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Abstract—The problem of sending a secret message over
the multiple-input multiple-output (MIMO) wiretap Gaussian
channel is studied. While the capacity of this channel is known,
it is not clear how to construct optimal coding schemes that
achieve this capacity. In this work we show how to use linear
operations along with successive interference cancellation in
order to reduce the problem to that of designing optimal codes
for the single-antenna additive-noise Gaussian wiretap channel.
Much like popular communication techniques in the absence
of an eavesdropper, the data is carried over parallel streams.
The design approach is flexible enough to allow for using the
same scalar wiretap code over all streams, or alternatively to
use different scalar wiretap codes over parallel sub-channels
without successive interference cancellation. This approach is
applicable to more involved secrecy settings, by adjusting the
linear operations performed by the encoder, and by jointly
processing several channel uses.

I. INTRODUCTION

The wiretap channel, introduced by Wyner [1], is composed

of a sender (“Alice”) who wishes to convey data to a legitimate

user (“Bob”), such that the eavesdropper (“Eve”) cannot

recover any information of this data. The capacity of this

channel [1] equals to a mutual-information(MI) difference, and

was extended to the Gaussian case in [2]. Let the channels

from Alice to Bob and Eve be given by

yB = hBx+ zB

yE = hEx+ zE ,

where hB and hE are scalar gains, zB and zE are mutually-

independent circularly-symmetric standard additive Gaussian

noises and the transmission is subject to a unit power con-

straint. Denoting [x]+ , max{0, x}, the capacity is given as

CS(hB, hE) =
[

log
(

1 + |hB|
2
)

− log
(

1 + |hE |
2
)]

+
. (1)

The vector extension of this result, the multiple-input

multiple-output (MIMO) Gaussian wiretap channel [3]–[5], is

given by

yB = HBx+ zB (2a)

yE = HEx+ zE , (2b)

where x, yB and yE are complex-valued vectors with dimen-

sions of the number of antennas in the terminals of Alice,

Bob and Eve, denoted by NA, NB , and NE , respectively.

The channel matrices HB and HE have the corresponding

dimensions. The additive noise vectors zB and zE are mu-

tually independent, i.i.d., circularly-symmetric Gaussian with

unit element variance. Finally, the transmission is subject to

a total (over all antennas) unit power constraint. The capacity

of this channel is given by:

CS(HB,HE) = max
K: trace{K}≤1

IS(HB,HE ,K) (3)

, max
K: trace{K}≤1

I(HB,K)− I(HE ,K) , (4)

where I(H,K) = log
∣

∣I+HKH†
∣

∣. Thus, capacity is given

by the difference of MIs to Bob and Eve, optimized over all

Gaussian channel inputs that satisfy the power constraint.

Although capacity is well understood, it is less clear how to

construct codes for wiretap channels. For the scalar Gaussian

case, various approaches have been suggested, see, e.g., [6]–

[9] and references therein. However, assuming that we have

such a code for the scalar case, how do we extend it to the

vector case? Do we need to construct different codes for every

dimension and every covariance matrix K?

A similar question is encountered already in the context

of communication over the MIMO channel without secrecy

requirements (2a). For any input covariance matrix, the MI is

given by I(HB ,K), and the capacity is the maximum over

these matrices. The MI can be decomposed as

I(HB,K) =

NA
∑

i=1

logλ2
i

where {λi} are the singular values1 of the matrix GB =
G(HB,K), where2

G(H,K) ,

(

HK1/2

I

)

. (5)

This decomposition has an operational meaning: one may

construct a singular-value decomposition (SVD) based scheme

[10] with data streams of rates Ri = logλ2
i which are encoded

and decoded separately, except for some common “signal

processing” part, independent of the code selection. Thus, the

coding problem is reduced to a scalar one, and the gap to

capacity depends on that of the scalar code.

We can apply a similar decomposition to the mutual-

information difference (4). Namely

1Throughout the paper, the singular values of a matrix are indexed in non-
decreasing order.

2K1/2 is the principal square root of the Hermitian positive-semidefinite
matrix K, which may be found via the Cholesky decomposition. However, it
may be replaced, w.l.o.g., by any matrix B satisfying: BB†

= K.



IS (HB,HE ,K) =

NA
∑

i=1

[

log γ2
i

]

+
,

where {γi} are the ratios of singular values of GB and

GE = G(HE ,K) (5).3 But does this decomposition imply

a scheme? This is not trivial, since (as we show in the sequel)

the resulting eavesdropper measurement vector yB contains

dependent components, each one in general being a function

of all of the data streams. In principle, then, Eve could

obtain information at least about some of the sub-streams.

Indeed, facing that problem, prior work [3] suggested a scheme

where yE contains independent functions of the different sub-

streams; however, the scheme is optimal only in the high

signal-to-noise ratio (SNR) limit.

In this work we present schemes based on per-stream

wiretap codes that allow to achieve the capacity of the MIMO

wiretap channel. We start by reviewing the capacity-achieving

schemes for communication over single-user MIMO channels,

in Section II. In Section III we show how to modify the scheme

of [3] such that Eve receives the streams independently, yet

optimality is maintained at general SNR. However, maintain-

ing orthogonality may not be desirable, as it consumes all of

the degrees of freedom offered by the channel. For this, we

prove an achievable secrecy region of superposition coding

over any memoryless channel in Section IV, which allows

more flexibility for the Gaussian MIMO setting, and is used in

Section V for the MIMO Gaussian case, proving the optimality

of a general scheme which presents to Eve non-orthogonal

sub-channels. Finally, in Section VI we discuss various secrecy

network settings allowed by this general framework.

II. SCALAR TRANSMISSION OVER MIMO CHANNELS

In this section we briefly review the connection between ma-

trix decompositions and scalar transmission schemes, without

secrecy requirements. For a more thorough account, the reader

is referred to [11], [12]. Consider the channel (2a). Construct

the augmented matrix GB (5) and choose some unitary matrix

V (the considerations for choosing V will become clear later).

Apply the QR decomposition:

GBV = UBTB

where UB is unitary and TB is upper-triangular. Now let x̃

be a vector of standard Gaussian variables, and set

x = K1/2Vx̃ . (6)

Denote by ŨB the sub-matrix consisting of the upper-left

NB ×NA block of UB , define T̃ = Ũ
†

BK
1/2V, and let

ỹB = Ũ
†

ByB = Ũ
†

BK
1/2Vx̃+ Ũ

†

BzB = T̃x̃+ z̃B . (7)

Since ŨB is not unitary, the statistics of z̃ , Ũ
†

Bz differ from

those of z, and its covariance matrix is given by Kz̃ , ŨBŨ
†

B .

Now, for i = 1, . . . , NA, define

3It may look surprising that the individual SVDs of GB and GE are
aligned. In fact, a joint decomposition of HB and HE is implicit in the optimal
choice of K, which appears in GB and GE . See Remark 3 in Section III.

y′B;i = ỹB;i −

NA
∑

ℓ=i+1

T̃i,ℓx̃ℓ

= T̃i,ix̃i +

i−1
∑

ℓ=1

T̃i,ℓx̃ℓ + z̃i , T̃i,ix̃i + zeffi .

(8)

In this scalar channel from x̃i to y′B;i, we see other x̃ℓ

as “interference”, z̃i — as “noise”, and their sum zeffi —

as “effective noise”. The resulting signal-to-interference-and-

noise ratio (SINR) is given by:

Si ,
(T̃i,i)

2

Kzeff;i,i

,
(T̃i,i)

2

Kz̃;i,i +
i−1
∑

ℓ=1

(T̃i,ℓ)2
,

where Kz̃;i,j denotes the (i, j) entry of Kz̃ . The following

key result achieves the MI (see, e.g., [11, Lemma III.3])4

I
(

x̃i;yB

∣

∣

∣
x̃NA

i+1

)

= I
(

x̃i; y
′
B;i

)

= log(1 + Si) = log(b2i ) ,
(9)

where {bi} are the diagonal values of TB ,
5 such that

NA
∑

i=1

log
(

b2i
)

=

NA
∑

i=1

log (1 + Si) = I(HB,K) , (10)

which equals the channel capacity for the optimal K.

This analysis immediately gives rise to the following

scheme, which is, in turn, a variant of the renowned

V-BLAST/GDFE scheme [13], [14].

Scheme 1 (MIMO comm. without secrecy constraint):

Offline: construct good NA scalar AWGN codes that are

good for SNRs {Si}.
6

Alice: At each time instance:

• Forms x̃, using one sample from each codebook

• Transmits x according to (6): x = K1/2Vx̃

Bob:

• At each time instance forms ỹB according to (7):

ỹB = Ũ
†

ByB = T̃x̃+ z̃B

• The codebooks are decoded using successive interference

cancellation (SIC), from last (i = NA) to first (i = 1). As-
suming correct decoding of all codebooks i+1, . . . , NA,

Bob forms y′B;i (8): y
′
B;i = T̃i,ix̃i + zeffi .

By the analysis above, the scheme is optimal in the sense that

the sum of codebook rates can approach the channel capacity.

III. ORTHOGONALIZING EVE’S CHANNEL

In this section we present a scheme that allows to approach

the capacity of the MIMO wiretap channel (2) using any

good scalar wiretap codes. The scheme is based upon the

decomposition presented above, with the unitary V chosen

according to the SVD of Eve’s channel:

4Note that, even though z̃ has dependent components, the entries of the
effective noise z

eff, are independent.
5The diagonal of the triangular matrix resulting after applying the (canon-

ical) QR decomposition is real and non-negative.
6More generally, any number N ≥ rank{K} of scalar codebooks can be

used; see [11], [12] for details.



GE = UEDEV
† , (11)

whereDE is generalized-diagonal of dimensions (NA+NE)×
NA. Denote the diagonal values as {ei}.
The scheme we use contains parts which are identical to

parts in Scheme 1. We include these for completeness.

Scheme 2 (MIMO Communication over a wiretap channel):

Offline:

• Apply the QR decomposition to GkV = UkTk, where

k ∈ {B,E}, {bi} and {ei} are the diagonal values of TB

and TE , respectively, and ŨB is the upper-left NB×NA

sub-matrix of UB

• Construct good scalar Gaussian wiretap codes, designed

for Bob’s SNRs {b2i − 1} and Eve’s SNRs {e2i − 1}

Alice, Bob: For lack of space, we refer the reader back to

Scheme 1. They work in a similar manner, except that in the

decoding process, Bob needs to have decoders that are good

for the wiretap codes.

The optimality of Scheme 2 is stated in the next theorem.

Theorem 1: Scheme 2 achieves the secrecy capacity

CS (HB,HE), by using the optimal input covariance matrix

K of (3), V of the SVD of GE (11), and any scalar Gaussian

capacity-achieving wiretap codes that are designed for the

Bob–Eve SNR-pairs
{(

b2i − 1, e2i − 1
)}

.

Remark 1: Strong (resp. weak) secrecy of the scalar codes

guarantees strong (resp. weak) secrecy of the full scheme.

For the proof, we shall use the following connection with

the SVD without the identity matrix:

HEK
1/2 = ŪED̄EV̄

†
,

with the diagonal elements of D̄E denoted by {di}.
Lemma 1: Define di = 0 and ei = 1 for i > NA. Define

further ΛE as the generalized diagonal matrix of dimensions

NE × NA whose diagonal is equal to
(

d1

e1
, . . . , dr

er

)

, where

r = min{NA, NE}. Then,

1) V̄ = V

2) 1 + d2i = e2i , i = 1, . . . , NA

3) ŨE = ŪE ΛE

The proof is straightforward.

Proof of Theorem 1: The total rate can approach (1)

R =

NA
∑

i=1

CS

(

√

b2i − 1,
√

e2i − 1

)

=

NA
∑

i=1

[

log
b2i
e2i

]

+

. (12)

Due to (10), this is at least the mutual-information difference

(4), thus capacity can be approached with the optimal K.

Bob can decode just as he did without secrecy; it remains

to bound the MI that Eve can gain. Let ỹE = Ũ
†

EyE as in

(7). Using Lemma 1, we now show that there is no loss in

information when applying Ũ
†

E = Λ†
EU

†
E , that is, I(x̃; ỹE) =

(x̃;yE). For this, apply first Ū †
E to yE :

Ū
†
yE = Ū

†
E(HEK

1/2V̄x̃+ zE)

= D̄Ex̃+ ŪEzE = D̄Ex̃+ z̄E ,
(13)

where z̄E , ŪEzE has the same statistics as zE . The

resulting channel is diagonal with i.i.d. noise. Since, Ū
†
E is

invertible, its application incurs no loss in information.

Next multiply (13) by the generalized diagonal matrix Λ†
E :

ỹE = ŨEyE = Λ†
EŪ

†
EyE = Λ†

ED̄Ex̃+ Λ†
Ez̄E .

The resulting NA × NA diagonal matrix Λ†
ED̄E has the

same rank as D̄E , that is, it has no effect on the SNR (or

information) of any of the parallel channels, as desired.

Hence, applying Ũ
†

E results in parallel independent Gaus-

sian scalar channels, with no loss of information. The resulting

parallel (orthogonal) AWGN channels have SNRs d2i = e2i −1,
as we assumed in constructing the scalar wiretap codes.

Remark 2: For the optimalK, either bi > ei or bi = ei = 1,
for all i, since otherwise K can be improved by allocating

power to sub-channels for which bi > ei — in contradiction

to the optimality of K. Hence, for the optimal choice of K,

the limiting operation in (12) is inactive.

Remark 3: In the celebrated SVD-based scheme for MIMO

channels of [10], the SVD plays a very different role than

in (11). It applies the SVD to the physical channel matrix

H = UDV†. The transmitted signal is then formed as

x = VΦx̃, whereΦ is a water-filling (non-unitary) matrix and

x̃ is a vector whose entries comprise the channel codebooks.

In contrast, in (11) the SVD is applied to the augmented

channel matrix Ge, which already includes the non-unitary

K1/2. Thus, there is an order reversal. However, we did not

specify how to construct the optimal K. Indeed, for Scheme 1

(without secrecy constraints) it can be obtained by SVD of the

channel matrix. However, even without secrecy constrants, if

the sum-power consraint is replaced by, e.g., individual power

consraints, it is no longer possible to obtain the optimal K by

decomposition.

IV. SUPERPOSITION CODING FOR THE WIRETAP CHANNEL

In this section we generalize our view beyond the Gaussian

setting. We consider the problem of using superposition coding

over a memoryless wiretap channel and establish an achievable

rate region. This is used in Section V to prove the optimality

of a class of schemes for the MIMO wiretap channel. In this

section, with a slight abuse of notation, we denote by boldface

letters n-length sequences, with n being the block length (in

contrast to the other parts of the paper, where boldface letters

denote spatial vectors).

Theorem 2: Let p(yB|x) and p(yE |x) be the transition dis-

tributions for the legitimate user (“Bob”) and the eavesdropper

(“Eve”), respectively, of a memoryless wiretap channel, where

x is the transmitted signal, and yB and yE are the channel

outputs to Bob and Eve, respectively. Let a superposition

coding scheme be defined by codes {x̃i : i = 1, . . . , NA} of

the respective rates and a scalar function ϕ such that

x = ϕ (x̃1, . . . , x̃NA
) . (14)

Then, for ǫ > 0, however small, and for any product distribu-

tion
∏NA

k=1 px̃k(·), there exists a scheme which achieves weak

secrecy, with the k-th codebook conveying a rate:

Rk = I(x̃k; yB|x̃
NA

k+1)− I(x̃k; yE |x̃
NA

k+1)− ǫ . (15)

Proof: Denote



R̃k , I(x̃k; yE |x̃
NA

k+1)− ǫ . (16)

For each k = 1, . . . , NA, generate a codebook Ck of

2n(Rk+R̃k) codewords, where the codebooks are independently
generated with i.i.d. with distributions p

x̃1
(·), . . . , p

x̃NA
(·).

Within each codebook, each codeword is assigned a unique

index (mk, fk) where mk ∈ {1, 2, . . . , 2nRk} and fk ∈

{1, 2, . . . , 2nR̃k}. Each codeword is selected according to the

secret message mk and a fictitious message fk drawn uni-

formly over its range. The transmitted codeword is therefore

x = ϕ (x̃1(m1, f1), . . . , x̃NA
(mNA

, fNA
)). Bob’s decoding is

based on successive decoding starting from the last message

(k = NA) and proceeding to the first (k = 1). Since

Rk + R̃k = I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

− 2ǫ < I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

, (17)

the decoding of each combined message (mk, fk) succeeds

with arbitrarily high probability, as n → ∞.

In order to satisfy the secrecy constraint, the following

condition must hold, for any ǫ̃ > 0 and large enough n:

1

n
H (m1, . . . ,mNA

|yE ,C) ≥
1

n
H(m1, . . . ,mNA

)− ǫ̃ ,

where C = {C1, . . . ,CNA
} denotes the overall collection of

the NA codebooks.

It suffices to show that for any ǫ′ > 0, and large enough n,

1

n
H(mk|yE ,m

NA

k+1,C) ≥
1

n
H(mk)− ǫ′

is satisfied for each k. Note that

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

mk

∣

∣

∣
yE , x̃

NA

k+1,C
)

= H
(

mk, x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

x̃k

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

= H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

fk

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

.

Due to (16), in our construction the eavesdropper can decode

fk with probability going to 1, given
(

mk,yE , x̃
NA

k+1,C
)

, and

hence the second term vanishes to zero. Thus, we are left with

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

− nǫ′n

= H
(

x̃
k
1

∣

∣

∣
x̃
NA

k+1,yE ,C
)

−H
(

x̃
k−1
1

∣

∣

∣
x̃
NA

k ,yE ,C
)

− nǫ′n .

Since the two equivocations are the same quantity up to an

index shift, it suffices to show that for δ1 > 0 and δ2 > 0 that

vanish with ǫ and large enough n,

k
∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)]

− δ1 (18a)

≤
1

n
H

(

x̃
k
1

∣

∣

∣
x̃
NA

k+1,yE ,C
)

(18b)

≤

k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

+ δ2 . (18c)

To establish (18b) we use the fact that the sequences x̃ℓ are

selected independently so that, for large enough n,

H
(

x̃
k
1

∣

∣

∣
x̃
NA

k+1,yE ,C
)

(19a)

=

[

k
∑

ℓ=1

H (x̃ℓ|C)

]

− I
(

x̃
k
1 ;yE

∣

∣

∣
x̃
NA

k+1,C
)

(19b)

≥

[

k
∑

ℓ=1

H (x̃ℓ|C)

]

− nI
(

x̃
k
1 ; yE

∣

∣

∣
x̃
NA

k+1

)

(19c)

≥ n
k

∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

− 3ǫ
]

(19d)

where to establish (19c) we use the fact that the channel is

memoryless, and (19d) follows from (17).

To establish (18c), we use [15, Lemma 1], by substituting:

•S =

k
∑

ℓ=1

(

Rℓ + R̃ℓ

)

• u = x̃
NA

k+1

• v = x̃
k
1 • z = yE

•L , (mk
1 , f

k
1 ) ∈ [1, 2nS ]

The conditions for the lemma hold since

H
(

x̃
k
1

∣

∣

∣
x̃
NA

k+1, yE ,C
)

= H
(

L
∣

∣

∣
x̃
NA

k+1, yE ,C
)

,

S =

k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− 2ǫ > I
(

x̃
k
1 ; yE

∣

∣

∣
x̃
NA

k+1

)

+ δ

where the last step follows from the fact that Rℓ > 0 for each

ℓ (for small enough ǫ and δ, and sufficiently large n), else
sub-channel ℓ is not used.

V. GENERAL MULTI-STREAM SCHEME

In this section we specialize the results of Section IV to

the wiretap MIMO channel. This allows us to generalize

Scheme 2 to transmission that is not necessarily orthogonal

over Eve’s channel. Specifically, in Section V-A we show that

the secrecy capacity can be achieved using any unitary matrix

V at the encoder. The resulting family of schemes includes

two important special cases, discussed in Section V-B.

A. Secrecy Constraint Proof

Theorem 3: For the optimal covariance matrix K and any

unitary V, there exist scalar codebooks s.t. Scheme 2 ap-

proaches the secrecy capacity CS(HB,HE).
Proof: We specialize the general superposition coding

framework of Theorem 2 to the linear encoder structure. Use

x = ϕ (x̃1, . . . , x̃NA
) = K1/2Vx̃ ,

in (14), where the vector x̃ is composed of one symbol from

each codebook: x̃ = (x̃1, . . . , x̃k)
T .7

Each codebook is a scalar Gaussian wiretap codebook of

average power 1. The achievable secrecy rate of codebook

k = 1, . . . , NA is given by (15):

Rk = I(x̃k; yB|x̃
NA

k+1)− I(x̃k; yE |x̃
NA

k+1)− ǫ (20a)

= log
(

b2k
)

− log
(

e2k
)

− ǫ = log
(

b2k/e
2
k

)

− ǫ (20b)

= I (x̃k; ỹB;k)− I (x̃k; ỹE;k)− ǫ , (20c)

7Here, in contrast to Section IV, boldface letters represent spatial vectors
and time indices are suppressed.



where (20b) is due to (9).

Thus, using the result of (10), we can approach

R =

N
∑

k=1

Rk =

N
∑

k=1

[

log
b2k
e2k

]

+

− ǫ

which approaches the secrecy capacity for the optimal K.

Remark 4: Even though we considered a sum-power con-

straint, this scheme is readily applicable for other input con-

straints as well, e.g., an input covariance constraint or individ-

ual power constraints, by using the optimal matrix K resulting

from the optimization for the specific input constraint.

B. Important Special Cases

We now present “special” choices of V. Beyond performing

SVD with respect to Eve’s channel as done in Section III

which yields an easy secrecy proof, the following choices yield

practical advantages.

1) Avoiding SIC: Performing SIC adds complexity to the

decoder, as well as potential error propagation. We can avoid

this by applying the SVD to Bob’s channel, as opposed to

Eve’s one as done in Section III. That is, choose V s.t.

GB = UBDBV
† .

As happens with Eve in Section III, Bob obtains a diagonal

channel, where each sub-stream can be decoded independently.

2) Avoiding individual bit-loading: When using (non-

secret) communication schemes based on SVD or QR, as in

Scheme 1, the effective sub-channel gains {bi} are different in

general. This requires, in turn, a bit-loading mechanism and

the design of codes of different rates, matching these gains. An

elegant way to avoid this was proposed in [11], [16]. Instead

of designing a diagonal matrix, using unitary operations,

a triangular form with a constant diagonal is attained, the

constant value on the diagonal being equal to the geometric

mean of the singular values. Thus, this decomposition is called

“geometric mean decomposition” or GMD in [11] (QRS in

[16]). The constant diagonal suggests that bit-loading can

be avoided altogether and that the codewords sent over the

resulting sub-channels can be drawn from the same codebook.

In the wiretap setting, however, using the same codebook

over all the sub-channels requires a joint unitary triangular-

ization of two matrices (HB and HE) that achieves constant

diagonals for both, using the same unitary matrix V on the

right. As is shown in [17], such a decomposition, called 2-

GMD, does not exist in general. Nevertheless, a nearly-optimal

scheme, that processes several adjacent channel uses together

(reminiscent of space–time coding structures), allows to ap-

proach this result. If N0 channel uses are processed together,

the rate efficiency of the scheme is at least (N0−NA+1)/NA.

VI. APPLICATION TO OTHER SECRECY SETTINGS

Scheme 2 can serve as a basis for constructing capacity-

achieving scalar schemes for more complex secrecy scenarios,

such as the Gaussian MIMO broadcast channel with confiden-

tial messages [18], the compound legitimate-user compound

eavesdropper Gaussian MIMO wiretap channel [19], and the

Gaussian MIMO two-level wiretap channel [20]. These sce-

narios can be also generalized, in a straightforward manner,

to the case where an additional common message needs to be

conveyed to all the users, as is explained in [12], [17]. Finally,

note that a dirty-paper coding variant of Scheme 2 can be

constructed, which also achieves the capacity of the Gaussian

MIMO wiretap channel (3). Interestingly, the capacity region

of the Gaussian MIMO broadcast channel with confidential

messages, is achieved both by Scheme 2, i.e. using a SIC-

based scheme, as well as by its dirty-paper coding variant.

For an extended discussion see [21].
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