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Abstract—We consider the problem of stabilizing an unstable
plant driven by bounded noise over a digital noisy communication
link, a scenario at the heart of networked control. To stabilize
such a plant, one needs real-time encoding and decoding with
an error probability profile that decays exponentially with the
decoding delay. The works of Schulman and Sahai over the past
two decades have developed the notions of tree codes and anytime
capacity, and provided the theoretical framework for study-
ing such problems. Nonetheless, there has been little practical
progress in this area due to the absence of explicit constructions
of tree codes with efficient encoding and decoding algorithms.
Recently, linear time-invariant tree codes were proposed to
achieve the desired result under maximum-likelihood decoding.
In this work, we take one more step towards practicality,
by showing that these codes can be efficiently decoded using
sequential decoding algorithms, up to some loss in performance
(and with some practical complexity caveats). We supplement our
theoretical results with numerical simulations that demonstrate
the effectiveness of the decoder in a control system setting.

Index Terms—Tree codes, anytime-reliable codes, linear codes,
convolutional codes, sequential decoding, networked control.

I. INTRODUCTION

Control theory deals with stabilizing and regulating the
behavior of a dynamical system (“plant”) via real-time causal
feedback. Traditional control theory was mainly concerned and
used in well-crafted closed engineering systems, which are
characterized by the measurement and control modules being
co-located. The theory and practice for this setup are now well
established; see, e.g., [1].

Nevertheless, in the current technological era of ubiquitous
wireless connectivity, the demand for control over wireless
media is ever growing. This networked control setup presents
more challenges due to its distributed nature: The plant output
and the controller are no longer co-located and are separated
by an unreliable link (see Fig. 1).

To stabilize an unstable plant using the unreliable feedback
link, an error-correcting code needs to be employed over
the latter. In one-way communications — the cornerstone of
information theory — all the source data are assumed to
be known in advance (non-causally) and are recovered only
when the reception ends. In contrast, in coding for control,
the source data are known only causally, as the new data at
each time instant are dependent upon the dynamical random
process. Moreover, the controller cannot wait until a large
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block is received; it needs to constantly produce estimates of
the system’s state, such that the fidelity of earlier data improves
as time advances. Both of these goals are achieved via causal
coding, which receives the data sequentially in a causal fashion
and encodes it in a way such that the error probability of
recovering the source data at a fixed time instant improves
constantly with the reception of more code symbols.

Sahai and Mitter [2] provided necessary and sufficient
conditions on the required communication reliability over the
unreliable feedback link to the controller. To that end, they
defined the notion of anytime capacity as the appropriate figure
of merit for this setting, which is essentially the maximal
possible rate of a causal code that at any time t recovers a
source bit at time (t − d) with error probability that decays
exponentially with d, for all d. They further recognized that
such codes have a natural tree code structure, which is similar
to the codes developed by Schulman for the related problem
of interactive computation [3].

Unfortunately, the result by Schulman (and consequently
also the ones by Sahai and Mitter) only proves the existence of
a tree code with the desired properties and does not guarantee
that a random tree code would be good with high probability.
The main difficulty comes from the fact that proving that the
random ensemble achieves the desired exponential decay does
not guarantee that the same code achieves this for every time
instant and every delay.

Sukhavasi and Hassibi [4] circumvented this problem by
introducing linear time-invariant (LTI) tree codes. The time-
invariance property means that the behavior of the code at
every time instant is the same, which suggests, in turn, that
the performance guarantees for a random (time-invariant)
ensemble are easily translated to similar guarantees for a
specific code chosen at random, with high probability.

However, this result assumes maximum likelihood (ML)
decoding, which is impractical except for binary erasure
channels (in which case it amounts to solving linear equations
which has polynomial computational complexity).

Sequential decoding was proposed by Wozencraft [5] and
subsequently improved by others as a means to recover random
tree codes with reduced complexity with some compromise
in performance; specifically, for the expected complexity to
be finite, the maximal communication rate should be lower
than the cutoff rate. For a thorough account of sequential
decoding, see [6, Ch. 10], [7, Sec. 6.9], [8, Ch. 6], [9,
Ch. 6]. This technique was subsequently adopted by Sahai and
Palaiyanur [10] for the purpose of decoding (time-varying) tree
codes for networked control. Unfortunately, this result relies
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Fig. 1. Basic networked control system.

on an exponential bound on the error probability by Jelinek
[11, Th. 2] that is valid for the binary symmetric channel
(BSC) (and other cases of interest) only when the expected
complexity of the sequential decoder goes to infinity [12].

In this work we propose the usage of sequential decoding
for the recovery of LTI tree codes. To that end, similarly
to Sahai and Palaiyanur [10], we extend a (different) result
developed by Jelinek [6, Th. 10.2] for general (non-linear and
time-variant) random codes to LTI tree codes.

II. PROBLEM SETUP AND MOTIVATION

We are interested in stabilizing an unstable plant driven by
bounded noise over a noisy communication link. In particular,
an observer of the plant measures at every time instant t a
noisy version yt ∈ R (with bounded noise) of the state of the
plant xt ∈ Rm. The observer then quantizes yt to bt ∈ Zk2 , and
encodes — using a causal code — all quantized measurements
{bi}ti=1 to produce ct ∈ Zn2 . This packet ct is transmitted
over a noisy communication link to the controller, which
receives zt ∈ Zn, where Z is the channel output alphabet.
The controller then decodes {zi}ti=1 to produce the estimates
{b̂i|t}ti=1, where b̂i|t denotes the estimate of bi when decoded
at time t. These estimates are mapped back to measurement
estimates {ŷi|t}ti=1 which, in turn, are used to give an estimate
x̂t|t of the current state of the plant. Finally, the controller
computes a control signal ut based on x̂t|t and applies it to
the plant.

The need for causally sending measurements of the state in
real time motivates the use of causal codes in this problem.
Generally speaking, a causal code maps, at each time instant
t, the current and all previous quantized measurements to a
packet of n bits ct,

ct = ft

(
{bi}ti=1

)
.

When restricted to linear codes, each function ft can be
characterized by a set of matrices {Gt,1, . . . ,Gt,t}, where
Gt,i ∈ Zn×k2 . The sequence of quantized measurements at
time t, {bi}ti=1, is encoded as,

ct = Gt,1b1 + Gt,2b2 + · · ·+ Gt,tbt .

The decoder computes a function gt ({zi}ti=1) to produce
{bi|t}ti=1. One is then assigned the task of choosing a sequence

of matrices {Gt,i | i = 1, . . . , t ; t = 1, . . . ,∞} that provides
anytime reliability. We recall this definition as stated in [4].

Definition 1. Define the probability of the first error event as

Pe(t, d) , P
(
bt−d 6= b̂t−d|t,∀δ > d, bt−δ = b̂t−δ|t

)
,

where the probability is over the randomness of the plant and
the channel noise. Suppose we are assigned a budget of n
channel uses per time step of the evolution of the plant. Then,
an encoder–decoder pair is called (R, β) anytime reliable if
there exists d0 ∈ N, such that

Pe(t, d) ≤ 2−βnd, ∀t, d ≥ d0, (1)

where β is called the anytime exponent.

According to the definition, anytime reliability has to hold
for every decoding instant t and every delay d. Sukhavasi and
Hassibi proposed in [4] a code construction based on Toeplitz
block-lower triangular parity-check matrices, that provides an
error exponent for all t and d. The Toeplitz property, in turn,
avoids the need to compute a double union bound. We shall
explicitly show this later in Section IV, where we introduce
the LTI ensemble.

In this work, the communication link between the observer
and the controller is assumed to be a memoryless binary-
input output-symmetric (MBIOS) channel: w(zi|ci = 0) =
w(−zi|ci = 1), where w is the channel transition distribution,
zi ∈ Z and ci ∈ Z2.

III. PRELIMINARIES: CONVOLUTIONAL CODES

In this section we review known result for several random
ensembles of convolutional codes, in Section III-A. The codes
within each ensemble can be either linear or not; linear
ensembles can be further either time variant or time invariant.
We further discuss sequential decoding algorithms and their
performance in Section III-B which will be applied in the
sequel for tree codes.

A. Bounds on the Error Probability under ML Decoding

We now recall exponential bounds for convolutional codes
under certain decoding regimes.

A compact representation (and implementation) of a con-
volutional code is via a shift register: The delay-line (shift
register) length is denoted by d, whereas its width k is the
number of information bits entering the shift register at each
stage. Thus, the total memory size is equal to dk bits. At each
stage, n code bits are generated by evaluating n functionals
over the dk memory bits and the new k information bits. We
refer to these n bits as a single branch. Therefore, the rate of
the code is equal to R = k/n bits per channel use. In general,
these functionals may be either linear or not, resulting in linear
or non-linear convolutional codes, respectively, and stay fixed
or vary across time, resulting in time-invariant or time-variant
convolutional codes. We further denote the total length of the
convolutional code frame upon truncation by N .

Typically, the total length of the convolutional code frame
is chosen to be much larger than d, i.e., N � d. We shall see



in Section IV, that in the context of tree codes, a decoding
delay of d time steps of the evolution of the plant into the past
corresponds to a convolutional code with delay-length d. Since
each time step corresponds to n uses of the communication
link, the relevant regime for the current work is N = nd.

Theorem 1 ( [8, Sec. 5.6], [9, Sec. 4.8]). The probability of the
first error event of random time-variant convolutional codes,
under optimal (maximum likelihood) decoding, is bounded
from the above by

P̄e(d) ≤ 2−EG(R)nd (2)

where EG(R) is Gallager’s error exponent function [7,
Sec. 5.6], defined as (see also Fig. 2):

EG(R) , max
0≤ρ≤1

[E0(ρ)− ρR] , (3a)

E0(ρ) , 1 + ρ− log

{∑
z∈Z

[
w

1
1+ρ (z|0) + w

1
1+ρ (z|1)

]1+ρ
}
.

(3b)

We note that in the common work regime of N � d,
the optimal achievable error exponent was proved by Yudkin
and by Viterbi to be much better than EG(R) [8, Ch. 5].
Unfortunately, this result does not hold for the case of N = nd
which is the relevant regime for this work.

Interestingly, whereas time-variant codes are known to
achieve better error exponents than linear time-invariant (LTI)
ones when N � d, this gain vanishes when N = nd, as is
suggested by the following theorem.

Theorem 2 ( [13, Eq. (14)]). The probability of the first
error event of LTI random convolutional codes, under optimal
(maximum likelihood) decoding, is bounded from the above by
(2).

Thus, (2) remains valid for LTI codes.
Unfortunately, the computational complexity of maximum-

likelihood decoding grows exponentially with the delay-line
length d, prohibiting its use in practice for large values of d.

We therefore review next a suboptimal decoding procedure,
the complexity of which does not grow rapidly with d but still
achieves exponential decay in d of the BER.

B. Sequential Decoding

The Viterbi algorithm [8, Sec. 4.2] offers an efficient im-
plementation of (frame-wise) ML1 decoding for fixed d and
growing N . Unfortunately, the complexity of this algorithm
grows exponentially with N when the two are coupled, i.e.,
N = nd.2 Prior to the adaptation of the Viterbi algorithm
as the preferred decoding algorithm of convolutional codes,
sequential decoding was served as the de facto standard. A
wide class of algorithms fall under the umbrella of “sequen-
tial decoding”. Common to all is the fact that they explore

1For bitwise ML decoding, the BCJR algorithm [14] needs to be used.
2This is true with the exception of the binary erasure channel, for which

ML decoding amounts to solving a system of equations, the complexity of
which is polynomial.

only a subset of the (likely) codeword paths, such that their
complexity does not grow (much) with d, and are therefore
applicable for the decoding of tree codes.3

In this work we shall concentrate on the two popular
variants of this algorithm — the Stack and the Fano (which
is characterized by a quantization parameter ∆) algorithms.

We next summarize the relevant properties of these decoding
algorithms when using the generalized Fano metric (see, e.g.,
[6, Ch. 10]) to compare possible codeword paths:

M(c1, . . . , cN ) =

N∑
t=1

M(ct), (4a)

M(ct) , log
w(zt|ct)
p(zt)

−B, (4b)

where B is referred to as the metric bias and penalizes longer
paths when the metrics of different-length paths are compared.
In contrast to ML decoding, where all possible paths (of length
N ) are explored to determine the path with the total maximal
metric,4 using the stack sequential decoding algorithm, a list of
partially explored paths is stored, where at each step the path
with the highest metric is further explored and replaced with its
immediate descendants and their metrics. The Fano algorithm
achieves the same without storing all these potential paths, at
the price of a constant increase in the error probability and
computational complexity; for a detailed descriptions of both
algorithms see [6, Ch. 10], [7, Sec. 6.9], [8, Ch. 6], [9, Ch. 6].

The choice B = R is known to minimize the expected
computational complexity, and is therefore the most popular
choice in practice. Moreover, for rates below the cutoff rate
R < R0 , E0(ρ = 1), the expected number of metric
evaluations (4b) is finite and does not depend on d, for any
B ≤ R0 [7, Sec. 6.9], [6, Ch. 10]. Thus, the only increase in
expected complexity of this algorithm with d comes from an
increase in the complexity of evaluating the metric of a single
symbol (4b). Since the latter increases (at most) linearly with
d, the total complexity of the algorithm grows polynomially
in d. Furthermore, for rates above the cutoff rate, R > R0, the
expected complexity is known to grow rapidly with N for any
metric [12], implying that the algorithm is applicable only for
rates below the cutoff rate.

Most results concerning the error probability under sequen-
tial decoding consider an infinite code stream (over a trellis
graph) and evaluate the probability of an erroneous path to
diverge from the correct path and re-merge with the correct
path, which can only happen for N > nd. Such analyses are
not adequate for our case of interest, in which N = nd. The
following theorem provides a bound for our case.

Theorem 3 ([6, Ch. 10]). The probability of the first error
event of general random convolutional codes, using the Fano

3Interestingly, the idea of tree codes was conceived and used already in the
early works on sequential decoding [5]. These codes were used primarily for
the classical communication problem, and not for interactive communication
or control.

4Note that optimizing (4a) in this case is equivalent to ML decoding.
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or stack sequential decoders and the Fano metric with bias
B, is bounded from the above by:

P̄e(t, d) ≤ A 2−EJ (B,R)nd, (5a)

EJ(B,R) , max
0≤ρ≤1

ρ

1 + ρ

{
E0(ρ) +B − (1 + ρ)R

}
, (5b)

where A is finite for B < R0 and is upper bounded by5

A ≤ e
ρ

1+ρ∆ 1− e−t[E0(ρ)−ρB]

1− e−[E0(ρ)−ρB]
≤ e

ρ
1+ρ∆

1− e−[E0(ρ)−ρB]
<∞,(6)

for a quantization parameter ∆ in the Fano algorithm; for the
stack algorithm (6) holds true with ∆ = 0.

Since, EJ(B,R) is a monotonically increasing function of
B, choosing B = R0 maximizes the exponential decay of
P̄e(d) in d.6 Interestingly, for this choice of bias, EJ(B =
R0, R) = EG(R) whenever EG(R) is achieved by ρ = 1 in
(3a), i.e., for rates below the critical rate R < Rcrit , E′0(ρ).
For other values of ρ, EJ(B = R0, R) is strictly smaller than
EG(R) (see Fig. 2).

For the choice of bias that optimizes complexity, B = R, on
the other hand, an error exponent which equals to at least half
the exponent under ML decoding (2) is achieved whenever
EG(R) is achieved by ρ = 1: EJ(B = R,R) ≥ EG(R)/2
(see Fig. 2).

We now turn to bounding the number of branch computa-
tions per node of the code tree under sequential decoding.

Definition 2. Denote by Wt the number of branch computa-
tions of node t performed by a sequential decoding algorithm.

We note that Wt is a random variable (which depends on
the received vector and the underlying tree code used). Since
Wt is equal to just one more than the number of branch
computations in the incorrect sub-tree of that node, it has
the same distribution for any t, for general random and LTI
random codes.

We use the following result which can be found in [8,
Sec. 6.2] for general random convolutional codes, and in [7,

5Note that E0(ρ)/ρ is a monotonically decreasing function of ρ, therefore
B < R0 = E0(1) guarantees that E0(ρ)− ρB > 0.

6For finite values of d a lower choice of B might be better, since the
constant A might be smaller in this case.

Sec. 6.9] for LTI convolutional codes; for both, delay-line
length d is assumed to be infinite.7

Theorem 4. The probability that Wt of a general random
convolutional code or an LTI convolutional code with infinite
delay-length is larger than m ∈ N is upper bounded by

Pr (Wt ≥ m) ≤ Am−ρ,

where A is finite for B,R < R0, R < B+R0

2ρ , and ρ ∈ (0, 1].

An immediate consequence of this result is that the expected
complexity per branch E[Wt] is bounded if R < R0. More-
over, a converse result by Arıkan [12] states that the expected
complexity is unbounded for rates exceeding the cutoff.

The next result provides a lower bound on the error proba-
bility.

Theorem 5 (See [8, Sec. 6.4]). The probability that Wt of
any convolutional code, where no decoding error occurs, is
greater than m ∈ N, is lower bounded by

Pr (Wt ≥ m) ≥ (1− o(m))m−ρ,

where o(m)→ 0 for m→∞, and R = E0(ρ)
ρ and any ρ > 0.8

This result was proved to be tight by Savage [15] for general
random convolutional code, and is widely believed to be true
for random LTI convolutional codes, although no formal proof
exists for the latter.

IV. LINEAR TIME INVARIANT ANYTIME RELIABLE CODES

In this section, we recall the construction of LTI anytime
reliable codes as presented in [4]. A causal linear time-
invariant code has a parity-check matrix with the following
lower triangular Toeplitz structure. The generator matrix of an
(n,R) LTI code of rate R and blocklength n per time step is
given by c = Gn,Rb, where

Gn,R =


G1 0 · · · · · · · · ·
G2 G1 0 · · · · · ·

...
...

. . . . . . · · ·
Gt Gt−1 · · · G1 0

...
...

...
...

. . .

, b =


b1

b2

...
bt
...

, c =


c1

c2

...
ct
...


(7)

and Gt ∈ Zn×k2 . The following definition, given in [4],
dictates the way to choose the Gi’s.

Definition 3 (LTI Ensemble). Fix G1 to be a full rank matrix,
and generate the entries of Gt independently and uniformly
at random, for t ≥ 2.

For the purpose of this paper, we shall view an (n,R)
LTI code as a convolutional code with infinite delay-line
length, k information bits and n code bits. As a result of this

7For finite delay-length convolutional codes, the computational complexity
can only be smaller than that of infinite delay-length codes.

8Recall that E0(ρ)/ρ is a decreasing function of ρ and therefore ρ > 1
implies that R < R0.



interpretation, the results of Section III apply directly to this
Toeplitz ensemble.

We shall now show why such a construction does indeed
guarantee anytime reliability as defined in (1).

By using the Markov inequality along with the result
of Theorem 1, the probability that a particular code from
this ensemble has an exponent that is strictly smaller than
(EG(R)− ε) is bounded from the above by

P
(
Pe(d) > 2−(EG(R)−ε)nd

)
≤ 2−εnd. (8)

Thus, for any ε > 0, this probability can be made arbitrarily
small by taking d to be large enough.

However, for a code to be anytime reliable it needs to satisfy
(1) for every t and d0 ≤ d ≤ t. Unfortunately, applying the
union bound and (8) to

P

( ∞⋃
t=1

t⋃
d=d0

{
Pe(t, d) > 2−(EG(R)−ε)nd

})
gives a trivial upper bound.

The advantage of using an LTI code is that for a fixed d,
the event

{
Pe(t, d) > 2−(EG(R)−ε)nd} is identical for all t.

Therefore, for LTI codes, we have

P

( ∞⋃
t=1

t⋃
d=d0

{
Pe(t, d) > 2−(EG(R)−ε)nd

})
(9a)

= P

( ∞⋃
d=d0

{
Pe(t, d) > 2−(EG(R)−ε)nd

})
(9b)

≤
∞∑
d=d0

2−εnd (9c)

=
2−εnd0

1− 2−εn
. (9d)

As a result, a large enough d0 guarantees that a specific code
selected at random for the LTI ensemble achieves (1) with
exponent β = (EG(R) − ε), for all t and d0 ≤ d ≤ t, with
high probability.

V. SEQUENTIAL DECODING OF LINEAR TIME-INVARIANT
ANYTIME RELIABLE CODES

In this section we show that the upper bound on the prob-
ability of the first error event under sequential decoding for
convolutional codes (5), holds true also for LTI convolutional
codes, which for N = nd, identifies with the LTI tree codes
of (7).

To prove this, we adopt the proof technique of [7, Sec. 6.2],
where the exponential bounds on the error probability of
random block codes are shown to hold also for linear random
blocks codes.

Theorem 6. The probability of the first error event of the
LTI random tree ensemble of Definition 3, using the Fano or
stack sequential decoders and the Fano metric with bias B, is
bounded from the above by (5).

Proof sketch: A thorough inspection of the proof of
Theorem 3, as it appears in [6, Ch. 10], reveals that the
following two requirements for this bound to be valid are
needed:

1) Pairwise independence. Every two paths are indepen-
dent starting from the first branch that corresponds to
source branches that disagree.

2) Individual codeword distribution. The entries of each
codeword are i.i.d. and uniform.

We next show how these two requirements are met for the
affine linear ensemble. The codes in this ensemble are as in
(7) up to an additive translation v =

[
v1 v2 · · · vt · · ·

]T
,

where vt ∈ Zn2 , with c = Gb + v. The entries of G and v
are sampled independently and uniformly at random.

Now, assume that two source words b and b̃ are identical
for i < t and differ in at least one bit in branch t, i.e., bi = b̃i
for i < t and bt 6= b̃t. Then, the causal structure of G
guarantees that also ci = c̃i for i < t. Moreover, bt 6= b̃t
along with the random construction of G suggest that the
two code paths starting from branch t,

[
cTt cTt+1 · · ·

]T
and[

c̃Tt c̃Tt+1 · · ·
]T

are independent. This establishes the first
requirement.

To establish the second requirement we note that the ad-
dition of a random uniform translation vector v guarantees
that the entries of each codeword are i.i.d. and uniform. This
establishes the second requirement and hence also the validity
of the proof of [6, Ch. 10].

Finally, note that since the channel is MBIOS, the same
error probability is achieved for any translation vector v.

Since Theorem 6 holds for LTI codes, a specific code chosen
from the LTI ensemble is anytime reliable with (5), with high
probability, following (9).

VI. SIMULATION OF A CONTROL SYSTEM

To demonstrate the effectiveness of the sequential decoder
in stabilizing an unstable plant driven by bounded noise, we
simulate a cart–stick balancer controlled by an actuator that
obtains noisy measurements of the state of the cart through a
BSC. The example is the same one from [4] which is originally
from [16]. The plant dynamics evolve as,

xt+1 = Axt + But + wt

yt = Cxt + vt,

where ut is the control input signal that depends only on the
estimate of the current state, i.e. ut = Kx̂t|t. The system noise
wt is a vector of i.i.d. Gaussian random variables with mean
µ = 0 and variance σ2 = 0.01, truncated to [−0.025, 0.025].
The measurement noise vt is also a truncated Gaussian random
variable of the same parameters. We assume that the system
is in observer canonical form:

A =

 3.3010 1 0
−3.2750 0 1

0.9801 0 0

 ,B =

−0.0300
−0.0072

0.0376

 ,C =
[
1 0 0

]
,

K =
[
−55.6920 −32.3333 −19.0476

]
.
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Fig. 3. Stability of the Cart–Stick Balancer is demonstrated using a
sequentially decoded LTI code.

The state xt, before the transformation to observer canonical
form, is composed of the stick’s angle, the stick’s angular
velocity and the cart’s velocity. The system is unstable with the
largest eigenvalue of A being 1.75. The channel between the
observer and the controller is a BSC with bit-flip probability
p = 0.01, which has a cutoff rate R0 = 0.7382. We fix a
budget of n = 20 channel uses. Using Theorem 8.1 in [4],
the minimum required number of quantization bits is kmin = 3
and the minimum required exponent is βmin = 0.2052.

For the first experiment, we use a code of rate R = 1/2,
with k = 10 bits for a lattice quantizer with bin width δ = 0.1.
From (5b), a sequential decoder with bias R0 will guarantee
an error exponent of β = 0.2382. As is evident from the dark
curve in Fig. 3, the stick on the cart does not deviate by more
than 12 degrees.

For the second experiment, we use a lower code rate R =
1/5, which provides β = 0.5382. The light curve in Fig. 3
shows that the deviation is reduced to 4 degrees.

Although these simulations might suggest that a lower rate
code always results in better stability of the dynamical system,
it is not a-priori clear that this is truly the case. A lower
code rate uses a coarser quantizer than a higher rate code.
As a result, there could be some loss due to this coarseness.
A common metric used to quantify the performance of the
closed-loop stability of a dynamical system is the linear
quadratic regulator (LQR) cost for a finite time horizon T
given by

J = E

[
1

2T

T∑
t=1

(
‖xt‖2 + ‖ut‖2

)]
,

where the expectation is w.r.t. the randomness of the plant
and the channel. For our example, we simulated the system
using three different quantization levels, with 100 codes per
quantization level and 40 experiments per code.

The data is tabulated in Table I.
In principle, one would randomly sample an LTI generator

matrix where each subblock Gi ∈ Zn×k2 . Nonetheless, from

TABLE I
AVERAGE LQR COST OVER 100 CODES WITH 40 EXPERIMENTS PER CODE

k LQR Cost
4 206.0
5 86.4

10 873.0

an implementation efficiency point of view, there is no loss
in the anytime exponent if we pick Gi ∈ Zn

′×k′
2 , where

n = n′gcd(n, k) and k = k′gcd(n, k), and then using the
first tgcd(n, k) blocks to encode {bi}ti=1.

VII. DISCUSSION

We showed that sequential decoding algorithms have several
desired features: Error exponential decay, memory that grows
linearly (in contrast to the exponential growth under ML
decoding) and expected complexity per branch that grows
linearly (similarly to the encoding process of LTI tree codes).
However, the complexity distribution is heavy tailed (recall
Theorems 4 and 5). This means that there is a substantial
probability that the computational complexity is going to be
very large, which will cause, in turn, a failure in stabilizing
the system. Specifically, by allowing only a finite backtracking
length to the past, the computational complexity can be
bounded at the expense of introducing an error due to failure.

From a practical point of view, the control specifications of
the problem determine a probability of error threshold under
which a branch ct is considered to be reliable. This can be
used to set a limit on the delay-line length of the tree code,
which in turn converts it to a convolutional code with a finite
delay-line length.

Finally, note that tighter bounds can be derived below the
cutoff rate via expurgation. Moreover, random linear block
codes are known to achieve the expurgated bound for block
codes (with no need in expurgation) [17]. Indeed, using this
technique better bounds under ML decoding were derived in
[4] and a similar improvement seems plausible for sequential
decoding.
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