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The wiretap channel (WTC), introduced by Wyner [1],
is composed of a sender (“Alice”) who wishes to convey
data to a legitimate user (“Bob”), such that the eavesdropper
(“Eve”) cannot recover any information of this data. In the
multiple-input multiple-output (MIMO) Gaussian WTC, Alice
is connected to Bob and Eve bi a MIMO broadcast channel.
The capacity of this channel was found in [2]–[4].

Although the capacity of WTCs is well understood, con-
struction of practical codes is still a challange. For the scalar
Gaussian case, various approaches have been suggested. The
recent work of Tyagi and Vardy in [5] is particularly appealing,
since it uses a black-box approach: it takes any code that is
good for the ordinary (non-secrecy) AWGN channel, and turns
it into a good wiretap code using a hashing procedure.

However, assuming that we have such a code for the scalar
case, how do we extend it to the vector case? Do we need
to construct different codes for every channel matrix? In [6]
we have presented a scheme based on scalar random-binning
wiretap codes, in conjunction with a linear encoder and
a successive interference cancellation (SIC) decoder, which
approaches the MIMO wiretap capacity. In fact, it can be
described as a variant of VBLAST/GDFE schemes, used in
MIMO communication without secrecy [7], [8]. Interestingly,
the proof that Eve cannot extract information also hinges on
the optimality of the SIC procedure, this time in a “genie-
aided” setting: after Eve extracts all possible information from
a stream, the content of that stream is revealed to her for the
sake of trying to decode the next streams.

Given the optimal SIC scheme for the MIMO WTC, it is
natural to consider an explicit code construction, where the
random-binning codes are replaced by ordinary AWGN codes,
combined with some structured binning procedure, e.g. the
hashing of [5]. Indeed, in [9] we have pursued this idea. The
key point is that, as with random-binning codes, when any
good set of codes is used, a “genie-aided” Eve cannot do
better than follow a SIC process. Since at any stage of a SIC
decoding process, the decoder sees a multiple-access channel
(MAC) where the inputs are the streams that are not decoded
yet, the optimality of the scheme is intimately related to that of
a scheme for the MAC WTC [10]. However, the construction
of good MAC WTC codes is also not immediate.

Even without secrecy, not any collection of good AWGN
codes is good for any Gaussian MAC, see e.g. [11]: if
the codebooks have structure (as they should, in a practical
construction), the signal resulting from one codebook may not

look as noise in the process of decoding the other, as for some
channel coefficients the codes may align. This compromises
MAC decoding, whose optimality is needed both for the
“Bob” and “Eve” parts of the secrecy proofs. This effect can
be circumvented by a dithering process, which makes sure
that codewords play the part of “independent noise” when
decoding a different codebook. We thus define a class of
MAC WTC codes that have both good individual secrecy
properties, and mutual independence; such codebook sets can
be obtained from any set of good AWGN codebooks by a
two-stage process of hashing and then dithering. However, this
still does not yield a practical code construction, as dithering,
which must be performed modulo a shaping region to retain
optimality, inflicts decoding complexity that may be higher
than that of the original code. Thus, in order to obtain a
practical construction, we need to find a “simpler” procedure
to perturb any given set of codebooks, such that the resulting
codes are good for the MAC WTC. It is worth noting, that
such a construction will also be theoretically significant in
communication without secrecy constraints, as the problem of
alignment already arises in VBLAST/GDFR schemes.
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