach would vanish.

We observe in Section IV-A that by using a carefully chosen
scaling parameter at the receiver in Section IV-A, reliable



communication, at strictly positive rate, is possible regardless
of the interference power. The optimal scaling parameter does,
however, depend on the power of the interference and should
strike a balance between residual interference and a “self
noise” component.

We then show in Section IV-B that performance may further
be improved by using randomized (time-varying) scaling at the
transmitter. We begin by examining the more general problem
of compound channel with side information.

III. COMPOUND CHANNELS WITH CAUSAL SI AT THE
TRANSMITTER

The causal DP channel model (1) is a special case of the
more general problem of a channel with side information at
the transmitter. This problem was first introduced by Shan-
non [10], who considered a DMC whose transition matrix
depends on the channel state s ∈ S , where the latter is
independent of the message W that is sent, i.i.d. and known
causally to the transmitter but not to the receiver. This channel
is described by

p(y, |s, x) =
∏

i

p(yi|si, xi) (3)

p(s) =
∏

i

p(si), (4)

where x ∈ X is the channel input and y ∈ Y is the
channel output. Shannon showed that the capacity of the above
channel is equal to that of an equivalent DMC whose inputs
are mappings t ∈ T , which will be referred to hereafter,
as strategies from S to X , and the corresponding transition
probabilities of this channel are

p(y|t) =
∑

s

p(s)p(y|x = t(s), s). (5)

Note that this result uses mappings from the current state only
although the transmitter has access to all the past states.

A compound (discrete memoryless) channel is a channel
whose transition matrix depends on a parameter β ∈ B which
is constant and not known to the transmitter but is known to
the receiver. 1 The capacity of this channel is (see, e.g., [12]),

C = sup
p(x)∈P(X )

inf
β∈B

Iβ(X; Y ), (6)

where Iβ(X;Y ) denotes the mutual information of X and Y
with respect to the transition matrix pβ(y|x). This result may
be easily extended to the case of a compound channel with SI
available causally to the transmitter.

Theorem 1: The worst-case capacity of a compound DMC
with causal SI at the transmitter is given by

C = sup
p(t)∈P(T )

inf
β∈B

Iβ(T ; Y ), (7)

1Sometimes a channel is said to be compound if β is not known at
both ends. The capacity however is the same in both scenarios (see, e.g.,
Wolfowitz [12, chap. 4]), as the receiver may estimate to within any desired
accuracy (with probability going to one), using a negligible portion of the
block length.

where T denotes the set of all random strategy functions of
the form t : S −→ X .

Proof: The achievability follows by the same methods
used in the achievability proof of the standard compound
channel over the extended alphabet T , whereas the converse
is proved by following the steps of Shannon in [10].

Remark 1: The case of noncausal SI is more difficult. The
converse of Gelfand-Pinsker [6] is not easily extended to the
compound scenario. In [9] Mitran et al. derived upper and
lower single-letter bounds for the capacity with non-causal SI.
Using Theorem 1, a non single-letter expression for the worst-
case capacity in the noncausal SI case, using k-dimensional
vector strategies and taking k to infinity, follows:

Cnon−casual = lim sup
k→∞

max
p(t)

min
β

1
k

Iβ(T ;Y ). (8)

IV. COMPOUND NOISELESS DIRTY PAPER CHANNEL

The compound DP channel was defined in (2). For simplic-
ity, we consider the noiseless case PN = 0, i.e.,

Y = X +
1
β

S. (9)

The results of Section III may readily be extended to the
continuous case and incorporating an input constraint (see e.g.,
[9], Sec. IV). Thus, Theorem 1 holds for this setting as well.

Since the capacity of the dirty-paper channel with causal SI
is unknown even in the standard (non compound) setting, we
do not attempt to explicitly find the capacity in the compound
setting. Rather, we shall examine the performance of THP-like
precoding schemes and suggest methods by which the lack of
perfect channel knowledge at the transmitter may be taken into
account.

A. THP With Imprecise Channel Knowledge

Denote the interval
[−∆

2
∆
2

)
by A∆ where ∆ is chosen

such that PX = ∆2

12 . Suppose that S has finite power PS and
denote by SIR = β2 PX

PS
the signal-to-interference ratio. Let

U ∼ Unif(A∆) be a random variable (dither) 2 known to
both transmitter and receiver. We consider an extended THP
scheme given by:
• Transmitter: For any v ∈ A∆, the transmitted signal is

X = [v − S − U ] modA∆. (10)

• Receiver: The receiver computes,

Y ′ = [γY + U ] modA∆. (11)

The channel from v to Y ′ can be rewritten as:

Y ′ = [γY + U ] modA∆ (12)

= [v − (v − S − U) + γX − (β − γ)
S

β
] modA∆ (13)

= [v − (1− γ)X − (β − γ)
S

β
] modA∆. (14)

2It can be shown that common randomness is not needed in the case of an
i.i.d. interference sequence.



Due to the dither U , X is independent of S and of the
information signal V , and is uniform over A∆. Therefore, this
channel is equivalent to the modulo-additive channel:

Y ′ = [v + Nβ
eff] modA∆ (15)

Nβ
eff , (1− γ)U − (β − γ)

S

β
, (16)

where Nβ
eff is the “effective noise”, composed of a “self noise”

component (1 − γ)U and a residual interference component
(β − γ)S

β . The average power of the effective noise is

PNβ
eff

= (1− γ)2PX + (β − γ)2
PS

β2
. (17)

We denote the maximal achievable rate under this setting by
Rd

THP, where “d” stands for “deterministic” (in contrast to the
random strategies treated in Section IV-B), and the achievable
rate for a specific pair (γ, β) by Rd

THP(γ, β).
For any pair (γ, β), the mutual information is maximized

by taking V ∼ Unif(A∆). Hence:

Rd
THP(γ, β) = h(Y ′)− h(Y ′

ε |V ) (18)

= log(∆)− h([Nβ
eff] modA∆). (19)

A lower bound on Rd
THP is obtained by minimizing the

effective noise power, PNβ
eff

, with respect to γ. This results
in taking

γMMSE =
1 + β

SIR

1 + 1
SIR

=
SIR + β

SIR + 1
(20)

for which the corresponding power is

P MMSE
Nβ

eff
=

(1− β)2

1 + SIR
PX . (21)

The maximal achievable rate Rd
THP is lower-bounded by

Rd
THP = min

β∈Iδ

max
γ∈Iδ

Rd
THP(γ, β) (22)

= min
β∈Iδ

max
γ∈Iδ

log(∆)− h([Nβ
eff] modA∆) (23)

≥ min
β∈Iδ

max
γ∈Iδ

1
2

log(∆)− h(Nβ
eff) (24)

= min
β∈Iδ

max
γ∈Iδ

1
2

log(∆)− h
(
Nβ

eff,G

)
+ ε(β, γ) (25)

≥ min
β∈Iδ

max
γ∈Iδ

1
2

log(12PX)− 1
2

log
(
2πePNβ

eff

)
+ ε(β, γ)

(26)

≥ min
β∈Iδ

max
γ∈Iδ

1
2

log
(

PX

(1− γ)2PX + (γ − β)2PS

)
(27)

+ ε(β, γ)− 1
2

log
(

2πe
12

)
, (28)

where ε(β, γ) , h
(
Nβ

eff,G

)
−h

(
Nβ

eff

)
and Nβ

eff,G is Gaussian

with the same variance as Nβ
eff. Note that ε(β, γ) > 0.

Substituting γ = γMMSE and using the fact that ε(β, γ) > 0,
yields the lower bound

Rd
THP ≥

1
2

log
(

1 + (1− δ)2SIR
δ2

)
− 1

2
log

(
2πe
12

)
. (29)

Remark 2:
1. The above lower bound can be further tightened, for

any specific distribution of S, by calculating ε(β, γ). For
instance, if S is uniform then Rd

THP may be lower-bounded
by

Rd
THP ≥

1
2

log
(

1 + (1− δ)2SIR
δ2

)
− 1

2
log

( e
2

)
.

2. In the weak interference region, SIR →∞, we have γ → 1
and the achievable rate goes to infinity. This is of course
an uninteresting case as THP is unattractive in this regime.

3. In the strong interference region, SIR → 0, the residual
interference component of Nβ

eff has to be completely can-
celled. This is done by selecting γ = β. This results in an
effective noise with finite power (dictated by the magnitude
of δ) and thus reliable communication is possible at strictly
positive rates. In this case, ε(β, γ) goes to zero.

4. When the signal and interference have the same power,
SIR = 1, γMMSE strikes a balance between the two effective
noise components, the powers of which become both equal
to 1

4 (1 − β)2PX for γ = γMMSE. Thus, γMMSE gives a
total noise power of PNβ

eff
= 1

2 (1− β)2PX , which is half
the noise power obtained by canceling out the interference
component completely (γ = β), or alternately, half of the
noise power obtained by canceling out completely the self-
noise component (γ = 1).

5. Due to the modulo operation at the receiver side and
since the effective noise is not Gaussian, the choice
γ = γMMSE does not strictly maximize the mutual infor-
mation I(V ; Y ′), but rather is a reasonable approximate
solution.

B. Randomized Scaling at Transmitter

For simplicity, we now restrict our attention to the case of
strong interference, i.e., SIR → 0. In this case, the receiver
must totally cancel out the interference by choosing γ = β.

We now investigate whether performance may be improved
by introducing a random scaling factor α at the transmitter,
which is chosen at random at each time instance and is
assumed known to both transmitter and receiver. Thus, we
consider the following transmission scheme:
• Transmitter: For any v ∈ A∆, sends

X = [v − 1
α

S − U ] modA∆. (30)

• Reciever: The receiver applies the front end operation,

Y ′ = [γY + U ] modA∆, (31)

where γ = β/α.
The above channel can be shown (by retracing the steps of

(15), (16)) to be equivalent to the modulo-additive channel

Y ′ =
[
v + Nβ

eff

]
modA∆, (32)

where Nβ
eff , α−β

α U . Note that the average power of Nβ
eff now

varies from symbol to symbol according to the value of α.



The rationale for considering such scaling at the transmitter
is that had the transmitter known β, it would choose α = β to
match the actual interference as experienced at the receiver. By
using randomization, this will occur some of the time. Since
β is unknown however (to the transmitter), one might suspect
that using a deterministic selection of α = 1 may be optimal,
as was done in Section IV-A. However, due to convexity, it
turns out that a better approach is to let α vary3 from symbol
to symbol (or block to block) within the interval of uncertainty
Iδ . We denote the maximal achievable rate of this scheme by
Rr

THP, where “r” stands for “random”. It is given by:

Rr
THP = max

f(α)
Rr

THP(f) = max
f(α)

min
β∈Iδ

Iβ(V ; Y ′|α), (33)

where f(α) is the PDF according to which α is selected and
Rr

THP(f) denotes the mutual information corresponding to the
specific choice of f(α).

Lemma 1: The maximal achievable rate, when δ ≤ 1
3 , for

the noiseless DP channel, using the ”extended THP scheme”,
is

Rr
THP = max

f(α): Supp{f(α)}⊆Iδ

min
β∈Iδ

−Eα

[
log

∣∣∣∣
α− β

α

∣∣∣∣
]

. (34)

Proof: The term

Iβ(V ;Y ′|α) = hβ(Y ′|α)− hβ(Y ′|V, α) (35)

is maximized by taking V ∼ Unif(A∆). Moreover, it is easily
seen that the support of f(α) should be restricted to Iδ . It
follows that,

Iβ(V ; Y ′|α) = hβ(Y ′|α)− hβ(Y ′|V, α) (36)
= log(∆)− hβ(Y ′|V, α) (37)

= log(∆)− h([Nβ
eff] modA∆) (38)

= log(∆)− Eα

[
h

([
α− β

α
U

]
modA∆

)]
. (39)

For δ ≥ 1
3 , we have

α− β

α
< 1, (40)

since the term α−β
α is maximized when α = 1 − δ and

β = 1 + δ, and its value in this case is 2δ
1−δ . Therefore,

Iβ(V ;Y ′|α) = log(∆)− Eα

[
h

(
α− β

α
U

)]
(41)

= log(∆) + Eα

[
− log(δ)− log

∣∣∣∣
α− β

α

∣∣∣∣
]

(42)

= −Eα log
∣∣∣∣
α− β

α

∣∣∣∣ = Eα [log(α)− log |α− β|] . (43)

Finding the optimal distribution f in (33) is cumbersome.
Instead, we suggest several choices for the distribution f which
achieve better performance than that of any deterministic
selection of α as well as give an upper bound on Rr

THP.

3Note that by doing so, we in effect extend the class of strategies used in
the transmission scheme.

0 0.05 0.1 0.15 0.2 0.25 0.3
1

2

3

4

5

6

7

δ

R
 [n

at
s]

 

 
Upper−bound
V−like
α~Unif[−δ/2, δ/2)
P(α=1)=1

Fig. 2. Achievable rates and upper-bound on the deterministic THP scheme.

C. Quantifying the Achievable Rates

As indicated by Lemma 1, we restrict attention to the
case of δ ≤ 1

3 . We consider three different distributions
for α: deterministic selection, uniform distribution and V-like
distribution.

1) Deterministic Selection: One easily verifies that the
value of α, which achieves the maximal rate, is α = 1 and
the corresponding rate is

Rr
THP(fDeter) = − log δ = log

1
δ
. (44)

Note that this result coincides with the result for Rd
THP of

Section IV-A (where ε(β, γ) is equal to zero in this case as
mentioned in Remark 2).

2) Uniform Distribution: Taking α ∼ Unif(Iδ) yields the
following achievable rate:

Rr
THP(fUnif) =

1
2δ

[
(1 + δ) log(1 + δ) (45)

− (1− δ) log(1− δ)− 2δ log(2δ)
]
. (46)

Hence, even this simple randomization improves on the deter-
ministic selection, as seen in Fig. 2.

3) V-like Distribution: A further improvement is obtained
by taking a V-like distribution,

fV−like(α) =
{ −α−1

δ2 1− δ ≤ α < 1
α−1
δ2 1 ≤ α ≤ 1− δ

. (47)

The resulting rate is

Rr
THP(fV−like) = − 1

2δ2

[
(1− δ2) log(1− δ2) + δ2 log(δ2)

]
.

(48)

We have not pursued numerically optimizing f(·). We note
that the optimal PDF will not be totally symmetric around
1 due to the first term log(α) in (43). This term becomes,
however, less and less significant (and hence the optimal PDF
more and more symmetrical) for small δ. We next derive an
upper bound on the achievable rate which holds for any choice
of f(·).

Remark 3: None of the three distributions above are opti-
mal since Iβ(V ; Y ′) varies with β.



D. Upper-Bound on the Scheme
Lemma 2: The rate achievable, using THP with randomized

scaling, is upper bounded by

Rr
THP ≤ log(1 + δ)− log(δ) + 1 (49)

for any distribution f(α), when δ ≤ 1
3 .

Proof: Using (43), for every distribution f(α), we have

Iβ(V ; Y ′) = min
β
{Eα [log α]− Eα [log |α̃− β|]} (50)

(a)

≤ min
ε
{log(1 + δ)− Eα [log(|α− β|mod ∆)]} (51)

(b)

≤ log(1 + δ)− 1
2δ

∫ δ

−δ

log |x|dx (52)

= log(1 + δ)− log(δ) + 1, (53)

where (a) is true since Supp {f(α)} ⊆ Iδ and (b) is true
due to the monotonicity of the log function and equality is
achieved for α ∼ Unif(Iδ).

Remark 4: Somewhat surprisingly, multi-dimensional lat-
tices give identical results to those obtained by one-
dimensional lattices. This can be explained by the fact that, in
the ”noiseless case”, no shaping gain can be obtained using
higher dimensional lattices, as the self-noise ”gains shaping”
just like the signal. Hence, knowing the SI non-causally does
not increase the achievable rates for lattice-based precoding
schemes in the absence of noise. In the noisy case, however,
multi-dimensional strategies allow gaining some of the shaping
gain.

E. Noisy case
The approach taken may be extended to the noisy case.

Using the “robust THP scheme” for the noisy compound DP
channel (2), gives rise to the following equivalent modulo-
additive channel:

Y ′ =
[
v + Nβ

eff

]
mod Λ (54)

Nβ
eff =

α− β

α
U +

β

α
N. (55)

Unlike in the noiseless case, where the effective noise has a
finite support, here the noise has a Gaussian component.

We only examine the deterministic and uniform distributions
from Section IV-B and minor variations on them, taking
α̃ = αMMSE · α, where α is selected according to the distribu-
tions of Section IV-B and αMMSE , SNR

1+SNR . The performances
of the different choices for f(·) are shown in Fig. 3.

In the high-SNR region, the non-deterministic distributions
prove to be more effective than the best deterministic scheme,
whereas in the low-SNR region the deterministic selection be-
comes superior. This threshold phenomenon can be explained
by the two components of Nβ

eff: In the high-SNR region,
the dominant noise component is the ”self-noise” component
α−β

α U , which is minimized by a ”smart” selection of f(·); In
the low-SNR region, on the other hand, the dominant noise
component is the Gaussian part β

αN , whose multiplicative
factor β

α should be deterministic to minimize this component,
due to concavity.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.4

0.6

0.8

1

1.2

1.4

1.6

δ

R
 [n

at
s]

 

 
α=1
α=α

MMSE

Unif[1−δ,1+δ]
Unif[α

MMSE
(1−δ),α

MMSE
(1+δ)]

Fig. 3. Achievable rates in the random THP scheme for SNR = 17dB.

V. SUMMARY

In this work, the compound dirty tape channel was inves-
tigated. We studied the performance obtained by an extended
Tomlinson-Harashima precoding scheme and derived lower
bounds to the capacity of the channel. We derived the MMSE
scaling that can be applied at the receiver to compensate for
imprecise channel knowledge at the transmitter. We further
showed that randomized α scaling at the transmitter may
further improve the maximal achievable rate.

This work focused exclusively on the performance achiev-
able using THP-like schemes. It would be interesting to obtain
an upper bound on the capacity (without any restriction on the
coding technique) of the noiseless DP channel under channel
uncertainty.
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[4] J. J. Eggers, R. Bäumel, R. Tzschoppe, and B. Girod. Scalar Costa
scheme for information embedding. IEEE Trans. Signal Processing,
pages 1003–1019, Apr., 2003.

[5] U. Erez, S. Shamai (Shitz), and R. Zamir. Capacity and lattice strategies
for cancelling known interference. IEEE Trans. Information Theory,
pages 3820–3833, Nov. 2005.

[6] S. I. Gelfand and M. S. Pinsker. Coding for channel with random
parameters. Problemy Pered. Inform. (Problems of Inform. Trans.), 9,
No. 1:19–31, 1980.

[7] H. Harashima and H. Miyakawa. Matched-transmission technique for
channels with intersymbol interference. IEEE Trans. Communications,
COM-20:774–780, Aug. 1972.

[8] N. Jindal. Mimo broadcast channels with finite-rate feedback. IEEE
Trans. Information Theory, Vol. 52, No. 11:5045–5060, Nov. 2003.

[9] P. Mitran, N. Devroye, and V. Tarokh. On compound channels with
side information at the transmitter. IEEE Trans. Information Theory,
52:1745–1755, April 2006.

[10] C. E. Shannon. Channels with side information at the transmitter. IBM
Journal of Research and Development, 2:289–293, Oct. 1958.

[11] M. Tomlinson. New automatic equalizer employing modulo arithmetic.
Electronic Lett., vol. 7:138–139, Mar. 1971.

[12] J. Wolfowitz. Coding Theorems of Information Theory. Springer-Verlag,
Berlin Heidelberg, New York, third edition, 1978.


