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Abstract—The problem of sending a secret message over
the Gaussian multiple-input multiple-output wiretap channel is
studied. In a recent work, we have proposed a layered coding
scheme where a scalar wiretap code is used in each layer,
and successive interference cancellation (SIC) is carried at the
legitimate receiver. By a proper rate allocation across the layers,
we showed that this scheme satisfies the secrecy constraint at the
eavesdropper and achieves the secrecy capacity. However, the
existence of the scalar codes was based upon a random coding
argument. In this work we take a further step and show how
the scheme can be based upon any codes that are good for the
ordinary (non-secrecy) additive white Gaussian noise channel. As
any stage of the SIC process is equivalent to achieving a corner
point of a Gaussian multiple-access channel (MAC) capacity
region, the class of codes used needs to be good for the MAC
under SIC. Since in the secrecy analysis of our layered scheme, it
suffices at each stage to consider a genie-aided eavesdropper that
performs SIC, the coding task reduces to guaranteeing secrecy for
corner points of induced MACs to the eavesdropper. Structured
generation of such codes from ordinary ones is discussed.

I. INTRODUCTION

The wiretap channel (WTC), introduced by Wyner [1],

comprises a sender (“Alice”) who wishes to convey data to

a legitimate user (“Bob”), s.t. the eavesdropper (“Eve”) can

gain no information of this data. The solution to the Gaussian

case was given in [2]. Its vector extension to the multiple-input

multiple-output (MIMO) Gaussian WTC was given in [3]–[5].

Although capacity is well understood, it is less clear how

to construct codes for WTCs. For the scalar Gaussian case,

various approaches have been suggested, see, e.g., [6]–[8] and

references therein. The recent work of Tyagi and Vardy in [8]

is particularly appealing, since it uses a black-box approach:

it takes any code that is good for the ordinary (non-secrecy)

additive white Gaussian noise (AWGN) channel, and turns it

into a good wiretap code using an apropos hashing procedure.

However, assuming such a scalar code exists, how do

we extend it to the vector case? Do we need to construct

different codes for every channel matrix? In [9] we have

presented a scheme based on scalar random-binning wiretap

codes, in conjunction with a linear encoder and a successive

interference cancellation (SIC) decoder, that approaches the

MIMO wiretap capacity. Interestingly, the proof that Eve

cannot extract information also hinges on the optimality of the

SIC procedure, this time in a “genie-aided” setting: after Eve

extracts all possible information from a stream, the content of

that stream is revealed to her for the sake of trying to decode

the next streams. We note that at any stage of a SIC decoding

process, the decoder sees a multiple-access channel (MAC)

where the inputs are the streams that are not decoded yet.

Thus, the optimality of the scheme is intimately related to that

of a scheme for the MAC. Using a random coding argument,

we establish the existence of a secrecy-capacity achieving

codebook, where in each layer it is optimal for the genie-

aided Eve to treat the higher layers as noise. Unfortunately,

this guarantees only the existence of good scalar codes.

In this work, we use this scheme for the MIMO WTC as

a baseline. However, we replace the random scalar codes by

an explicit construction based on any ordinary AWGN codes.

While the focus in the present paper is on achieving the weak

notion of secrecy, as noted in [9], strong secrecy can also be

attained by restricting our decompositions to be of a specific

form, as will be commented later in the paper. Our framework

thereby extends the result of [8] to the vector case. Indeed,

the extension to this case is not trivial. The key point is that,

as with random-binning codes, when any good set of codes

is used, a “genie-aided” Eve cannot do better than follow a

SIC process. Hence, we focus on structured codes where SIC

is optimal for the MAC channel. However, the construction

of such is also not immediate. Not any collection of good

AWGN codes is good for any Gaussian MAC (see, e.g., [10]):

if the codebooks have structure (as they should, in practice),

the signal resulting from one code may not look as noise when

decoding the other; this compromises MAC decoding, whose

optimality is needed both for the “Bob” and “Eve” parts of the

secrecy proofs. This effect can be circumvented by a dithering

process, which makes sure that codewords play the part of

“independent noise” when decoding a different codebook. We

thus define a class of MAC WTC codes that have both good

individual secrecy properties, and mutual independence; such

codebook sets can be obtained from any set of good AWGN

codebooks by a two-stage process of hashing and dithering.

II. DEFINITIONS
A. Secrecy

Given a memoryless channel from x to yB and yE , a scheme

that achieves (ǫ, δ)-weak secrecy is defined as follows. Let

M = {1, . . . , 2nR}. The encoder is given by a (possibly

random) mapping xn = g(m), known to Alice, Bob and Eve.

The message m is assumed to be chosen uniformly over M.



Then, the scheme must satisfy:

1) There exist decoders from ynB s.t. the average error

probability in decoding m is at most δ
2) I(m; ynE) ≤ nǫ

The secrecy capacity of the channel is the supremum over

rates s.t. for any ǫ, δ > 0 there exists a secrecy scheme.

In this work we shall concentrate on a class of schemes that

we call fully recoverable. Indeed, all of the coding proofs and

techniques for the Gaussian WTC that we are aware of fall

into this category. Let F = {1, . . . , 2nR̃}. A codebook C of

rate R + R̃ is indexed by (m, f); both the codebook and the

indexing are known to Alice, Bob and Eve. Given a message

m, Alice draws a fictitious message f uniformly over F and

transmits the corresponding codeword. Bob decodes, with low

error probability, the pair (m, f), and then discards f .

B. Channels and Capacities

In the scalar Gaussian wiretap problem, the channels from

Alice to Bob and Eve are given by

yB = hBx+ zB (1a)

yE = hEx+ zE , (1b)

where hB and hE are complex scalar gains, zB and zE are

mutually-independent circularly-symmetric standard AWGNs

and the transmission is subject to a unit power constraint.

Then, the capacity is given by

CS(hB, hE) =
[

C
(

|hB|
2
)

− C
(

|hE|
2
)]

+
,

where [x]+ , max{0, x} and C (S) = log(1 + S) is the

AWGN capacity at SNR S.
The Gaussian MIMO WTC is given by

yB = HBx+ zB (2a)

yE = HEx+ zE , (2b)

where x, yB and yE are complex-valued vectors with dimen-

sions of the number of antennas in the terminals of Alice,

Bob and Eve, denoted by NA, NB , and NE , respectively.

The channel matrices HB and HE have the corresponding

dimensions. The additive noise vectors zB and zE are mu-

tually independent with i.i.d. circularly-symmetric Gaussian

elements of unit variance. Finally, the transmission is subject

to a total (over all antennas) unit power constraint. The

capacity of this channel is given by:

CS(HB,HE) , max
K: trace{K}≤1

I(HB,K)− I(HE ,K) , (3)

where I(H,K) = log
∣

∣I+HKH†
∣

∣. Thus, capacity is given

by the difference of MIs to Bob and Eve, optimized over all

Gaussian channel inputs that satisfy the power constraint.

C. Gaussian MAC Model

The N -user Gaussian MAC WTC is given by

yB =

N
∑

k=1

hB;kxk + zB (4a)

yE =

N
∑

k=1

hE;kxk + zE , (4b)

where xk is the channel input of user k (k = 1, . . . , N )

subject to an average unit power constraint, and zB and zE
are circularly-symmetric AWGNs of unit power. A scheme

with rates R , (R1, . . . , RN ) is defined by (possibly random)

mappings xn
k = gk(mk) where mk ∈ Mk ,

{

1, . . . , 2nRk

}

.

Without secrecy constraints, the MAC capacity region of

(4a) is given by the convex hull of the “corner points” [11]:

S ({hB;k}) ,







R

∣

∣

∣

∣

∣

∣

Rk = C

(

|hB;k|
2

1+
∑

π(ℓ)<π(k)|hB;ℓ|
2

)

k = 1, . . . , N ; ∀π ∈ SN







(5)

where SN is the symmetric group of degree N (all possible

orderings of {1, . . . , N}). The sum-capacity of this channel,

Csum
(

{hB;k}
N
k=1

)

= C

(

N
∑

k=1

|hB;k|
2

)

,

is achieved at any corner point in S({hB;k}). We further

define the corner-points dominated region Sǫ({hB;k}):

Sǫ

(

{hB;k}
)

,

{

R

∣

∣

∣
∃r ∈ S, Rk ≤ rk − ǫ , k ∈ {1, . . . , N}

}

An (ǫ, δ)-weak secrecy scheme for the MAC WTC (4) is

defined as in the point-to-point case, with the requirements en-

forced on all the messages. We also define a fully-recoverable

scheme as the obvious extension of the single-user case, using

fictitious message sets Fk ,

{

1, . . . , 2nR̃k

}

. The capacity

region is the closure of rate points s.t. there exists a secrecy

scheme for any ǫ, δ > 0. This region is yet to be found;

nevertheless, for the Gaussian MAC (4), the superposition

secrecy sum-rate is

Rsum
S ({(hB;k, hE;k)}) = Csum ({hB;k})− Csum ({hE;k}) (6)

III. GOOD CODES FOR MAC/WTC

In this section we address coding for the Gaussian point-to-

point WTC, for the Gaussian MAC, and for the Gaussian MAC

WTC. We discuss the additional coding challenges compared

to ordinary AWGN, define classes of good codes, and present

ways to obtain such codes from ordinary AWGN codes.

A. Point-to-Point Gaussian WTC

We start with the Gaussian SISO WTC (1). Clearly, if we

use a fully recoverable scheme, the codebook C must be good

for Bob’s channel. It turns out that the additional requirement

in the following (non-secrecy) definition is sufficient.

Definition 1 (Two-level AWGN codes): A two-level AWGN

code of rates (R, R̃) and error probabilities (δ1, δ2) for the

channel pair (1) is a mapping xn = g (m, f), where m ∈ M,

f ∈ F and xn ∈ R
n, such that there exist decoders of (m, f)

from ynB , and of f from (m, ynE), with error probabilities δ1
and δ2, respectively.
Proposition 1: For any Gaussian WTC (1), let g(·, ·) be a

two-level AWGN code of rates (R, R̃) and error probabilities

(δ1, δ2) and denote ǫ̃ , C
(

|hE |
2
)

− R̃. Then, the mapping



can be used as a code for a fully-recoverable secrecy scheme,

which achieves (ǫ, δ1) secrecy, where ǫ can be made arbitrarily

small by taking small enough δ2 and ǫ̃.
Proof: The secrecy rate R of this code is indeed

1/n log |M| = R. Bob can decode (m, f) with small error

probability δ1, by definition.

The leakage rate can be bounded from below, as follows:

H (m|ynE) = I (xn;m|ynE) +H (m|xn, ynE) (7a)

= I (xn;m, ynE)− I (xn; ynE) (7b)

= H (xn)−H (f |m, ynE)− I (xn; ynE) (7c)

≥ n
(

R+ R̃
)

− nǫ2 − nC
(

|hE |
2
)

(7d)

≥ nR− nǫ2 − nǫ̃ (7e)

≥ H (m)− n (ǫ2 + ǫ̃) , (7f)

where (7c) follows from the invertibility of the mapping g and

(7d) is due to Fano’s inequality with ǫ2 vanishing with δ2.
We now describe a randomized procedure to construct two-

level good AWGN codes from any good AWGN code. Let

the base codebook C0 be some good AWGN codebook of

rate R0 satisfying R + R̃ < R0 < C
(

|hE |
2
)

. Now, for any

(m, f) ∈ M×F draw a random index θ(m, f) in 1, . . . , 2nR0 .

The average codebook is a two-level good AWGN code. Thus,

there must exist good choices of θ.
A low-complexity structured approach for constructing such

maps for discrete channels is given by two-universal hash

functions [12], [13]; it has recently been extended to the

Gaussian WTC in [8].

B. Gaussian MAC

We now consider the Gaussian MAC (4a). By time-sharing

arguments, it is enough to consider coding for the corner

points (5). The rate expression immediately gives rise to

a SIC procedure: if the yet-undecoded codebooks can be

considered as AWGN, then each codebook should be capacity

achieving for an AWGN channel. When using a random-

coding argument, indeed codebooks are drawn i.i.d. Gaussian.

But what if we want to use specific AWGN-good codebooks?

Unfortunately, in that case the process may fail due to

codebook alignment. For example, assume that (4a) gives

yB = x1 + x2 + z.

Now further assume that the two codebooks are nested lattices.

In that case (up to shaping), any possible point of x1 + x2 is

also a point of the higher-rate code, thus one codebook cannot

be decoded without the other.

The following family of codes allows to approach the corner

points. It is a relaxation of the “MAC capacity-achieving

codes” [10], since only corner points are considered.

Definition 2 (MAC-SIC codes): A set of codebooks C ,

(C1, . . . ,CN ) of ratesR , (R1, . . . , RN) is said to be an (ǫ, δ)
MAC-SIC code, if there exists a decoder of C with error prob-

ability at most δ, for any MAC s.t. R ∈ Sǫ (hB;1, . . . , hB;N).
Taking such codes with small ǫ and δ allows to approach the

MAC capacity region. Intuitively speaking, such good codes

are a collection of codes good for the AWGN channel that are

sufficiently different, such that no MAC gains can align them.

Thus, they can be constructed from any individual AWGN-

good codes by introducing proper inter-codebook randomiza-

tion. For example, using a modulo-lattice operation in conjunc-

tion with subtractive random dither, each codebook becomes

(for the purpose of SIC) an independent noise, distributed uni-

formly over the lattice cell; in the high-dimensional limit this

noise is close to Gaussian, and the gap at any finite dimension

can be quantified. In practice, simpler randomization such as

multiplicative phase dithering, or interleaving, suffice.

C. Gaussian MAC WTC

We now turn to the MAC WTC (4). When coding for this

channel, we should consider both two-level and alignment

issues; thus we define codes that combine the properties of

two-level AWGN codes of Definition 1 with the MAC-SIC

codes of Definition 2.

Definition 3 (Two-level MAC-SIC codes): Define

Mk = {1, . . . , 2nRk} and Fk = {1, . . . , 2nR̃k}, for

k = 1, . . . , N . Two-level MAC-SIC codes, of rate-pairs
{

(Rk, R̃k)
∣

∣

∣
k = 1, . . . , N

}

, with parameters (ǫ, δ1, δ2) are

mappings xn
k = gk(mk, fk), where mk ∈ Mk, fk ∈ Fk and

xn ∈ R
n, such that:

1) MAC-SIC: There exist decoders of {(mk, fk)} from ynB ,
with error probability at most δ1, provided that (R1 +
R̃1, . . . , RNA

+ R̃N ) ∈ Sǫ (hB;1, . . . , hB;N )
2) Two-level: There exist decoders of {fk} from

({mk}, y
n
E), with error probability at most δ2, provided

that (R̃1, . . . , R̃N) ∈ Sǫ (hE;1, . . . , hE;N)

Proposition 2: Two-level MAC-SIC codes with R and

R̃ approaching (any) corner points in S ({hB;k}) and

S ({hE;k}), respectively, with δ1, δ2, ǫ → 0, allow to approach

the superposition sum-rate (6).

The proof of Proposition 2 is a straightforward adaptation

of the proof of Proposition 1.

A key property of these codes that we shall need for MIMO

analysis, is the following.

Lemma 1: Let {xn
k} be two-level MAC-SIC codes with

parameters (ǫ, δ1, δ2). Let y
n
E be the output of the MAC (4b),

with coefficients {hE;k} s.t.

∃r ∈ S
(

{hE;k}
N
k=1

)

:
{

R̃k ≥ rk − ǫ , ∀ k = 1, . . . , N
}

(8)

Then,

h
(

ynE

∣

∣

∣
{mk}

N
k=1

)

≥ n log

(

πe

[

1 +

N
∑

k=1

|hE;k|
2

])

− nǫ2

where ǫ2 goes to zero for ǫ, δ2 → 0.
This result is an extension to the two-level case of [10,

Lemma 1]. This, in turn, is stated for Gaussian codebooks.

However, as stated in [10, Theorem 3] the analysis holds for

any “MAC-capacity achieving codes”. Indeed, our MAC-SIC

definition is weaker, but suffices in the case of rate points that

satisfy the corner-point condition (8).

Two-level MAC-SIC codes can be generated from two-

level point-to-point codes (of Definition 1) by a dithering

process, the same way that MAC-SIC codes can be generated



from point-to-point codes without secrecy; see Section III-B.

Indeed, it is not hard to see that the dithering process makes

the interfering codebooks appear as noise at both code lev-

els simultaneously. Thus, two-level MAC-SIC codes can be

generated from ordinary (non-secrecy) point-to-point code via

a double-randomization process of mapping and dithering;

in practice, as explained in Sections III-A and III-B, these

processes can be made efficient.

IV. SCALAR CODES FOR MIMO CHANNELS

In this section we briefly review the connection between ma-

trix decompositions and scalar transmission schemes, without

secrecy requirements. For a more thorough account, see [14].

Consider the MIMO channel (2a), with some input covari-

ance matrix K. Construct the augmented matrix1

GB ,

(

HBK
1/2

I

)

, (9)

and choose some unitary matrix V (for considerations for

choosing V, see [9]). Apply the QR decomposition to GBV:

GBV = UBTB ,

where UB is unitary and TB is upper-triangular. Now let x̃

be a vector of standard Gaussian variables, and set

x = K1/2Vx̃ . (10)

Denote by ŨB the sub-matrix consisting of the upper-left

NB ×NA block of UB , define T̃ = Ũ
†

BK
1/2V, and let

ỹB = Ũ
†

ByB = Ũ
†

BK
1/2Vx̃+ Ũ

†

BzB = T̃x̃+ z̃B . (11)

Since ŨB is not unitary, the statistics of z̃ , Ũ
†

Bz differ from

those of z, and its covariance matrix is given by Kz̃ , ŨBŨ
†

B .

Now, for i = 1, . . . , NA, define

y′B;i = ỹB;i −

NA
∑

ℓ=i+1

T̃i,ℓx̃ℓ

= T̃i,ix̃i +

i−1
∑

ℓ=1

T̃i,ℓx̃ℓ + z̃i , T̃i,ix̃i + zeffi . (12)

In this scalar channel from x̃i to y′B;i, we see other x̃ℓ

as “interference”, z̃i — as “noise”, and their sum zeffi —

as “effective noise”. The resulting signal-to-interference-and-

noise ratio (SINR) is given by:

Si ,
(T̃i,i)

2

Kzeff;i,i

,
(T̃i,i)

2

Kz̃;i,i +
i−1
∑

ℓ=1

(T̃i,ℓ)2
,

where Kz̃;i,j denotes the (i, j) entry of Kz̃ . The following

key result achieves the MI (see, e.g., [14, Lemma III.3])

I
(

x̃i;yB

∣

∣

∣
x̃NA

i+1

)

= I
(

x̃i; y
′
B;i

)

= log(b2i ) (13)

where {bi} are the diagonal values of TB , such that
NA
∑

i=1

log
(

b2i
)

=

NA
∑

i=1

log (1 + Si) = I(HB,K) ,

1K1/2 is any matrix B satisfying BB
†
= K.

which equals the channel capacity for the optimal K.

This gives rise to the following scheme, which is, in turn,

a variant of the renowned V-BLAST/GDFE scheme.

Scheme 1 (MIMO comm. without secrecy constraint):

Offline: construct NA scalar codes.

Alice: At each time instance:

• Forms x̃, using one sample from each codebook

• Transmits x according to (10): x = K1/2Vx̃

Bob:

• At each time instance forms ỹB according to (11).

• The codebooks are decoded using SIC, from last (i =
NA) to first (i = 1). Assuming correct decoding of all

codebooks i+ 1, . . . , NA, Bob forms y′B;i (12).

For correct decoding with high probability, we must ensure

that each stage of the SIC process succeeds with high proba-

bility. To that end, we note that at any stage we have a MAC

(12). Thus, MAC-SIC codes suffice.

Proposition 3: Scheme 1 allows to approach the MIMO

capacity, by employing Gaussian MAC-SIC codes with R

approaching S({
√

b2k − 1}) with δ, ǫ → 0.

V. CODING FOR THE MIMO WIRETAP CHANNEL

In this section we present our main result: construction of

capacity-achieving schemes for the MIMO WTC using good

ordinary AWGN codes. Specifically, Alice and Bob utilize the

V-BLAST technique presented in Section IV, where the codes

are two-level MAC-SIC codes presented in Section III-C.

Theorem 1: For any ǫ, δ > 0 and any rate below

CS(HB,HE) (3), one can construct a fully-recoverable (ǫ, δ)-
secrecy scheme using Scheme 1 with the codebooks being

two-level MAC-SIC codes as in Definition 3 of adequate rates,

with sufficiently small parameters (ǫ, δ1, δ2).
The proof hinges on the optimality of a SIC process for

a “genie-aided” Eve. That is, for any k, if Eve is given

x̃n
k+1, . . . , x̃

n
NA

, the best she can do for obtaining information

aboutmk is to perform an optimal linear projection and use the

resulting MAC. As in the analysis for the point-to-point case in

Proposition 1, the inability to extract information about the true

messages is equivalent to the ability to decode the fictitious

messages given the true ones. For that we use Lemma 1,

applied to the appropriate projection.

As the secrecy proof relies on SIC arguments, we need to

define some quantities for Eve, parallel to those used for Bob

in the previous section. Denote by T̃E channel matrix of Eve

which is the same as T̃ of (12), when using Eve’s channel

matrixHE in (9). Denote further the columns of T̃E by {tE;k}.
Similarly, define {ek} as in (13) with HB replaced by HE .

Proof: Take two-level MAC-SIC codes of rate-pairsRk =
log(b2k)− ǫ and R̃k = log(e2k)− ǫ (k = 1, . . . , NA). The proof

that Bob achieves a rate of
∑NA

k=1 Rk + R̃k is as in the non-

secret case, as the codes are in particular MAC-SIC codes.

In order to satisfy the secrecy constraint, we show that the

following condition holds for ǫT = NA · ǫ and large enough n

H (m1, . . . ,mNA
|yE) ≥ H(m1, . . . ,mNA

)− n ǫT .

It suffices to show that, for large enough n,



H(mk|yE ,mk+1, . . . ,mNA
) ≥ H(mk)− n ǫ

is satisfied for k = 1, . . . , NA. Similarly to (7a)-(7b),

H (mk|y
n
E ,mk+1, . . . ,mNA

) ≥ H
(

mk

∣

∣yn
E , x̃

n
k+1, . . . , x̃

n
NA

)

(14a)

= I
(

x̃n
k ;mk,y

n
E

∣

∣x̃n
k+1, . . . , x̃

n
NA

)

− I
(

x̃n
k ;y

n
E

∣

∣x̃n
k+1, . . . , x̃

n
NA

)

. (14b)

Thus, we are left with bounding the two terms in (14b).

Denote by t̂E;k , tE;K/ ‖tE;K‖ the unit vector in the di-

rection of tE;K , and by zk ,
〈

t̂E;k, zE

〉

the noise component

in the same direction. Denote also τk,ℓ ,
〈

t̂E;k, tE;ℓ

〉

. Then,

the first term in (14b) can be bounded from below as

I
(

x̃n
k ;mk,y

n
E

∣

∣x̃n
k+1, . . . , x̃

n
NA

)

≥ I
(

x̃n
k ;mk,

〈

t̂E;k,y
n
E

〉∣

∣x̃n
k+1, . . . , x̃

n
NA

)

(15a)

= I

(

x̃n
k ;mk,

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

)

(15b)

= I (x̃n
k ;mk) + I

(

x̃n
k ;

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

∣

∣

∣

∣

∣

mk

)

(15c)

= H (mk) + h

(

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

∣

∣

∣

∣

∣

mk

)

− h

(

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

∣

∣

∣

∣

∣

mk, x̃
n
k

)

(15d)

≥ n

[

log

(

b2k
e2k

)

− ǫ

]

+ h

(

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

∣

∣

∣

∣

∣

{mℓ}
k
ℓ=1

)

− h

(

k−1
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

)

. (15e)

We now bound the two entropy terms. For this, denote by

χ̃n
k tuples of i.i.d. Gaussian random variables with the same

average (over n) power as of x̃n
k .

h

(

k−1
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

)

≤ h

(

k−1
∑

ℓ=1

τk,ℓχ̃
n
ℓ + zk

)

(16a)

h

(

k
∑

ℓ=1

τk,ℓx̃
n
ℓ + zk

∣

∣

∣

∣

∣

{mℓ}
k
ℓ=1

)

≥ h

(

k
∑

ℓ=1

τk,ℓχ̃
n
ℓ + zk

)

− nǫ2

(16b)

where (16a) holds since the Gaussian distribution maximizes

entropy; (16b) follows from Lemma 1 by noting that the

rates {R̃ℓ} satisfy (8) for coefficients {τℓ,ℓ}, and hence (8)

is satisfied for {τk,ℓ} which can only be smaller.

Thus, using (15) and (16), we have

I
(

x̃n
k ;mk,y

n
E

∣

∣x̃n
k+1, . . . , x̃

n
NA

)

≥ h

(

k
∑

ℓ=1

τk,ℓχ̃
n
ℓ + zk

)

− h

(

k−1
∑

ℓ=1

τk,ℓχ̃
n
ℓ + zk

)

+ n
[

log
(

(b2k/e
2
k)
)

− ǫ
]

− nǫ2 (17a)

= n

[

log

(

b2k
e2k

)

− ǫ− ǫ2

]

+ I

(

χ̃n
k ;

k
∑

ℓ=1

τk,ℓχ̃
n
ℓ + zk

)

(17b)

= n log
(

b2k
)

− n (ǫ+ ǫ2) , (17c)

where (17c) follows from the definition of ek.
We are left now with bounding from the above the second

term in (14b), which is equal, in turn, to

I
(

x̃n
k ;y

n
E

∣

∣x̃n
k+1, . . . , x̃

n
NA

)

= I

(

x̃n
k ;

k
∑

ℓ=1

tE;ℓx̃
n
ℓ + zE

)

.

Lemma 2: For k = 1, . . . , NA:

I

(

χ̃n
k ;

k
∑

ℓ=1

tE;ℓχ̃
n
ℓ + zE

)

− nǫ ≤ I

(

x̃n
k ;

k
∑

ℓ=1

tE;ℓx̃
n
ℓ + zE

)

≤ I

(

χ̃n
k ;

k
∑

ℓ=1

tE;ℓχ̃
n
ℓ + zE

)

+ nǫ .

The proof of this lemma can be found in [15]. Combining

with (14b) and (15), the proof is completed.

Remark 1 (Orthogonalizing Eve’s channel): If we choose

in Scheme 1 the unitary matrix V according to the SVD of

Eve’s channel HEK
1/2, the channel from x̃ to ỹE becomes

diagonal, see [9, Section III]. In that case, Eve receives

independent observations of the codebooks, thus the secrecy

proof simplifies considerably. Furthermore, if the individual

codebooks yield strong secrecy, the MIMO scheme will auto-

matically have the same property. Indeed, strong-secrecy codes

for the AWGN can be constructed, e.g. by the method of [8].
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