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Abstract—The physical-layer network coding (PNC) approach
provides improved performance in many scenarios over “tra-
ditional” relaying techniques or network coding. This work
addresses the generalization of PNC to wireless scenarios where
network nodes have multiple antennas. We use a recent ma-
trix decomposition, which allows, by linear pre- and post-
processing, to simultaneously transform both channel matrices
to triangular forms, where the diagonal entries, corresponding
to both channels, are equal. This decomposition, in conjunction
with precoding, allows to convert any two-input multiple-access
channel (MAC) into parallel MACs, over which single-antenna
PNC may be used. The technique is demonstrated using the
two-way relay channel with multiple antennas. For this case it
is shown that, in the high signal-to-noise regime, the scheme
approaches the cut-set bound, thus establishing the asymptotic
network capacity.

Index Terms—network modulation, physical-layer network
coding, network capacity, multiple access channel, structured
codes, nested lattices, MIMO channels, two-way relay channel

I. INTRODUCTION

The capacity region of networks is a long-standing problem

in Information Theory. Wireless networks are of special prac-

tical interest. Traditionally, such networks were treated at two

different levels: A physical-layer local code which translates

the wireless channels into “bit-pipes”, and a network code over

the bit network. This separation is in general sub-optimal, as

was demonstrated in recent years by physical-layer network

coding (PNC) approaches.

In the most basic variant of PNC (for single-antenna

nodes), relay nodes simply forward their inputs using power

adjustment only (“amplify-and-forward”). This analog-PNC

approach helps in opening network bottlenecks, by allowing

a node to assist in transmission even if it cannot decode the

message, and indeed it is optimal in some cases, e.g., some

limits of the parallel relay network [1], [2]. However, analog-

PNC suffers from noise accumulation: Without decoding, the

relays also forward noise. Structured-PNC is an alternative

approach which solves both the bottleneck and noise accumu-

lation effects at the same time. It uses structured/linear codes,

building on the property that an integer linear combination of

codewords is a codeword as well. A relay node may be able

to decode the combination codeword, even if it cannot decode

the individual messages. It was first presented by Wilson et
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al. [3] for the simple two-way relay channel. Nam et al. [4]

have shown that such a scheme achieves a rate, within half a

bit of the cut-set bound, for any channel coefficients. A more

general network is treated by Nazer and Gastpar’s “compute-

and-forward” strategy [5].

Wireless communication widely uses multiple-input-

multiple-output (MIMO) techniques to obtain degrees

of freedom. It is therefore natural to ask, what can the

combination of PNC and MIMO achieve over a network

where terminals have multiple antennas. While some works

considered MIMO versions of analog-PNC (see, e.g., [6]–

[8]), little was done in the context of structured-PNC. In [9],

Zhan et al. demonstrate that in the two-way relay channel,

structured-PNC can gain from multiple relay antennas – but

the work is restricted to single-antenna terminal nodes, not

allowing to fully enjoy MIMO gains.

In this work we introduce a way to combine structured-

PNC and MIMO transmission, where a relay node receives

the linear combination of two transmit nodes via MIMO

channels. The approach we propose builds on a recently

introduced matrix decomposition [10], that allows to simulta-

neously transform two channel matrices into triangular form

with equal diagonals, by applying unitary operations at both

sides. The transformation is applied to the channel matrices

in conjunction with dirty-paper precoding at the transmitters,

which yields parallel channels.

An essential property of the matrix decomposition, which

allows to independently apply structured-PNC to each sub-

channel without loss, is that the ratio between the gains of

both transmitters is fixed for all the parallel channels. We

note that the two-way MIMO relay channel problem was

recently also considered in [11], where it was proposed to

use the generalized singular value decomposition (GSVD) [12]

to transform the matrices into triangular form. However the

GSVD fails to achieve a fixed ratio. Thus, in general it yields

sub-optimal results.

In this work we concentrate on the case of two users.

Nonetheless, extensions to more than two users can be con-

structed, as explained in [13].

The rest of the paper is organized as follows. In Section II

we present the problem and the main result. In Section III

we provide a constructive proof using the aforementioned

decomposition. We conclude in Section IV by presenting

performance comparisons and discussing some extensions.



II. THE TWO-WAY MIMO RELAY CHANNEL

The two-way relay channel consists of two terminals and a

relay. We define the channel model as follows. Transmission

takes place in two phases, each one, w.l.o.g., lasting N channel

uses. At each time instance in the first stage, terminal i
(i = 1, 2) transmits a signal Xi,n and the relay receives

Yn according to some memoryless multiple-access channel

(MAC)WMAC(Y |X1, X2). At each time instance in the second

phase, the relay transmits a signal Xn and the terminals

receive Yi,n according to some memoryless broadcast (BC)

channel WBC(Y1, Y2|X). Before transmission begins, terminal

i (i = 1, 2) possesses an independent message of rate Ri,

unknown to the other nodes; at the end of the two transmission

phases, each terminal should be able to decode, with arbitrarily

low error probability, the message of the other terminal. The

closure of all achievable pairs (R1, R2) is the capacity region

of the network.

We consider a Gaussian MIMO setting, where terminal i
(i = 1, 2) has Nt;i transmit antennas and the relay has Nr

receive antennas, during the MAC phase, which is depicted in

Figure 1a. Denoting by bold letters the transmit and receive

vectors, we have the MAC channel:

Y = H1X1 +H2X2 + Z ,

where Hi are Nr × Nt;i matrices, Z is circularly-symmetric

white Gaussian noise with unit variance and the inputs are

subject to the same total power constraint:

E
[

X
†
iXi

]

≤ P , i = 1, 2 .

We assume that the number of transmit antennas at each node

Nt;i is at least as large as the number of receive antennas Nr,

and that the matrices H1 and H2 are full-rank, i.e., have rank

Nr.
1 We further assume that the messages have the same rate

R1 = R2 = R and that the products of the non-zero singular

values, of each of the channel matrices, are equal to 1, or
equivalently:

det
(

HiH
†
i

)

= 1 , i = 1, 2 . (1)

The exact nature of the BC channel is not material in the

context of this work. We characterize it using its common

message capacity Ccommon.

First consider the single-antenna case, Nr = Nt;1 = Nt;2 =
1. It is shown in [3] that one can achieve a rate of: 2

RPNC = min

{

log

(

1

2
+ P

)

, Ccommon

}

. (2)

By the min-cut theorem, one cannot achieve a rate greater than

the point-to-point capacity of the MAC links or the common-

message capacity of the BC channel:

RCS = min {log (1 + P ) , Ccommon} . (3)

1For the cases in which the matrices are not full-rank or have more receive
antennas see Section IV.

2Wilson et al. [3] considered a real-valued network, thus an additional 1/2
pre-log factor was present in their original expression.
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(b) BC phase for the special case where it is a MIMO BC channel.

Fig. 1: MIMO two-way relay channel. The second (BC) phase

may be different in general.

It follows that PNC is optimal in the high-SNR limit. It is

interesting to compare these to common relaying approaches.

Using decode-and-forward (D&F) relaying, the relay must

decode both messages with sum-rate 2R. Instead of forwarding

both message it can use a network-coding approach and XOR

them, then each terminal can XOR out its own message to

obtain the desired one. The resulting rate is given by:

RDF = min

{

1

2
log (1 + 2P ) , Ccommon

}

. (4)

In the high-SNR limit, when the MAC stage is the bottleneck,

the D&F rate is about half the cut-set bound. In this scenario,

an approach that we denote “amplify-and-forward” (A&F)

can be used, where the relay forwards the noisy sum of the

terminal transmissions.3 This approach achieves:

RAF = log(1 + αP ) , (5)

where α = α(P,Ccommon) is a noise amplification factor which

is strictly smaller than one for channels of finite capacity. It

follows that the A&F rate has a finite difference from the cut-

set bound in the high-SNR limit.

Moving back to the MIMO case, the cut-set bound is given

by:

RCS = min {C1, C2, Ccommon} , (6)

where

Ci , max
trace(Cx)≤P

log det(I +HiCxH
†
i ), i = 1, 2 .

In the high-SNR limit, under the normalization (1), we have:

lim
P→∞

Ci −Nr log
P

Nr
= 0. (7)

3Note that it does not necessarily involve analog amplification, if the BC
links are not AWGN channels. Instead in that case we compress the sum of
the codewords, and treat the unbiased quantization noise as channel noise.



The next theorem, which is proved in Section III, shows that

the PNC rate (2) generalizes to the MIMO case as follows.

Theorem 1: The capacity of the Gaussian MIMO two-

way relay network with full-rank channel matrices, with

N
(1)
t , N

(2)
t ≥ Nr satisfying (1), is lower-bounded by

RPNC = min

{

Nr log
P

Nr
, Ccommon

}

. (8)

On account of (7), the rate RPNC approaches the cut-set

bound for high SNR as in the single-antenna case. High-SNR

conditions hold when

(λi;j)
2
P

Nr
≫ 1 ,

i = 1, 2
j = 1, ..., Nr

, (9)

where {λi;j}
Nr

j=1 are the singular values of Hi.

Theorem 1 assumes the use of white input. At any finite

SNR, it can be improved by optimizing over the input covari-

ance matrices. however, this rate is already better than the rate

achievable by the D&F approach, except for very low SNR.

III. STRUCTURED MIMO-PNC SCHEME

In this section we provide a constructive proof for the main

result, stated in Theorem 1. The key ingredient is using the

matrix decomposition of [10, Sec. IV] to obtain equivalent

parallel single-antenna networks, over which we can use the

structured-PNC strategy of [3]. The decomposition is given

in the following theorem of [10], transposed in order to

accommodate for the MAC setting.

Theorem 2: Let A1 and A2 be complex-valued full-rank

matrices, of dimensions m × n1 and m × n2, respectively,

such that n1, n2 ≥ m (meaning Ai are of rank m). If the

products of their singular values are equal, then A1 and A2

can be jointly decomposed as

A1 = UT1V
†
1

A2 = UT2V
†
2 , (10)

where V1, V2 and U are unitary matrices of dimensions

n1 × n1, n2 × n2 and m × m, respectively; and T1 and T2

are generalized lower-triangular matrices (matrices with zero

entries above the main diagonal, i.e., T1;ij = 0 and T2;ij = 0
for i < j, where Ti;k,j denotes the (k, j) entry of Ti) with

positive equal diagonal elements.

We apply the decomposition of Theorem 2 to the channel

matrices H1 and H2. and denote the diagonal entries of

T1 (which are equal to those of T2 by assumption (1)) by

t1, . . . , tNr
.

We use dirty-paper precoding at each of the terminals to

cancel the off-diagonal elements of T1 and T2. This results

in Nr parallel channels, with gains given by the (equal for

both terminals) diagonal elements. Denote these elements of

T1 (which are also equal to those of T2) by t1, . . . , tNr
. If

we use each such channel as part of an independent single-

antenna two-way relay network with input power P/Nr, we

can achieve a total rate of:

R1 = R2 =

Nr
∑

k=1

rk
(a)

≥

Nr
∑

k=1

log

(

1

2
+

t2kP

Nr

)

≥ Nr log
P

Nr
+

Nr
∑

k=1

log t2k = Nr log
P

Nr
, (11)

where rk is the rate conveyed over sub-channel k, and (a)
holds true due to (2).

We now describe in detail a scheme which allows to achieve

this rate.

Codebooks generation: Apply the decomposition of Theo-

rem 2 (where we set ni = N
(i)
t and m = Nr) to the channel

matrices H1 and H2 to obtain matrices U , V1, V2, T1 and T2.

At each terminal, divide the message into Nr sub-messages of

rate rk = RPNC/Nr+log t2k.
4 Now for each k (k = 1, . . . , Nr),

both terminals use the same nested-lattice code [14] with

nesting ratio rk. Denote the coarse lattice (common for all

sub-messages) by Λ, and the fine lattices by {Λk}. The second
moment of Λ is P/Nr. Λ is assumed to be Rogers-good, while

{Λk} are good for AWGN coding.

MAC encoding: Terminal i chooses a lattice point ℓi,k for

the k-th sub-message,5 then sequentially computes:

X̃i,k =
[

ℓi,k −
1

tk

k−1
∑

j=1

Ti;k,jX̃i,j

]

mod Λ . (12)

Finally, the transmit signal is

Xi = ViX̃i .

MAC decoding: The relay computes Ỹ = U †
Y and then

uses lattice decoding to find ℓ̂k, the closest point of Λk

(modulo Λ), and recovers messages {mk} according to the

codebook mapping.

BC stage: The relay conveys the messages {mk} to both

terminals, using any capacity-approaching common-message

BC scheme.

Final decoding: The terminals recover {ℓk}, then compute

for each sub-message:

ℓ̂ī,k = [ℓ̂k − ℓi,k] mod Λ , (13)

where

ī ,

{

2 i = 1
1 i = 2

.

This estimated codeword is mapped back to a message.

Proof of Theorem 1: Since Λ is Rogers good with second

moment P/Nr and Vi are orthogonal, the transmission satisfies

the power constraint. Now,

Ỹ = U †(H1V1X̃1 +H2V2X2 + Z)

= T1X̃1 + T2X̃2 + Z̃ ,

4If this quantity is negative for some k, set rk = 0; since this only improves
the achievable rate, we can assume for the sake of analysis that it is always
positive.

5ℓi,k and the signals that follow are n-dimensional vectors; we still reserve
boldface to denote spatial (antenna) dimension 1, . . . , Nr .
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Fig. 2: Rates as a function of the MAC SNR P in Example 1

where the MAC section is the bottleneck. Dotted black line –

RCS (cut-set bound); red continuous line – RPNC; dashed

magenta line – RDF; dashed-dotted blue line – time-sharing

between PNC and D&F.

where Z̃ = U . By the precoder operation (12) we have:
[

Ỹk

tk

]

mod Λ =

[

ℓk +
Z̃k

tk

]

mod Λ ,

where ℓk = [ℓ1,k + ℓ2,k] mod Λ, and Z̃ has the same dis-

tribution as Z. Since ℓk is a valid codeword of Λk/Λ, this
codeword effectively passed through a mod-Λ channel with

SNR Pk = t2kP/Nr. Moreover, since Λk is good for AWGN

coding at rate logPk, we have that ℓ̂k = ℓk with arbitrarily

low error probability (as the dimension n → ∞). Thus, the

relay may decode the messages {mk}, and the total rate of

the latter is

R− i = Nr log
P

Nr
, i = 1, 2 .

Of course, if Ccommon is lower than that, we can achieve

the lower rate. Now, these messages can be conveyed to

the terminals with arbitrarily low error probability using rate

Ccommon. If there was no error in any of the stages, then

(13) yields T̂ī,k = Tī,k; by our choice of codebooks, this

corresponds to a transmission rate RPNC.

Example 1: Figure 2 depicts the achievable rate obtained

when the channel matrices are:

H1 =

(

1/2 0
0 2

)

, H2 =

(

2 0
0 1/2

)

,

and the MAC phase is assumed to be the bottleneck, compared

to the cut-set bound and to the D&F rate. As expected, the

proposed scheme approach the upper bound as the MAC SNR

increases.

At this point, one can understand why RPNC of Theorem 1

is higher than that of Yang et al. [11]. The GSVD-based

scheme suggested there induces equivalent triangular channels

with different diagonals, thus suffering substantial loss when

applying the scalar PNC scheme. In fact, as the GSVD

provides the “most spread diagonal ratios” (see [10]), a scheme

that does not apply any precoding matrices Ui should have

better performance than the GSVD one.

IV. EXTENSIONS

Time-sharing. As is true also for the SISO case, D&F is

better than PNC at low rates; for example, it yields a positive

rate for any positive Pk, while PNC fails for Pk < 1 due to

the loss of the “1” (see expressions (2) and (11)). As noted for

the single-antenna case in [3], one may use time-sharing in the

intermediate region, to improve over both. Figure 2 compares

the different bounds, as a function of the MAC SNR which is

assumed to be the bottleneck in this case.

Non full-rank matrices. In the case when the channel

matrices H1 and H2 are not full-rank or when there are more

receive antennas than transmit ones, other strategies needed to

accompany the approach proposed in this work. Consider, for

instance the following two channel matrices:

H1 =

(

1 0
0 0

)

, H2 =

(

0 0
0 1

)

.

In this case the relay sees two parallel channels, from each of

the two terminals. Note that in this case a good strategy would

be to sum the two channel outputs at the relay, to decode the

sum-codeword and send it to the two terminals during the

BC phase, or alternately to decode each of the messages, sum

them (modulo lattice) and send the result over the BC channel

(it is more efficient to send a common message than two

private messages). For more general non full rank matrices,

such strategies can be combined with the strategy suggested

in Section III as well applying the joint triangularization of

Theorem 2 to augmented versions of the channel matrices as

is done in [10].

Use of non zero-forcing elements. We have used the lattice

codes in a “naı̈ve” manner, achieving Rk = logPk. That is,

we lost the “entire” 1. Indeed, using dithering and MMSE

estimation as in [3] one can achieve the higher rate RPNC,k

(2). This will improve performance at low signal to noise ratios

(though not extremely low, as RPNC,k is only positive for

Pk > 1/2). Furthermore, instead of the “zero-forcing” decom-

position proposed in the current work, an MMSE version could

be used, which decomposes augmented versions of the channel

matrices along with using non-white covariance matrix, as is

done in the common message Gaussian MIMO BC case, see

[10].

Non-symmetric setting. The approach can be extended

beyond the symmetric setting, to find achievable rate pairs

(R1, R2). Suppose that the ratio between the singular-values-

product of H1 and H2 is ρ, then we can work at each of

the parallel networks with ratio ρ1/Nr . If this quantity is not

integer, then there is a tradeoff between rounding and noise



amplification [5]. However the loss can be bounded as in [4].

Furthermore, we may shape the ratios between the diagonals,

such that all the ratios are integers, except for maybe one,

or alternately, if the decomposed matrices satisfy a certain

majorization condition, it is possible to take all the ratios to

be equal to 1 except for one, see [10] for details.

Application: Colored two-way relay channel. In the

special case where the channel matrices are diagonal, the

problem is equivalent to a single-antenna colored channel

with piecewise-constant spectrum; by increasing the matrix

dimension, arbitrary spectra can be accommodated for. Inter-

estingly, the precoding operation at the terminals (12) is in the

frequency domain in this case, unlike traditional time-domain

Tomlinson-Harashima precoding [15], [16].

Coding for the broadcast section. The only assumption

we used regarding the BC section, is that it has a common-

message capacity high enough such that it does not limit

performance. However, it seems likely that the links to the

terminal will be wireless MIMO ones as well. In that case,

depicted also in Figure 1b, the complexity may be consid-

erably reduced by using the scheme which is based upon the

decomposition of Theorem 2, for that section as well; see [10].
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