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Abstract—The Gaussian multiple-input multiple-output two-
way relay channel is considered. By applying linear pre- and post-
processing, the channel matrices are transformed into triangular
form having equal diagonals. Over the obtained triangular chan-
nels, dirty-paper coding is applied, yielding parallel symmetric
scalar two-way relay channels; thus, reducing the coding task to
that of coding over the scalar symmetric two-way relay channel.
Any existing coding technique can then be readily applied over
these resulting channels. This technique allows to obtain new
achievable rates in the symmetric case.

Index Terms—Physical-layer network coding, network capac-
ity, multiple-access channel, structured codes, MIMO chan-
nels, two-way relay channel, compress-and-forward, decode-
and-forward, joint matrix decomposition, successive interference
cancellation, dirty-paper coding

I. INTRODUCTION

The two-way relay channel (TWRC) [1], [2] is composed

of two terminals exchanging information only via a third-party

relay. This simple scenario, which is composed of a multiple-

access (MAC) section from the two terminals to the relay, and

a broadcast (BC) section, from the relay to the two terminals,

manifests many basic principles encountered in more complex

networks, and therefore gained much attention in the past few

years.

A traditional communication approach over the TWRC is

decode-and-forward (DF). Here, the network is treated at

two different levels: a physical-layer local code translates

the wireless channels into “bit-pipes”, over which network

coding is applied. Namely, a MAC code is used over the

first section, allowing the relay to decode the messages of

both terminals. Then, the relay uses a BC code to convey

to the terminals a common message; assuming that this was

decoded correctly, each user obtains the desired message from

the common message and from their own message, as in

network coding [3]–[5]. DF has the advantage that the noise

of the MAC stage is “cleaned” by the relay rather than being

accumulated. Even though DF proves optimal in the limit of

low signal-to-noise ratio (SNR), turning the MAC channel into

bit-pipes incurs a loss, which increases as the SNRs grow.

Other approaches do not turn all of the links to bit-pipes,

but rather leverage the physical properties of at least some

of the links. In compress-and-forward (CF), the relay merely

compresses its received signal. However, since each of the

terminals knows its transmitted signal, CF can utilize “remote

Wyner–Ziv coding” [6] for both messages simultaneously, i.e.,

each terminal tries to recover the message signal sent by the

other user with its own message signal serving as decoder side-

information [7]. CF, thus, defers decoding from the relay to the

terminals, that may have better conditions; this comes at the

price of noise accumulation. It turns out that CF outperforms

DF for a sufficiently high BC capacity.1 Performance can be

further improved by incorporating layers of CF and DF; see

[7].

Structured physical-layer network coding (sPNC) ap-

proaches [8]–[10] aim to avoid noise accumulation, without

turning the MAC channel into bit-pipes. This is accomplished

by using structured codes, where the sum of codewords is also

a codeword. Thus, the relay can decode a “sum-message” and

forward it. Though outperformed by DF and CF at low SNRs,

sPNC becomes optimal in the limit of high SNR.

We note that the CF approach over the TWRC has been

somewhat overshadowed by sPNC and DF. Nevertheless, as

stated above, it offers better performance for certain SNR

values. In Section II we revisit these known techniques for the

Gaussian single-input single-output (SISO) TWRC, providing

a detailed comparison. The symmetric setting, in which the

channel quality of the users is equal and the desired rates

are equal as well, is of special interest. In this setting, the best

known achievable rate region is given by time-sharing between

DF, CF and sPNC.2 We find that, in the symmetric setting, this

time-sharing strategy has a gap from the cut-set upper bound

on the capacity of at most 0.2625 bits (per complex stream).

In this work we consider the extension of these techniques to

the multiple-input-multiple-output (MIMO) case. We note that

the difficulty of the task greatly varies between the different

strategies.

DF generalizes to the MIMO case in a straightforward

manner, using any scheme for the MIMO MAC and (common-

message) BC channels. As for CF, even though an information-

theoretic expression for the achievable rates can be formulated,

its explicit evaluation in the MIMO case is hard in general, let

alone code construction. Thus, suboptimal scalar approaches

have been suggested [11], [12].

1The CF approach always outperforms amplify-and-forward (AF) over the
TWRC, in contrast to other network topologies.

2Although in principle pDF could improve performance, evaluating the
expressions shows that in the symmetric setting it does not.



The generalization of sPNC to the MIMO case is a very

different issue, as this approach is specifically tailored to

scalar additive channels. Thus, some form of decomposition

of the channel into parallel subchannels is required. Two

techniques have been proposed. The first technique, by Yang et

al. [13], relies on the generalized singular value decomposition

(GSVD) [14], [15]. The GSVD results in triangular matrices

with proportional rows (though with different diagonal values);

the column proportionality allows to recover linear combina-

tions of the messages (similar to the non-symmetric sPNC

technique of [9]) using successive interference cancellation

(SIC).3 The second technique, proposed in [16], allows to

triangularize both channel matrices, such that the resulting

diagonals are equal, using the joint equi-diagonal triangu-

larization (JET) [17], and together with dirty-paper coding

(DPC) employs the symmetric scalar sPNC of [8] over the

resulting parallel subchannels. When the target rates of the two

terminals are close (“symmetric case”), the JET-based scheme

achieves better performance, whereas when the two rates differ

substantially, the performance of the GSVD-based scheme is

superior.

In this work, we concentrate on the symmetric case, where

the channels of the users have the same quality (yet, for

MIMO, the matrices can be very different from each other)

and the desired rates are equal. In Section III-B, we find that

having equal diagonals is advantageous not only for sPNC, but

also for CF. We further propose an improvement of the JET-

based scheme of [16], by allowing DF, CF or sPNC (or optimal

time-sharing between them) over each subchannel, according

to its parameters. Finally, we demonstrate the performance of

the proposed technique for a parallel channels example.

II. BACKGROUND: COMMUNICATION STRATEGIES FOR

THE SISO TWO-WAY RELAY CHANNEL

In this section we consider the Gaussian SISO TWRC

and describe the communication approaches mentioned in

Section I along with the cut-set outer bound, both for the

symmetric and the non-symmetric cases.

A. Channel Model

The TWRC consists of two terminals and a relay. We define

the channel model as follows. Transmission takes place in two

phases, each one, w.l.o.g., consisting of N channel uses. At

each time instance n in the first phase, terminal i (i = 1, 2)
transmits a signal xi,n and the relay receives yn according

to some memoryless MAC channel WMAC(y|x1, x2). At each
time instance n in the second phase, the relay transmits a

signal xn and terminal i (i = 1, 2) receives yi,n according to

some memoryless BC channel WBC(y1, y2|x). Before trans-

mission begins, terminal i possesses an independent message

of rate Ri, unknown to the other nodes; at the end of the two

transmission phases, each terminal should be able to decode,

with arbitrarily low error probability, the message of the other

terminal. The closure of all achievable pairs (R1, R2) is the

capacity region of the network.

3This technique can further be improved as is shown in Theorem 1.

In the Gaussian SISO setting, the MAC phase of this

channel is given by

y = h1x1 + h2x2 + z ,

where, w.l.o.g., x1 and x2 are subject to the same power

constraint P , and z is additive white Gaussian noise (AWGN)

of power 1.
The exact nature of the BC channel is not material in

the context of this work. We characterize it by its “side-

information rate region” CBC [1], which corresponds to the

private-message capacity rate-region over the BC channel

where each decoder knows the message intended for the other

decoder. This rate region is equal to the closure of the convex

hull of all rate-pairs (R1, R2) satisfying:

R1 ≤ I(X ;Y2|X2) ,

R2 ≤ I(X ;Y1|X1) ,

for some product distributions p(x)p(y1|x)p(y2|x).
Note that in the symmetric setting, R , R1 = R2, the

optimum achievable rate is equal to the common-message

capacity Ccommon of the BC channel with no side-information

at the decoders.

B. Communication Schemes in the Symmetric-Rate Setting

Here we specialize to the symmetric case:

R , R1 = R2 (2a)

h , h1 = h2 ,

and, without loss of generality, take h = 1.
By the min-cut max-flow theorem [18], [19], one cannot

achieve a rate greater than the point-to-point capacities of

the MAC links or the common-message capacity of the BC

channel [1]:

RCS = min {log (1 + P ) , Ccommon} . (3)

In the DF approach, the relay decodes both messages with

sum-rate 2R. Instead of forwarding both messages, it can use a

network-coding approach and XOR them. Then, each terminal

can XOR out its own message to obtain the desired one. The

resulting rate is given by:

RDF = min

{

1

2
log (1 + 2P ) , Ccommon

}

. (4)

In the CF approach, the noisy sum of the messages, trans-

mitted by the sources, is quantized at the relay, using remote

Wyner–Ziv coding [6], with each terminal using its transmitted

message as decoder side-information. The achievable rate

using this scheme is [7]

RCF = log (1 + P ↿↾Pcommon) , (5)

where Pcommon is the effective SNR of the BC phase that

satisfies Ccommon = log(1 + Pcommon), and

A↿↾B ,
AB

1 +A+B



is the equivalent SNR in transmitting a signal through the

concatenation of additive noise channels of SNRs A and B.

The partial decode-and-forward approach suggests superim-

posing DF and CF. When the message corresponding to DF

is peeled first at the terminals, the following rate is achieved:

RpDF = RDF +RCF (6a)

RDF = min

{

1

2
log

(

1 +
2αMAC

DF P

1 + 2(1− αMAC
DF )P

)

, αBC
DFCcommon

}

RCF = log
(

1 +
[

(1− αMAC
DF )P

]

↿↾Pα
common

)

,

where Pα
common is the value satisfying

(

1− αDF
BC

)

Ccommon = log (1 + Pα
common) ,

and αMAC
DF and αBC

DF are coefficients between 0 and 1 indicating

the power portions allocated to DF (with the remaining powers

allocated to CF). Optimization over these coefficients should

be performed to maximize the achievable rate (6a). Note that

the optimal rate achievable by pDF is greater or equal to DF

(4), which corresponds to αMAC
DF = αDFMAC = 1, and CF (5),

which corresponds to αMAC
DF = αMAC

DF = 0.

A similar expression is achieved when the peeling order of

CF and DF is reversed at the terminals.

In the sPNC approach [8], both terminals transmit code-

words generated from the same lattice code. Due to the

linearity property of the lattice code, the sum of the two

codewords is a valid lattice codeword. This sum is decoded

at the relay and sent to the terminals. Each terminal, then,

recovers the sum codeword and subtracts from it its own lattice

codeword, to obtain the codeword transmitted by the other

terminal. The rate achievable using this scheme is given by:

RPNC = min

{

[

log

(

1

2
+ P

)]+

, Ccommon

}

, (7)

where [x]+ , max{0, x}.

Both the CF rate (5) and the sPNC rate (7) are within

one bit from the cut-set bound (3), as shown in [7] and [9],

respectively. Fortunately, the worst-case parameters for the

different schemes are different, and time-sharing can further

improve performance; we find numerically, that time-sharing

between the rates (4), (5) and (7) is within 0.2625 bits from

optimality (and the guaranteed fraction of capacity is at least

78.77%), see Figure 1.

Remark 1: We note that sPNC is very sensitive to syn-

chronization, which may be an obstacle in practice: as sPNC

relies on the linearity of the codebook by decoding the sum

codewords transmitted by the two terminals, perfect symbol-

synchronization is required. Using a cyclic codebook allows to

support small synchronization skews, at the price of a loss in

performance which grows with the skew size. The performance

of the DF and CF strategies, on the other hand, is invariant to

synchronization and hence may be a better candidate in certain

real-world communication scenarios.

C. Communication Schemes in the Asymmetric Setting

We briefly recall generalizations beyond the symmetric

setting. The cut-set outer-region is given by all rate-pairs

(R1, R2) ∈ CBC, satisfying:

Ri ≤ log
(

1 + |hi|
2 P
)

, i = 1, 2 .

The extension of DF is straightforward. As for CF, there

may be an advantage in using another layer, which is to

be decoded by only one of the users. Such a layer can

be combined with DF and/or a CF layer intended for both

users, in which case it will compress a refinement of the

signal received at the relay. See [7] for details and for rate

expressions.

The sPNC approach in the non-symmetric case achieves

rate-pairs (R1, R2) ∈ CBC, satisfying [9]

Ri ≤

[

log

(

|hi|
2

|h1|
2
+ |h2|

2
+ |hi|

2
P

)]+

. (8)

III. COMMUNICATION STRATEGIES FOR THE

MIMO TWO-WAY RELAY CHANNEL

In this section we consider the symmetric-rate setting (2a),

and extend the cut-set outer bound and the different schemes

of Section II to the MIMO case.

A. Channel Model

We consider a Gaussian MIMO setting, where terminal i
(i = 1, 2) has Nt;i transmit antennas and the relay has Mr

receive antennas, during the MAC phase. Denoting vectors by

boldface, the MAC channel is given by:

y = H1x1 +H2x2 + z ,

where Hi are Mr × Nt;i matrices, z is circularly-symmetric

white Gaussian noise with unit variance, and the inputs are

subject to some input covariance matrix constraints, the most

common being an individual-power constraint (constraint on

the diagonal elements of the covariance matrices) and total

power constraint (constraint on the trace of the covariance

matrices). We denote by Ki (i = 1, 2) the input covariance

matrix used by terminal i during transmission.

We assume that the number of transmit antennas at each

node Nt;i is at least as large as the number of receive antennas

Mr, and that the matrices H1 and H2 are full-rank, i.e., have

rank Mr.
4 We further assume, w.l.o.g., that the products of

the singular values, of each of the channel matrices, are equal

to 1, or equivalently that:
∣

∣

∣
HiH

†
i

∣

∣

∣
= 1 , i = 1, 2 ,

where | · | denotes the determinant.

As in the SISO case, the exact nature of the BC channel is

not material and we characterize it using its common-message

capacity Ccommon.

4For the cases in which the matrices are not full-rank or have more receive
antennas, see the treatment in [20].
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Fig. 1: Performance of different schemes in the symmetric SISO setting. The P vs. Pcommon plain is partitioned into areas

where the individual schemes (DF, CF and sPNC) are superior. Then, the performance of optimal time-sharing is compared

with the cut-set upper bound. The rounded contour lines show the difference in bits [in (a)] and ratio [in (b)] gaps, increasing

and decreasing inwardly (respectively) until the point marked by an asterisk, where the maximal difference of 0.2625 bits and

minimal ratio of 0.7877 (respectively) are reached.

B. Communication Schemes in the Symmetric-Rate Setting

The cut-set bound, in this case, is given by

RCS = min {C1, C2, Ccommon} ,

where

Ci , max
Ki

log
∣

∣

∣
I +HiKiH

†
i

∣

∣

∣
, i = 1, 2 ,

are the individual capacities of the MIMO links, and the

maximization is carried over all Ki subject to the covariance-

matrix constraints.

The achievable rate using the DF approach is equal to

CDF = min {CMAC, Ccommon} ,

where

CMAC = max
K1,K2

min
{

log
∣

∣

∣
I +H1K1H

†
1

∣

∣

∣
,

log
∣

∣

∣
I +H2K2H

†
2

∣

∣

∣
,

1

2
log
∣

∣

∣
I +H1K1H

†
1 +H2K2H

†
2

∣

∣

∣

}

,

and the maximization is carried over all admissible input co-

variance matrices K1 and K2 satisfying the power constraints.

Two independent works extended sPNC to the MIMO case,

relying on two different joint unitary matrix triangularizations.

The first, proposed by Yang et al. [13], relies on the GSVD

[14], [15]. Applying this decomposition to the effective chan-

nel matrices HiK
1/2
i , we have:5

H1K
1/2
1 = ULD1V

†
1

H2K
1/2
2 = ULD2V

†
2 ,

where U , V1 and V2 are unitary matrices, L is a lower-

triangular matrix, and D1 and D2 are diagonal matrices with

positive values satisfyingD2
1+D2

2 = I . Define L1 , LD1 and

L2 , LD2 and denote their diagonals by d
GSVD
1 , diag{L1}

and d
GSVD
2 , diag{L1}. In terms of these values, we have

the following achievable rates, which are an improved variant

of Theorem 1 in [13].

Theorem 1: For any admissible input covariance matrices,

the following symmetric rate is achievable:

RGSVD
PNC = min

{

RGSVD
PNC,1 , R

GSVD
PNC,2 , Ccommon

}

RGSVD
PNC,i =

Mr
∑

j=1

[

log

(
∣

∣dGSVD
i,j

∣

∣

2

∣

∣dGSVD
1,j

∣

∣

2
+
∣

∣dGSVD
2,j

∣

∣

2
+
∣

∣dGSVD
i,j

∣

∣

2

)]+

.

where {dGSVD
i,j } are given by the GSVD defined above.

Proof sketch: By applying V1 and V2 at encoders 1 and

2 (in addition to K
1/2
1 and K

1/2
2 ), respectively, and U † at the

decoder, we attain the effective channel matrices L1 and L2.

L1 and L2 are equal to products of the same lower-triangular

matrix and different diagonal matrices, and thus are lower-

triangular with proportional rows. This proportionality, in turn,

allows to utilize SIC. Using asymmetric sPNC (8) over the

5
K

1/2 is any matrix B satisfying BB
†
= Ki, and can be found, e.g., via

the Cholesky decomposition.



resulting channels with gains
{

dGSVD
1,j , dGSVD

2,j

}

, achieves (10).

After the decoding of each scalar stream, the coarse (shaping)

lattice is decoded over the reals, to facilitate SIC from not-yet

decoded subchannels. This is possible with arbitrarily small

error [21], allowing to recover the sum over the reals of the

two lattice codewords.

The second extension of sPNC, proposed in [16], relies on

applying the JET [17] to the effective channel matrices. The

JET of the effective channel matrices HiK
1/2
i is given by:

H1K
1/2
1 = UL1V

†
1

H2K
1/2
1 = UL2V

†
2 ,

where U , V1 and V2 are unitary matrices, and L1 and L2 are

lower-triangular with equal diagonals dJET:

d
JET , diag(L1) = diag(L2) . (12)

While [16] applies symmetric sPNC (7) to the resulting

scalar channels, in this work we generalize the result to any

symmetric scalar strategy, as follows.

Theorem 2: Let R(d, C) be an achievable symmetric rate

for the SISO TWRC (2), with MAC gains h1 = h2 = d
and common-message BC capacity C. Then, the following

symmetric rate is achievable:

RJET =

Mr
∑

j=1

R(d JET
j , Rj)

for any non-negative rates Rj satisfying
∑Mr

j=1
Rj ≤ Ccommon.

Proof sketch: By applying V1 and V2 at encoders 1 and

2 (in addition to K
1/2
1 and K

1/2
2 ), respectively, and U † at the

decoder, we attain the effective channel matrices L1 and L2.

The equal diagonals of L1 and L2 allow to cancel out their

off-diagonal elements via DPC, resulting in symmetric scalar

subchannels with gains (12). Over the resulting symmetric

scalar subchannels, a SISO TWRC strategy is used.

Substituting the symmetric scalar sPNC rates (7) we get

[16, Thm. 1] as a special case. Alternatively, DF, CF or any

time-sharing of schemes can be used.

Remark 2: While the transformation to scalar channels is

necessary for sPNC, DF and CF can also work over a vector

channel. Although the analysis and implementation may be

very complicated, it may yield some performance improve-

ment. To that end, one may apply sPNC to some of the

subchannels, and another scheme jointly over the others. In

that case, balancing diagonal values in the non-sPNC block is

not imperative; see [17] for a block version of the JET.

C. Comparison of Decompositions

The GSVD- and JET-based approaches both translate the

MIMO problem into parallel SISO ones, and both become

optimal in the limit of high SNR (assuming full-rank channel

matrices). The GSVD-based scheme also carries over to the

asymmetric case. However, we note that the JET-based scheme

has the following advantages:

1) Use of any strategy. Since the JET approach uses

DPC, any strategy can be used over the subchannels;

the decoder for each subchannel will receive an input

signal as if this were the only channel. In contrast, the

GSVD approach uses SIC, where the task of canceling

inter-channel interference is left to the relay. In order to

cancel out interference, the relay thus needs to decode.

This is the case for DF and, as Theorem 1 shows, for

sPNC as well; however, CF cannot be used.

2) Symmetric subchannels. The JET approach gives rise

to symmetric scalar channels, while GSVD gives asym-

metric ones.6 Symmetry allows for simpler schemes. Fur-

thermore, asymmetric techniques seem to have inherent

losses, since they require a trade-off between “strong”

and “weak” signals. While we do not prove that balanced

channels are always better, this seems to be the case, as

illustrated in the example below.

The different techniques are illustrated in the following

simple example.

Example 1: Consider a Gaussian MIMO TWRC with a

MAC phase comprising two parallel asymmetric channels

H1 =

(

1/4 0
0 4

)

, H2 =

(

4 0
0 1/4

)

,

and a common-message BC capacity of Ccommon = 20 bits,

where the terminals are subject to a per-antenna individual

power constraint P .

Figure 2 depicts the different achievable rates of Section III

as a function of P . We note that for the parallel channels case,

the technique of [22], which suggests to use scalar asymmetric

sPNC (8) over the scalar parallel channels, coincides with the

rate of the GSVD-based scheme of Theorem 1.

In contrast to the case of general channel matrices, in the

case of parallel channels (corresponding to diagonal channel

matrices), all the scalar asymmetric techniques of Section II-C

can be used. Nonetheless, one observes that these techniques

are inferior to their symmetric counterparts (resulting after

applying the JET). This gap is especially pronounced, if we

compare the optimum asymmetric strategy with the optimal

JET-based hybrid strategy.

Remark 3: The JET gives rise to triangular matrices with

equal diagonals between the two matrices, but that are not

constant (within each matrix), in general. However, achieving

effective constant diagonals is in fact possible, by incorporat-

ing a technique reminiscent of space–time coding; see [23] for

details. Interestingly, the achievable rates over the constant-

diagonal channels are inferior to those of the non-constant

symmetric channels; this follows from the convexity of the

logarithm.

IV. DISCUSSION

The decomposition used in Theorem 2 is of a zero-forcing

flavor. Namely, we do not allow residual interference below

the diagonal. Nevertheless, it is well known that zero-forcing

techniques suffer from noise enhancement and can therefore

6In fact, the GSVD provides the “most spread diagonal ratios” out of all
possible joint unitary matrix triangularizations of given two matrices; see [17].
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Fig. 2: Performance of the proposed strategies for Ccommon = 20 bits.

be improved by balancing between residual interference and

the physical (Gaussian) noise(see, e.g., [24]). Indeed, at low

SNR the MMSE variant of DF, achieved using MMSE V-

BLAST [25] outperforms the JET-based scheme of Theorem 2.

Constructing an MMSE variant for the proposed JET-based

scheme is more challenging and is left as future research.

In the case where there are additive interferences known at

the terminals (but not to the relay), the result of Theorem 2

still holds, as it combines naturally with dirty-paper coding.

The performance of the GSVD-based scheme of Theorem 1,

on the other hand, deteriorates (the rate goes to zero in the

extreme case of very strong interferences) as it is based on

successive cancellation of the decoded messages.
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