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Abstract—We consider the problem of sequential transmission
of Gauss–Markov sources. We show that in the limit of large
spatial block lengths, greedy compression with respect to the
squared error distortion is optimal; that is, there is no tension
between optimizing the distortion of the source in the current
time instant and that of future times. We then extend this result to
the case where at time t a random compression rate rt is allocated
independently of the rate at other time instants. This, in turn,
allows us to derive the optimal performance of sequential coding
over packet-erasure channels with instantaneous feedback. For
the case of packet erasures with delayed feedback, we connect
the problem to that of compression with side information that
is known at the encoder and may be known at the decoder —
where the most recent packets serve as side information that may
have been erased, and demonstrate that the loss due to a delay
by one time unit is rather small.

I. INTRODUCTION

Sequential coding of sources is increasingly finding appli-
cations, such as real-time video streaming, and cyberphysical
and networked control. Such systems use compressed packet-
based transmission and strive to achieve minimum distortion
for the given compression rates.

The mathematical framework for this setting was provided
by Viswanathan and Berger [1] for two time steps, and for
more steps (or sources) in [2], [3]. A similar control-theoretic
framework was also studied by Tatikonda [4], who noticed the
connection to the early work of Gorbunov and Pinsker [5].

For the special case of Gauss–Markov sources, an explicit
expression for the achievable sum-rate for given distortions
was derived in [2] via the paradigms of predictive coding
and differential pulse-code modulation (DPCM) [6, Ch. 6] and
extended for three (general) jointly Gaussian sources, in [7].

In practice packet-based protocols are prone to erasures
and possible delays. The case of sequential coding in the
presence of packet erasures was treated for various erasure
models. An approach that trades between the performance
given all previously sent packets and the performance given
only the last packet was proposed in [8]. For random indepen-
dent identically distributed (i.i.d.) packet erasures, a hybrid
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between pulse-code modulation (PCM) and DPCM, termed
leaky DPCM, was proposed in [9] and analyzed for the case
of very low erasure probability in [10]. The scenario in which
the erasures occur in bursts was considered in [11].

All of these works assume no feedback is available at the
encoder, namely that the encoder does not know whether
transmitted packets successfully arrived to the decoder.

In this paper, we first consider the problem of sequential
coding of Gauss–Markov sources and determine the rate–
distortion region for large spatial blocks (frames). Specifically,
we show that greedy quantization that optimizes the distortion
for each time is also optimal for minimizing the distortion of
future time instants. This insight allows us to extend the result
to the case where the rate rt available for the transmission of
the packet at time t is determined just prior to its transmission.

The packet-erasure channel with instantaneous output feed-
back (ACK/NACK) can be viewed as a special case of the
above noiseless channel with random rate allocation, with
rt = 0 corresponding to a packet-erasure event [12]. The
optimal rate–distortion region of sequential coding of Gauss–
Markov sources in the presence of packet erasures and instan-
taneous output feedback thereby follows as a consequence.

We further tackle the delayed feedback setting, in which the
encoder does not know whether the most recently transmitted
packets arrived or not. By viewing these recent packets as side
information (SI) that is available at the encoder and possibly
at the decoder, and leveraging the results of Kaspi [13] along
with their specialization for the Gaussian case [14], we adapt
our transmission scheme to the case of delayed feedback. We
provide a detailed description of the proposed scheme for the
case where the feedback is delayed by one time unit and
demonstrate that the loss due to the delay is small.

We conclude the paper by discussing the cases of large-
feedback delays, scalar (fixed- and variable-length) sequential
coding and an application to networked control.

II. PROBLEM STATEMENT

We now present the model of the source, channel, and the
causal encoder and decoder used in this work.
‖·‖ denotes the Euclidean norm. Random variables are de-

noted by lower-case letters with temporal subscripts (at, ˆ̃at),
and random vectors (“frames”) of length N by boldface
lower-case letters (a, ˆ̃at). We denote temporal sequences by
at , (a1, . . . ,at). N is the set of natural numbers. All other
notations represent deterministic scalars.

The communication spans the time interval [1, T ], T ∈ N.
Source: Consider a Gauss–Markov source {st}, whose out-

comes are vectors (“frames”) of length N with i.i.d. samples
along the spatial dimension, that satisfy the temporal Markov
relation (we assume s0 = 0 for convenience):
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st = αtst−1 + wt, t = 1, . . . , T , (1)

where {αt} are known coefficients, and the entries of {wt}
are i.i.d. along the spatial dimension, Gaussian and mutually
independent across time of zero mean and variances {Wt}.

Denote by St , 1
NE

[
‖st‖2

]
the average power of the

entries of vector st. Then, we obtain the following recursive
relation (with S0 = 0):

St = α2
tSt−1 +Wt, t = 1, . . . , T . (2)

Channel: At time t, a packet ft ∈
{

1, 2, . . . , 2NRt
}

is sent
over a noiseless channel of finite rate Rt.

Causal encoder: Sees st at time t and applies a causal func-
tion Et to st, to generate the packet ft ∈

{
1, 2, . . . , 2NRt

}
:

ft = Et

(
st
)
. (3)

Causal decoder: Applies a causal function Dt to the
received packets f t, to construct an estimate ŝt of st, at time t:

ŝt = Dt

(
f t
)
. (4)

Distortion: The quadratic distortion at time t is defined as

Dt ,
1

N
E
[
‖st − ŝt‖2

]
. (5)

For the special case of an asymptotically stationary process:

αt ≡ α, Wt ≡W, t = 1, . . . , T , (6)

the source power St and distortion Dt converge to

S∞ , lim
T→∞

St =
W

1− α2
, D∞ , lim

T→∞
Dt ,

respectively (assuming that the latter limit exists).

Definition (Distortion-rate region). The distortion–rate region
is the closure of all achievable distortion tuples DT ,
(D1, . . . , DT ) for a rate tuple RT , (R1, . . . , RT ), for any
N , however large; its inverse is the rate–distortion region.

III. THE DISTORTION–RATE REGION

The optimal achievable distortions for given rates for the
model of Sec. II are provided in the following theorem.

Theorem 1 (Distortion–rate region). The distortion–rate re-
gion of sequential coding for a rate tuple RT is given by all
distortion tuples DT that satisfy Dt ≥ D∗t with D∗0 = 0 and

D∗t =
(
α2
tD
∗
t−1 +Wt

)
2−2Rt , t = 1, . . . , T . (7)

Remark 1. The setting of Th. 1 is referred to as “causal
encoder–causal decoder” in [2], where for the case of Gauss-
Markov sources an explicit expression is provided only for the
sum-rate. Torbatian and Yang [7] extend the sum-rate result
to the case of three jointly Gaussian sources (not necessarily
Markovian). Our work, on the other hand, fully characterizes
the rate–distortion region for Gauss–Markov sources.

A. Achievable
We construct an inner bound using the optimal greedy

scheme, which amounts to the classical causal DPCM scheme.
In this scheme all the quantizers are assumed to be minimum
mean square error (MMSE) quantizers. We note that the
quantized values of such quantizers are uncorrelated with the
resulting quantization errors.

Scheme (DPCM).
Encoder. At time t:

• Generates the prediction error

s̃t , st − αtŝt−1 , (8)

where ŝt−1, defined in (4), is the previous source recon-
struction at the decoder, and ŝ0 = 0. A linear recursive
relation for ŝt is provided in the sequel in (9).1

• Generates ˆ̃st, the quantized reconstruction of the predic-
tion error s̃t, by quantizing s̃t using the MMSE quantizer
of rate Rt and frame length N .

• Sends ft = ˆ̃st over the channel.
Decoder. At time t:
• Receives ft.
• Recovers the reconstruction ˆ̃st of the prediction error s̃t.
• Generates an estimate ŝt of st:

ŝt = αtŝt−1 + ˆ̃st . (9)
Performance analysis. First note that the error between st

and ŝt, et , st− ŝt, is equal to et = s̃t− ˆ̃st by (8), (9); thus,
the distortion (5) is also the distortion in reconstructing s̃t.

This, along with (1) and (8) means that s̃t = αtet−1 +wt.
Since wt is independent of et−1, the average power of the

entries of s̃t is equal to S̃t = α2
tDt−1 +Wt.

Using the property that the rate–distortion function under
mean square error distortion of a source with a given average
variance is upper bounded by that of an i.i.d. Gaussian source
with the same variance (see, e.g., [15, pp. 338–339]), we obtain
Dt ≤

(
α2
tDt−1 +Wt

)
2−2Rt , and hence (7) is achievable

within an arbitrarily small ε > 0, for a sufficiently large N .
B. Impossible (Converse)

Let N ∈ N. We shall prove

Dt ≥ 2−2RtEf̌t−1

[
N
(
st|f t−1 = f̌ t−1

)]
(10a)

≥ D∗t , t = 1, . . . , T , (10b)

by induction, where the sequence {D∗t } is defined in (7),

N (st) ,
1

2πe2
2
N

h(st), N
(
st

∣∣∣fk = f̌k
)
,

1

2πe2
2
N

h
(
st

∣∣∣fk=f̌k
)

denote the entropy-power (EP) and conditional EP of st given
fk = f̌k, the expectation Ef̌t−1 [·] is w.r.t. f̌ t−1, and the
random vector f̌ t is distributed the same as f t.

Basic step (t = 1). Since s0 = 0, and the vector w1 consists
of i.i.d. Gaussian entries of variance W1, (10b) is satisfied
with equality. To prove (10a), we use the fact that the optimal
achievable distortion D1 for a Gaussian source (s1 = w1)
with i.i.d. entries of power W1 and rate R1 is dictated by its
rate–distortion function [15, Ch. 10.3.2]: D1 ≥W12−2R1 .

Inductive step. Let k ≥ 2 and suppose (10) is true for
t = k − 1. We shall now prove that it holds also for t = k.

Dk =
1

N
E
[
E
[
‖sk − ŝk‖2

∣∣∣fk−1
]]

(11a)

=
1

N
Ef̌k−1

[
E
[
‖sk − ŝk‖2

∣∣∣fk−1 = f̌k−1
]]

(11b)

≥ Ef̌k−1

[
N
(
sk
∣∣fk−1 = f̌k−1

)
2−2Rk

]
(11c)

= Ef̌k−1

[
N
(
αksk−1 + wk|fk−1 = f̌k−1

)]
2−2Rk (11d)

≥
{
Ef̌k−2

[
Ef̌k−1

[
N
(
αksk−1|fk−1 = f̌k−1

)∣∣f̌k−2
]]

+ N (wk)
}

2−2Rk (11e)

1ŝt−1 = E
[
st−1

∣∣f t−1
]

and αtŝt−1 = E
[
st
∣∣f t−1

]
are the MMSE

estimators of st−1 and st, respectively, given all the past channel outputs.
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≥
{
α2
kEf̌k−2

[
N
(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)]
+Wk

}
2−2Rk (11f)

≥
{
α2
kEf̌k−2

[
N
(
sk−1|fk−2 = f̌k−2

)]
2−2Rk−1

+Wk

}
2−2Rk (11g)

≥ 2−2Rk
(
α2
kD
∗
k−1 +Wk

)
(11h)

= D∗k, (11i)
where (11a) follows from (5) and the law of total expectation,
(11b) holds since fk−1 and f̌k−1 have the same distribution,
(11c) follows by bounding from below the inner expectation
(conditional distortion) by the rate–distortion function and the
Shannon lower bound [15, Ch. 10] — this also proves (10a),
(11d) is due to (1), (11e) follows from the EP inequality [15,
Ch. 17], (11f) holds since wk is Gaussian, the scaling property
of differential entropies and Jensen’s inequality:

Ef̌k−1

[
2

2
N

h
(
sk−1

∣∣∣fk−1=f̌k−1
)∣∣∣∣f̌k−2

]
≥2

2
N

h
(
sk−1

∣∣∣fk−2=f̌k−2, fk−1

)
,

(11g) follows from the following standard set of inequalities:

NRk−1 ≥ H
(
fk−1

∣∣fk−2 = f̌k−2
)

≥ I
(
sk−1; fk−1

∣∣fk−2 = f̌k−2
)

= h
(
sk−1

∣∣fk−2 = f̌k−2
)
− h

(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)
,

(11h) is by the induction hypothesis, and (11i) holds by the
definition of {D∗t } (7) — which also proves (10b).

C. Asymptotically Stationary Sources
For the asymptotically stationary source in (6), the steady-

state average distortion is as follows (formally proved in [16]).
Corollary 1 (Steady state performance with fixed-rate budget).
For the fixed-parameter (6) fixed rate budget Rt ≡ R setting:

D∗∞ , lim
t→∞

D∗t =
W2−2R

1− α22−2R
.

Interestingly, the optimal steady-state distortion achievable
with fixed-rate budget (1) is in fact optimal even if we loosen
this restriction to a total rate-budget constraint. While this
result can be concluded from a classical formula of Gorbunov
and Pinsker [5, (1.43)], we provide a simple standalone proof
in [16]. The same conclusion holds if the frame entries are
correlated Gaussians, as recently proved by by Tanaka [17].

IV. RANDOM-RATE BUDGETS

In this section we generalize the results of Sec. III to random
rates {rt} that are independent of each other and of {wt}. rt is
revealed to the encoder just before the transmission at time t.
Theorem 2 (Distortion–rate region). The distortion–rate re-
gion of sequential coding with independent rates rT is given by
all distortion tuples DT that satisfy Dt ≥ D∗t with (D∗0 = 0):

D∗t =
(
α2
tD
∗
t−1 +Wt

)
E
[
2−2rt

]
, t = 1, . . . , T . (13)

Proof: Achievable. Since the achievability scheme in
Th. 1 does not use the knowledge of future transmission rates
to encode and decode the packet at time t, we have

dt ,
1

N
E
[
‖st − ŝt‖2

∣∣∣rT ] (14a)

=
1

N
E
[
‖st − ŝt‖2

∣∣∣rt] (14b)

≤ (α2
tdt−1 +Wt)2

−2rt + ε, (14c)

for any ε > 0, however small, and large enough N .
Taking an expectation of (14c) with respect to rt and using

the independence of rt−1 and rt, we obtain (13).
Impossible. Revealing the rates to the encoder and the

decoder prior to the start of transmission can only improve the
distortion. Thus, the distortions {dt} conditioned on {rt} (14a)
are bounded from below as in Th. 1; by taking the expectation
w.r.t. {rt}, we attain the desired result.

For the special case of an asymptotically stationary
source (6), the steady-state distortion is given as follows
(again, see [16], for a formal proof).

Corollary 2 (Steady state). For the fixed-parameter (6) setting
with i.i.d. rates {rt}:

D∗∞ , lim
t→∞

D∗t =
BW

1− α2B
, B , E

[
2−2rt

]
.

V. PACKET ERASURES WITH INSTANTANEOUS FEEDBACK

An important special case of the model of Sec. IV is that
of packet erasures [12]. Since a packet erasure at time t can
be viewed as rt = 0, and assuming that the encoder sends
packets of fixed rate R and is cognizant of any packet erasures
instantaneously, the packet erasure channel can be cast as the
random rate channel of Sec. IV with

rt = btR =

{
R, bt = 1

0, bt = 0
(15)

where {bt} are the packet-erasure events, such that bt = 1
corresponds to a successful arrival of the packet ft at time
t, and bt = 0 means it was erased. We further denote by
gt , btft the received output where gt = 0 corresponds to an
erasure, and otherwise gt = ft. We assume that {bt} are i.i.d.
according to a Ber(β) distribution for β ∈ [0, 1].
Remark 2. We shall concentrate on the case of packets of
fixed rate R to simplify the subsequent discussion. This way
the only randomness in rate comes from the packet-erasure
effect. Nevertheless, all the results that follow can be easily
extended to random/varying rate allocations to which the effect
of packet erasures {bt} is added in the same manner as in (15).
Corollary 3 (Distortion–rate region). The distortion–rate re-
gion with packet erasures and instantaneous feedback is given
as in Th. 2 with B = 1− β

(
1− 2−2R

)
.

Corollary 4 (Steady state). The steady-state distortion is given
as in Corol. 2 with B = 1− β

(
1− 2−2R

)
.

Remark 3. This scenario can be extended to the case of
multiple packets per frame by determining the probability
distribution of the rate; see [16] for further details.

VI. PACKET ERASURES WITH DELAYED FEEDBACK

In this section we consider the case of i.i.d. packet erasures
with a delayed-by-one output feedback, i.e., the case where at
time t, the encoder does know whether the last packet arrived
or not (does not know bt−1), but knows the erasure pattern
of all preceding packets (knows bt−2). The encoder (3) and
decoder (4) mappings can be written as [recall that gt , btft]:

ft = Et

(
st, gt−2

)
, ŝt = Dt

(
gt
)
.

To that end, we recall the following result by Perron et
al. [14, Th. 2], which is a specialization to the jointly Gaussian
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case of the result by Kaspi [13, Th. 1], who established the
rate–distortion region of lossy compression with two-sided SI
where the SI may or may not be available at the decoder.2,3

Theorem 3 ( [14]). Let s be an i.i.d. zero-mean Gaussian
source of power S, which is jointly Gaussian with SI y, which
is available at the encoder and satisfies s = y + z where z
is an i.i.d. Gaussian noise of power Z that is independent of
y. Denote by ŝ+ and ŝ− the reconstructions of s with and
without the SI y, and by D+ and D− their mean squared
error distortion requirements, respectively. Then, the smallest
rate required to achieve these distortions is given by

RKaspi(S,Z,D−, D+)

=



0, D− ≥ S and D+ ≥ Z
1
2 log

(
S

D−

)
, D− < S and D+‖S ≥ D−‖Z

1
2 log

(
Z
D+

)
, D+ < Z and D− ≥ D+ + S − Z

1
2 log

(
S

D−−∆2

)
,

{
D− < S and D+‖S < D−‖Z
and D− < D+ + S − Z

where a‖b , ab
a+b denotes the harmonic mean of a and b, and

∆ ,

√
(S − Z)(S −D−)D+ −

√
(Z −D+)(D− −D+)S√

Z (S −D+)
.

Remark 4. Surprisingly, as observed by Perron et al. [14], if
the SI signal y is not available at the encoder — a setting
considered in [18] and [13, Th. 2] — the required rate can be
strictly higher than that in Th. 3. This is in stark contrast to the
case where the SI is not available at the encoder and the case
where the SI is always available at the decoder (the “Wyner–
Ziv Problem”) [15, Ch. 15.9]. Knowing the SI at the encoder
allows to (anti-)correlate the noise z with the quantization
error — a thing that is not possible when the SI is not available
at the encoder, as the two noises must be independent in that
case. This allows for some improvement, though a modest one,
as implied by the results for the dual channel problem [20].

In our case, at time t, the previous packet ft−1 will serve
as the SI. Note that it is always available to the encoder;
the decoder may or may not have access to it, depending
whether the previous packet arrived or not. Since the feedback
is delayed, during the transmission of the current packet ft the
encoder does not know whether the previous packet was lost.

The tradeoff between D+ and D− for a given rate R will be
determined by the probability of a successful packet arrival β.
Scheme (Kaspi-based).

Encoder. At time t:
• Generates the prediction error s̃t , st − αtαt−1ŝt−2.
• Generates ft by quantizing the prediction error s̃t as in

Th. 3, where ft−1 is available as SI at the encoder and
possibly at the decoder (depending on bt−1) using the
optimal quantizer of rate R and frame length N that
minimizes the averaged over bt−1 distortion:

DWeighted
t = βD+

t + (1− β)D−t ; (16)

more precisely, since the encoder does not know
(bt−1, bt) at time t:

2We use a backward channel to represent the SI s = y + z, as opposed
to the forward channel y = s + z used in [14], [18].

3Kaspi’s result [13, Th. 1] can also be viewed as a special case of [18]
with some adjustments; see [19].

– Denote the reconstruction of s̃t at the decoder from
ft and gt−1 — namely given that bt = 1 — by
Qt(s̃t), and the corresponding distortion, averaged
over bt−1, by DWeighted

t .
– Denote the reconstruction from ft and gt−2 —

namely given that bt = 1 and bt−1 = 0 — by
Q−t (s̃t), and the corresponding distortion by D−t .

– Denote the reconstruction from (ft−1, ft) and
gt−2 — namely given that bt = 1 and bt−1 = 1 —
by Q+

t (s̃t), and the corresponding distortion by D+
t .

Then, the encoder sees αtQt−1(s̃t−1) as possible SI
available at the decoder to minimize DWeighted

t as in (16).
• Sends ft over the channel.
Decoder. At time t:
• Receives gt.
• Generates a reconstruction ˆ̃st of the prediction error s̃t:

ˆ̃st =


Q+

t (s̃t), bt = 1, bt−1 = 1

Q−t (s̃t), bt = 1, bt−1 = 0

0, bt = 0

(17)

• Generates an estimate ŝt of st: ŝt = αtŝt−1 + ˆ̃st.
This scheme is the optimal greedy scheme whose perfor-

mance is stated next, in the limit of large N .

Theorem 4. Let ε > 0, however small. Then, for a large
enough N , the expected distortion of the scheme at time
t ∈ [2, T ] given (b1, . . . , bt) satisfies the recursion

Dt ≤


D+

t + ε, bt = 1, bt−1 = 1

D−t + ε, bt = 1, bt−1 = 0

α2
tDt−1 +W + ε, bt = 0

D1 = D+
1 = D−1 = Wt2

−b12R + ε,

where D+
t and D−t are the distortions that minimize (16), such

that the rate of Th. 3 satisfies

RKaspi(αtD
−
t−1 +W,αtD

+
t−1 +W,D−t , D

+
t ) = R.

The proof is again the same as that of Ths. 1 and 2, with
ˆ̃st generated as in (17).
Remark 5. Here, in contrast to the case of instantaneous feed-
back, evaluating the distortions {Dt} in explicit form (recall
Corol. 3) is more challenging. We do it numerically, instead.

Somewhat surprisingly, the loss in performance of the
Kaspi-based scheme due to the feedback delay is rather small
compared to the scenario in Sec. V where the feedback is
available instantaneously, for all values of β.4 This is demon-
strated in Fig. 1, where the perfomances of these schemes are
compared along with the performances of the following three
simple schemes for αt ≡ 0.7,W ≡ 1, β = 0.5, R = 2:
• No prediction: A scheme that uses no prediction at all,

as if the source samples were independent. This scheme
achieves a distortion of Dt = βSt2

−2R+(1−β)St, where
St is the power of the entries of st as given in (2).

• Assumes worst case (WC): Since at time t the encoder
does not know bt−1, a “safe” way would be to work as
if bt−1 = 0. This achieves a distortion of

4For β values close to 0 or 1, the loss becomes even smaller as in these
cases using the scheme of Sec. V that assumes that the previous packet arrived
or was erased, respectively, becomes optimal.
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Dt =
[
α4Dt−2 + (1 + α2)W

] [
β2−2R + (1− β)2

]
+ β(1− β)(α2Dt−1 +W ), t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

• Assumes best case (BC): The optimistic counterpart of
the previous scheme is that which always works as if
bt−1 = 1. This scheme achieves a distortion of

Dt = β
[
α2Dt−1|t−22−2R +W

) [
β2−2R + (1− β)

]
+ (1− β)

[
α2Dt−1|t−2 +W

]
, t = 2, . . . , T ,

Dt−1|t−2 , α2Dt−2 +W, t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

VII. DISCUSSION

A. Feedback with Larger Delays
To extend the delayed feedback scheme of Sec. VI to larger

delays, a generalization of Th. 3 is needed. Unfortunately,
the optimal rate–distortion region for more than two decoders
remains an open problem and is only known for the (“de-
graded”) case when the source and the possible SIs form a
Markov chain. Nonetheless, achievable regions for multiple
decoders have been proposed in [18], which can be used for
the construction of schemes that accommodate larger delays.
B. Scalar Sequential Coding

In this paper we derived lower bounds and proved that they
are tight for large values of N . In the case of scalar fixed-
length quantization, the design and analysis of good schemes
are more involved. For treatment for the case of log-concave
distributions (Gaussian included), see [21]. Alternatively, by
relaxing the rate constraint to hold only on average, one may
invoke scalar ECDQ [22, Ch. 5] to attain [16]:

DECDQ
t ≤ τe

12

(
α2
tDt−1 +Wt

)
E
[
2−2rt

]
.

C. Non-Gaussian
The lower bounds in this work can be extended to the case

of a non-Gaussian driving process wt in a straightforward
fashion, with the variance of wt in (13) replaced by its entropy
power (recall that the two are equal in the Gaussian case).

D. Networked Control
The results in this work (including those in the discussion)

can be easily adapted to the case of packet-based networked
control and provide upper and lower bounds on the linear
quadratic regulator (LQR) cost reminiscent of [23], by employ-
ing the control-theoretic separation principle [24]; see [16].
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