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Abstract— A long-standing question in coding theory is
whether code ensembles having a low-density parity check
(LDPC) matrix can attain capacity under belief propagation (BP)
decoding. An affirmative answer to this problem was recently
given by the special class of spatially-coupled LDPC ensemble.
In this work, we provide a simple derivation of a different
LDPC ensemble that approaches capacity under BP decoding,
following the classical approach of serial concatenation.This
LDPC ensemble is constructed by concatenating a high-rate
outer LDPC code with an inner random convolutional one.
The analysis of the concatenated-coding framework takes a
particularly simple — “black box” — form. Specifically, the
joint effect of the particular inner code and the binary-input
memoryless symmetric-output (BMS) channel is encapsulated in
a single parameter — the Bhattacharyya parameter, which is
maximal for the binary symmetric channel (BSC). This implies
that an inner convolutional code designed for the BSC achieves
good performance over all BMS channels with a given capacity.
Moreover, the performance guarantee of the outer LDPC code
under BP decoding is shown to be dictated solely by this pa-
rameter. This, in turn, implies that the overall concatenated code
approaches capacity under BP decoding for all BMS channels
with a given capacity, simultaneously.

Index Terms—LDPC codes, convolutional codes, concatenated
codes, belief propagation, Bhattacharyya parameter, error expo-
nent, compound channel, BMS channels.

I. I NTRODUCTION

Since the early days of information theory, a great deal
of the effort has been dedicated to finding low-complexity
schemes that are able to approach capacity. A major step
towards this goal was made by Forney [1], who proposed using
concatenated codes, taking theinner code to be a random
convolutional code and theouter code — a Reed–Solomon
(RS) one. Due to the polynomial decoding complexity of
RS codes, the resulting code has complexity that grows
polynomially with the code blocklength, while achieving an
exponentially decaying error probability. In order to achieve
a similar result but with linear complexity, Guruswami and
Indyk (GI) proposed to replace the outer RS code, which
is a maximum distance separable (MDS) code, with a near-
MDS code [2] which they devised, that has linear decoding
complexity and is based upon expander codes. Similar results
were also obtained by Barg and Zémor [3], [4].

While the latter works have established that approaching
capacity with low complexity is in a theoretical sense possible,
these constructions are generally not considered practical and

hence the search for practical codes (and decoderes) remains
an active area.

The goal of achieving capacity over the binary erasure
channel (BEC) with practical coding and decoding has been
met by irregular low-density parity check (LDPC) codes under
belief propagation (BP) decoding (which has linear decoding
complexity), originally in the works of Lubyet al. [5] and
Shokrollahi [6].

Recent approaches for constructing capacity-achieving low-
complexity codes over general binary-input memoryless output
symmetric (BMS) channels include polar codes, conceived
by Arıkan [7], and spatially-coupled low-density parity check
(LDPC) codes, that were introduced by Felström and Zi-
gangirov [8]. Polar codes have encoding and decoding com-
plexities of the order ofO(N logN) and sub-exponential
decay of the error probability inN , whereN is the block-
length. Spatially-coupled LDPC codes have been shown, by
Kudekaret al. [9], to approach capacity under BP decoding
(which has linear complexity).

The latter answers the question of whether codes having an
LDPC matrix representation can achieve capacity under BP
decoding for general BMS channels.

Another attractive property that spatially-coupled codespos-
sess isuniversality. That is, they have been shown to achieve
capacity simultaneously (compound channel setting [10]–[12])
for the class of BMS channels with a given capacity. We
note, however, that even though the concatenated codes of
Forney and GI were designed for the binary-symmetric chan-
nel (BSC), they attain capacity over the whole class of BMS
channels simultaneously. This easily follows by noting that the
inner codes used in the analysis of the concatenated schemes
are random, and hence the recent results in [13] that show that
the error exponent of the BSC is the lower envelope (pointwise
infimum) of the error exponents of all possible BMS channels
with a given capacity,1 readily apply. Indeed, the BEC and the
BSC serve as extremes for the class of BMS channels in terms
of many properties (see [13], [14] and references therein),and
their extremal properties shall be used in the proposed design
and its analysis.

In this work, we provide a simple derivation of an LDPC
ensemble, which is different from the spatially-coupled en-

1As will be shown in Section III, a straightforward consequence of the
results of [13] is that the BSC has the worst (pointwise) error exponent also
for randomconvolutional codes.
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Fig. 1. Code concatenation.

semble, that universally approaches capacity for all BMS
channels with a given capacity under BP decoding.2 This
LDPC ensemble is constructed by concatenating a high-rate
outer LDPC code with an inner random convolutional one.
The analysis of the concatenated-coding framework takes a
particularly simple — “black box” — form. Specifically, the
joint effect of the particular inner code and the BMS channel
is encapsulated in a single parameter — the Bhattacharyya
parameter. Coupled with the elegant result by Khandekar and
McEliece [15], [16], the performance guarantee of an LDPC
code under BP decoding is dictated solely by this parameter.3

This, in turn, allows to translate the performance under BP de-
coding of LDPC codes over the BEC, to any BMS channel.We
note that, as for convolutional codes belief propagation (BCJR
algorithm [18]) amounts to (bitwise)maximum a-posteriori
decoding [19], the proposed overall scheme achieves capacity
under BP decoding. Furthermore, by invoking the extremal
properties of the binary-symmetric channel (BSC) of [13],
designing the inner convolutional code for the BSC guarantees
the universality of the scheme over the whole class of BMS
channels with a given capacity. Finally, as we shall show in the
sequel, since the outer LDPC ensemble is of high-rate, it can
be chosen to be regular, or alternatively having linearencoding
complexity (in addition to the lineardecoding complexity
implied by BP decoding) and systematic representation, by
incorporating irregular repeat-accumulate (IRA) codes [16],
[20].

The rest of the paper is organized as follows. We start by
presenting an overview of concatenated codes in Section II.
We then introduce the necessary tools for the construction of
the proposed scheme in Section III. We construct a sequence
of LDPC codes that universally approach capacity under a
two-stage message-passing decoding algorithm having linear
decoding complexity, as well as under BP decoding, in Sec-
tion IV. We conclude the paper in Section V.

II. BACKGROUND: CONCATENATED SCHEMES

Concatenated codes were conceived by Forney in his Ph.D.
thesis [1]. Such codes are constructed from two base codes,
operating in tandem, as depicted in Figure 1: The informa-
tion bits are first encoded using the outer code, resulting in
codewords,4 whose entries are then used as the inputs to the

2With a slight abuse of notation, we shall refer to a sequence of LDPC
code ensembles as an LDPC code ensemble of growing length.

3A similar and earlier universality result was obtained using the expected
soft-bit parameter by Burshtein and Miller [17].

4When viewed as symbols, these codewords are referred to assupersymbols
[1].
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second inner code, possibly interleaved prior to their encoding.
Finally, the outputs of the inner code are transmitted over the
physical channel.

Decoding is carried out by reversing the process: The
physical-channel outputs are fed to the decoder of the inner
code; whose outputs (either bits/discrete symbols or “soft-
decoded” real numbers) serve as the inputs to the decoder
of the outer code. The decoder of the outer code recovers the
information bits.

Forney, in his original scheme [1], proposed to use convo-
lutional codes as the inner code and Reed–Solomon (RS) [21]
as the outer one. By properly choosing the growth rates of the
two codes, he showed that this ensemble can attain capacity
with polynomial complexity and with an error probability that
decays exponentially.

Guruswami and Indyk (GI) [2] leveraged this result by
replacing the RS codes in Forney’s scheme — which are
maximum distance separable (MDS) codes (namely codes
that achieve the Singleton bound [22]) having polynomial
decoding complexity — with near-MDS codes having linear
decoding complexity. Thus, for any gap to capacity, however
small, using an inner code with long enough (yet fixed!)
blocklength,5 such that its error probability is small enough,
and a sequence of near-MDS codes, the error probability can
be made to decay exponentially with linear complexity, with
an exponent arbitrarily close to Forney’s error exponent (for a
sufficiently large blocklength).

A frequently-used variant of the concatenation scheme in-
corporates systematic interleaving between the code layers, as
depicted in Figure 1 and described next. Denote byn andL the

5GI employ an inner block code in contrast to Forney. However,Forney uses
Gallager’s error exponent [23] forblock codes for the analysis of convolutional
codes. Thus, the results of both Forney and GI are valid for inner block and
convolutional codes alike.
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outer- and inner-code blocklengths, respectively, and byr —
the rate of the inner code. Then, the interleaver accumulates
rL consecutive outer-code codewords of lengthn, such that
they comprise the rows of anrL× n matrix. The columns of
the matrix are then fed to the inner coder, one by one, and the
output of the coder is sent over the channel. At the decoder,
the received outputs are recovered using the inner decoder.
Every n such recovered outputs of lengthrL each are then
accumulated at the de-interleaver, forming ann × rL matrix
(which corresponds to the transpose of the matrix formed at
the encoder). The columns of this matrix are then fed one
by one to the outer decoder who recovers the information
bits. This interleaving spreads adjacent errors within theinner-
code block between different outer LDPC codewords, such
that bursts of errors (stochastic process with memory) of the
inner code are translated into independent error events at the
decoding of the outer code.

In the remainder of the paper, we provide a simple deriva-
tion of an LDPC ensemble that universally approaches capac-
ity under BP decoding. This LDPC ensemble can be regarded
as a variant of the concatenated codes of Forney and GI,
with the inner code being a random time-varying and zero-
terminated convolutional code, and the outer code — an LDPC
one.

III. B UILDING BLOCKS

In this section we introduce the tools that will serve in
Section IV for obtaining the desired result.

A. Universality of Convolutional Codes

We now derive an achievable bit error rate (BER) over
the set of all BMS channels with a given capacity, using
time-varying convolutional codes. For this, we review the
results of [24, Chapter 5] on the error exponent and BER of

convolutional codes, and combine them with the recent results
of [13] on the universality of error exponents of block codes.

We use the notation and definitions of [24, Part 2] for convo-
lutional codes. A compact representation (and implementation)
of a convolutional code is via a shift register, as depicted in
Figure 3. The lengthK of the shift register is referred to as the
constraint length of the resulting convolutional code, whereas
its width b is the number of information bits entering the shift
register at each time instance. Thus, the total memory size
is equal toKb bits. At each time instance,n code bits are
generated by evaluatingn functionals over theKb memory
bits and the newb information bits. Therefore, the rate of the
code is equal to

r =
b

n

bits per channel use. In general, these functionals may change
at each time instance, resulting in atime-varying convolutional
code. If these functionals are constant in time, we shall refer
to the resulting code astime invariant.

Remark 1: The analysis in [24] considers an infinite stream
of information and resulting code bits. Nevertheless, the de-
rived bounds on the BER remain the same when terminating
the convolutional code to a finite length. That is, using an
information stream of finite length followed byK zero inputs
of width b, results in an effective finite block code. As long as
the resulting block length is larger thanKb, the bound on the
BER for infinite-length stream remains valid. This, however,
comes at the price of reduced rate due to the zero termination,
which can be made as small as desired by taking a long enough
input stream-length (and blocklength).

Denote the channel capacity byC. The following proposi-
tion is due to Viterbi and Yudkin (VY) [24, Chapter 5].

Proposition 1: The BER of a random time-varying convo-
lutional code with constraint lengthK, width b and rater < C
over a BMS channel is upper bounded by

Pb ≤
(

2b − 1
)ρ 2−K b

r
E0(ρ)

[

1− 2
−b

(

E0(ρ)
r

−ρ
)
]2 (1)

for any 0 ≤ ρ < min {1, E0(ρ)/r}, where

E0 (ρ) , − log





∑

y

[

∑

x

1

2
p (y|x)

1
1+ρ

]1+ρ




is the well-knownE0 of Gallager [23] and the logarithm is
with respect to base2.6

Note thatR0 , E0 (ρ = 1) is the cutoff rate of Gallager’s
error exponent for block codes [23]. Beneath this rate, due to
the expression in the denominator in (1), the optimization over
ρ should be carried over[0, 1], whereas above the cutoff rate,

6The circular definition of0 ≤ ρ < E0(ρ)/r means that we do not take
into consideration the cases in whichρ ≥ E0 (ρ) /r.



the optimization is restricted to the interval[0, E0(ρ)/r). Note
that E0 (ρ) encapsulates the channel law in the upper bound
expression for the BER in (1). This will allow us, in turn, to
establish universal upper bounds forE0 (ρ), and hence also
for the BER.

As the complexity per bit for convolutional codes is pro-
portional to 2Kb = 2Knr, it is meaningful to normalize
− log (Pb (ρ,K, b)) by Kn when considering the error ex-
ponent of convolutional codes. The interplay between the
asymptotics ofK and b may lead to different optimization
problems for the error exponent of the convolutional code
ensemble. For instance, at a fixed rater and fixedK, for
asymptotically largeb = nr, we get the following optimization
problem

max
0≤ρ<min

(

E0(ρ)
r

,1
)

lim
n→∞

−
log
(

P̄b (ρ,K, nr)
)

Kn
=

max
0≤ρ<min

(

E0(ρ)

r
,1
)

E0 (ρ)− ρ
r

K
.

Note that forK = 1 this optimization reduces to Gallager’s
random block-coding error exponent. On the other hand, for
fixed r andb, the optimization problem translates to

max
0≤ρ<min

(

E0(ρ)
r

,1
)

lim
K→∞

−
log
(

P̄b (ρ,K, b)
)

Kn
(2)

= max
0≤ρ<min

(

E0(ρ)

r
,1
)

E0 (ρ) .

The solution of (2) is larger or equal to Gallager’s random
block-coding error exponent.7

In the expressions above, takingρ = E0 (ρ) /r nullifies the
denominator in (1) which corresponds to a trivial upper bound
on the BER. The following resolves this issue by introducing
an additional constantǫ which can take any value within(0, 1):

EVY (r, ǫ) = max
0≤ρ≤min

(

(1−ǫ)
E0(ρ)

r
,1
)

E0 (ρ)

=

{

R0 0 ≤ r ≤ R0(1− ǫ)

E0(ρ0) R0(1− ǫ) < r ≤ C(1− ǫ)
, (3)

whereρ0 is the largest solution ofρr = (1− ǫ)E0 (ρ).
By assigningEVY (r, ǫ) of (3) in Proposition 1, the follow-

ing is attained.

Proposition 2: The BER of a random time-varying convo-
lutional code with constraint lengthK, width b and rater < C
over a BMS channel with capacityC is upper bounded by

Pb ≤
(

2b − 1
) 2−K b

r
EVY (r,ǫ)

[

1− 2−ǫ b
r
EVY (r,ǫ)

]2 , (4)

for any ǫ ∈ (0, 1).
We next show that the infimum of the error exponents of

7Note that whileEVY (r, ǫ) may be larger than Gallager’s random coding
error exponent, it scales withn, whereas Gallager’s error exponent scales with
the blocklength.

convolutional codes of the class of BMS channels with a given
capacity is bounded away from zero, and reduces to that of
the BSC. This result is based upon its parallel for block codes
of [13].

To that end, denote the compound channel,whose possible
transition distributions comprise all BMS channels with ca-
pacityC, by BMS(C); denote further the BSC with capacity
C by BSC(C). Block-code error exponents will be denoted
by a subscriptG, and the convolutional-code error exponents
of (3) — by VY; superscripts indicate to which channel these
error exponents refer.

Theorem 1 ( [13]): The error exponent of a random block
code over any channelc ∈ BMS(C) is lower bounded by the
random block-code error exponent ofBSC(C):

E
(c)
G (r) ≥ EBSC

G (r) .

Corollary 1: The (universal) error exponent of a random
block code over the compound channelBMS(C) is equal to
the random block-code error exponent over theBSC(C):

EBMS

G (r) = EBSC

G (r) .

We next connect the universal error exponent of block codes
to that of convolutional codes.

Lemma 1: For any BMS channelc ∈ BMS (C), the BER
can be upper bounded as in (4), withE(c)

VY (r, ǫ) replaced

with EBSC
G

(

r
1−ǫ

)

> 0, for 0 ≤ r < (1− ǫ)C and for any
0 < ǫ < 1.

Proof: The optimization problem in (3) and Theorem 1
give rise to the following chain of inequalities

E
(c)
VY (r, ǫ) ≥ E

(c)
G

(

r

1− ǫ

)

≥ EBSC

G

(

r

1− ǫ

)

> 0 ,

if r < C(1 − ǫ), for any ǫ ∈ (0, 1) andc ∈ BMS (c).

Similarly to Corollary 1, the following is an immediate
consequence of the randomness of the ensemble.

Corollary 2: The BER of a random time-varying convo-
lutional code over the compound channelBMS(C) is upper
bounded (universally) as in (4), withE(c)

VY (r, ǫ) replaced with

EBSC
G

(

r
1−ǫ

)

> 0, for 0 ≤ r < (1− ǫ)C and any0 < ǫ < 1:

Pb ≤
(

2b − 1
) 2−K b

r
EBSC

G ( r
1−ǫ )

[

1− 2−ǫ b
r
EBSC

G ( r
1−ǫ )

]2

, P ′
b(K, r, b, ǫ) .

Denote further

P̃ b(K, r, b) , min
ǫ∈(0,1)

P ′
b(K, r, b, ǫ) . (6)

Consequently, for fixedr < C, b and n, an arbitrarily
small BER can be achieved universally overBMS(C), for a
sufficiently large constraint lengthK.



B. Bounds on the Performance of Ensembles of LDPC Codes
via the Bhattacharyya Parameter

We now obtain performance guarantees for LDPC codes
under BP decoding over ageneral BMS channel via its
performance over the BEC. These guarantees are formulated
in Lemma 2 in terms of an upper bound on the achievable
BER after ℓ iterations; this bound is based, in turn, on the
density-evolution (DE) equations for the BEC, with the erasure
probability replaced by the Bhattacharyya parameter of the
BMS channel, and is given as part of the proof of Theorem 4.2
in [16]. We base our notation, as well as the conditions
needed for the DE analysis to hold (the tree assumption, the
concentration propertyetc.), on [25].

We state this result explicitly in the next proposition and
provide its proof for completeness.

Proposition 3: Consider a BMS channelP (y|x), where
x ∈ {0, 1}. Generate an LDPC ensemble w.r.t. variable- and
check-node edge distributionsλ (x), ρ (x) respectively, and
denote byx(ℓ) the log-likelihood ratio (LLR) of a variable-
node message in iterationℓ ≥ 0. Without loss of generality,
assume that the zero codeword is transmitted. Then, in iteration
ℓ+ 1 we have
E

[

e−
x(ℓ+1)

2

∣

∣

∣

∣

x = 0

]

≤ Z(ℓ+1) , B · λ
(

1− ρ
(

1− Z(ℓ)
))

,

(7)

whereZ(0) = B, x denotes the transmitted codeword,

x(0) , log

(

P (y|0)

P (y|1)

)

,

is the initial LLR variable node message, and

B ,
∑

y

√

P (y|0)P (y|1)

is the Bhattacharyya parameter.8

Proof: Combining equations(4.6), (4.7) of [16], we
obtain

E

[

e−
x(ℓ+1)

2

∣

∣

∣

∣

x = 0

]

≤ (8)

B · λ

{

1− ρ

(

1− E

[

e−
x(ℓ)

2

∣

∣

∣

∣

x = 0

])}

.

Now, by noting that

0 < E

[

e−
x(ℓ)

2

∣

∣

∣

∣

x = 0

]

≤ Z(ℓ) ≤ 1

it can be shown by induction, with

Z(0) = E

[

e−
x(0)

2

∣

∣

∣

∣

x = 0

]

= B

serving as the base case, that

λ
(

1− ρ
(

1− Z(ℓ)
))

≥ (9)

8The summation overy is replaced by an integral for continuous alphabet
channels.

λ

(

1− ρ

{

1− E

[

e−
x(ℓ)

2

∣

∣

∣

∣

x = 0

])}

.

Substituting (9) in (8) completes the proof.
Using Proposition 3 we obtain the following guarantee for

the BER afterℓ iterations.

Lemma 2: The BER in iterationℓ is upper bounded as

Pr
(

x(ℓ) > 0
)

≤ Z(ℓ) .

Thus, if lim
ℓ→∞

Z(ℓ) = 0, then lim
ℓ→∞

Pr
(

x(ℓ) > 0
)

= 0 as well.

Proof: Sincex(ℓ) is equal to the LLR in theℓ-th iteration,

an error occurs ife−
x(ℓ)

2 > 1. Thus, using Markov’s inequality
and (7), we attain

Pr
(

x(l) > 0
)

= Pr

(

e−
x(l)

2 > 1

)

≤ E

[

e−
x(l)

2

∣

∣

∣

∣

x = 0

]

≤ Z(ℓ) ,

as desired.
A threshold [25, Ch. 4] for the upper bound on the DE

equations is defined as the largest Bhattacharyya parameter,
B0, such that for any0 < Z(0) = B < B0 we get
limℓ→∞ Z(ℓ) = 0. In the next subsection we derive a perfor-
mance guarantee based on the existence of such a threshold,
as well as provide a proof for the existence of a threshold for
regular LDPC codes.

C. LDPC Codes Achieve Capacity Under BP Decoding over
Almost-Clean Channels

In [2] it has been shown that by considering for the
outer code an algebraic “near-MDS” code of rate approaching
1, Forney’s error exponent [1], and as a consequence also
the BSC capacity are achieved with linear complexity. The
mechanism that enables this concatenated coding scheme to
attain arbitrarily small error probability relies on the fact that
the minimal distance of the outer code grows linearly with the
block length. Therefore, if the inner code induces a transition
probability for the outer code, that is smaller than the relative
minimum distance, then the outer code error probability will
decrease as desired for increasing block length. Further, since
the rate of the outer code is nearly1, the rate penalty is
negligible.

Similarly, in our scheme we also consider an outer
LDPC/IRA code with a rate very close to1. However, the
mechanism that enables the outer code in our scheme to
reduce the error probability as desired is the existence of a
threshold for the bound on the DE equation (7). The inner code
induces a transition probability for the outer code such that the
Bhattacharyya parameterB is small enough to guarantee that
E
[

exp
{

−x(ℓ+1)/2
}∣

∣

x = 0
]

approaches zero asℓ increases.
The next lemma shows that an LDPC ensemble at rate

1− δ, for which the upper bound on the DE equation (7) has
a threshold, attains a fraction1− δ of capacity for any BMS
channel withB smaller than the threshold.



Lemma 3: Consider an ensemble of LDPC codes at rate1−
δ, where0 < δ < 1. Assume that the upper bound on the DE
equation in (7) converges to zero asℓ increases, for any0 <
B < B0. In this case the LDPC ensemble achieves a fraction
1 − δ of capacity for any BMS channel with Bhattacharyya
parameterB smaller thanB0.

Proof: The channel capacity of any BMS channel is upper
bounded by1. Based on Proposition 3 and Lemma 2, in
case the upper bound for the DE equation has a threshold at
B0, then arbitrary small error probability will be achieved for
any BMS channel for whichB < B0. Therefore, the LDPC
codes ensemble achieves at least a fraction1−δ

1 of the channel
capacity for these BMS channels.

This lemma will serve as a building block for showing
that the considered concatenated coding scheme universally
achieves capacity.

Moreover, among other desired properties, three appealing
choices are those of linearencoding complexity, systematic
codes, and regularity (of LDPC codes). The first two properties
are offered by the special class of IRA codes, introduced in
[16]. In fact, the results of Section III-B, were also introduced
in the Ph.D. thesis of Khandekar [16], and were shown to
be valid both for general LDPC codes and for IRA codes.
Achieving the desired result with regular LDPC codes is
possible for a channel with a sufficiently small Bhattacharyya
parameter, as follows.

Lemma 4: Consider any ensemble of regular LDPC codes
with variable nodes of degreedv and check nodes of degree
dc. Then, there exists a threshold for the upper bound on the
DE equation (7) for this ensemble.

Proof: For a regular ensemble of LDPC codes the upper
bound for the DE equation in iterationℓ takes the following
form (see,e.g., [25, Ch. 4]):

Z(ℓ+1) = B ·

(

1−
(

1− Z(ℓ)
)dc−1

)dv−1

. (10)

In order to show the existence of a threshold we wish to find
a certain valueB0 for which when assigningB < B0 in (10)
and also consideringZ(ℓ) ≪ 1 we get thatlimℓ→∞ Z(ℓ) = 0.
AssumingZ(ℓ) ≪ 1, (10) can be approximated via its first-
order Taylor expansion as

Z(ℓ+1) = B · (dc − 1)
dv−1

(

Z(ℓ)
)dv−1

.

Therefore, taking B < 1/ (dc − 1)
dv−1 leads to

limℓ→∞ Z(ℓ) = 0. Since Z(0) = B, consideringB that
satisfies bothB ≪ 1 and B < 1/ (dc − 1)

dv−1, leads to
lim
ℓ→∞

Z(ℓ) = 0, which proves the existence of a threshold.

IV. PUTTING IT ALL TOGETHER

We build on the results of the previous section for the
construction of a special ensemble with an LDPC matrix that
approaches capacity under BP decoding over a factor graph,
universally for the whole class of BMS channels with a given

capacity. The construction is a concatenated one, as depicted in
Figure 1, where the inner code is a convolutional code whose
constraint length is chosen according to the desired gap to
capacity, and the outer code is chosen to be an LDPC code
whose length should be taken long enough to achieve any
desired BER.

For the sake of simplicity of analysis, we consider a sub-
optimal message-passing decoding algorithm in Section IV-A,
and show that it achieves the desired result. We then argue, in
Section IV-B, that full BP decoding achieves performance at
least as good as this crude message-passing algorithm.

A. Achieving Capacity under Suboptimal Message-Passing

The concatenated code used throughout this section is
generated using the following encoder.

Algorithm 1 (Concatenated encoder):

1) Encodes the information bits using an outer LDPC coder
of lengthn.

2) Interleaves systematically the output of the LDPC coder,
by accumulatingrL outer-code words of lengthn, as
described in Section II and Figure 2.

3) Encodes the output of the interleaver using an inner zero-
terminated convolutional coder of lengthL and rater.

Remark 2: As the outer LDPC code blocklength is much
larger than that of the inner zero-terminated convolutional
code, the resulting overall code has an LDPC structure.

In this subsection we make use of the following two-stage
message-passing decoding algorithm.

Algorithm 2 (Two-stage decoder):
Inner code decoding:Calculates the LLRs of each input

bit of the inner code using the BCJR algorithm; these bits
constitute the outer LDPC coded bits.

De-interleaving: Reverses the interleaving used at the en-
coder, as described in Section II.

Outer code decoding:Applies BP decoding for the outer
LDPC code of lengthn, over the effective BMS channel
induced by the LLRs of the inner code.

Remark 3: This message-passing algorithm is not equiva-
lent to full BP decoding over the entire scheme, as will be
discussed in Section IV-B.

The following lemma states that the two-stage decoding of
Algorithm 2 universally achieves capacity with linear com-
plexity over all BMS channels with a given capacity.

Lemma 5: For any gap to capacity∆ > 0, however small,
a code ensemble of rateR = C−∆ can be constructed using
Algorithm 1, that universally achieves an arbitrarily small BER
overBMS(C) under the two-stage message-passing decoding
of Algorithm 2 with linear complexity.

Specifically, this is achieved by a convolutional code of rate
r ∈ (R,C) and a long enough constraint lengthK, such that



P̃ (K, r, b) of Corollary 2 satisfies9

0 < 2

√

P̃ (K, r, b)
[

1− P̃ (K, r, b)
]

, B0 < 1−
R

r
;

and an LDPC ensemble of rateR/r whose threshold over a
BEC is aboveB0. By taking the lengthn of this ensemble to
be large enough, an arbitrarily small BER can be achieved.

Proof: We start by showing that a random convolutional
code and an LDPC code can be generated with the desired
parameters.

As shown in [13], the Bhattacharyya parameter of any BMS
channel with a given capacity, is upper bounded by that of
the BSC of the same capacity. Moreover, the Bhattacharyya
parameter of a BSC monotonically decreases with capacity.
Therefore, the Bhattacharyya parameterB of the effective
BMS channel induced by the LLRs of the inner code, is upper
bounded by the Bhattacharyya parameter of this channel after
applying hard decoding (“slicing”) to the channel outputs.The
latter results in an effective BSC with a transition probability
that is upper bounded bỹP (K, r, b). This leads, in turn, to the
upper bound

B ≤ B0 .

By choosingK large enough,̃PB(K, r, b), and hence alsoB0,
can be made as small as desired, according to Corollary 2.

LDPC ensembles of rateR/r that have a threshold that is
larger thanB0 over the BEC are well known to exist [5], [6]
(see also [25], [16]). Proposition 3 and Lemma 2 guarantee
that these ensembles achieve a BER as small as desired over
all BMS channels with the same Bhattacharyya parameter,
simultaneously.

By concatenating such codes, as in Algorithm 1, we achieve
a code of total rateR. The decoder of Algorithm 2 first
recovers the LLRs of each input bit of the inner code, using
the BCJR algorithm. This induces an effective BMS channel
with Bhattacharyya parameterB that is upper bounded byB0.
The de-interleaving guarantees that this channel is memoryless
[1]. Lastly, decoding the LDPC code over this induced BMS
channel withB < B0, achieves the desired result.

Remark 4: L should be taken large enough such that the
loss in rate due to the zero-padding is negligible. This loss
can be absorbed in∆ and can be made arbitrarily small by
choosing a large enough, but yet finite,L.

Remark 5: As is evident from the bounds in Lemma 5,
considering an inner convolutional code that is designed for a
BSC(C) and an outer code that is designed for a BEC, suffices
to prove the universality of the scheme over the whole class
of BMS(C).

Remark 6: In the proposed scheme, the rate of the convo-
lutional code is chosen to be close to capacity, whereas the
rate of the outer LDPC code is close to 1.

9B0 is the resulting Bhattacharyya parameter of an effective BSC with
transition probabilityP̃ (K, r, b).

LDPC Var. Nodes

Conv. CodesLDPC Check Eq.

LDPC 1

LDPC 2

LDPC 3

Conv. code 1

Conv. code 2

Conv. code 3

Fig. 4. Bipartite graph representation of the concatenatedcoding scheme for
n = L = 3. The dashed squares represent the LDPC code parity check
equations. The convolutional codes are represented by the solid squares.
Finally, the circles represent the LDPC code variable nodes.

The following is a simple corollary of Lemmata 4 and 5.

Corollary 3: The result of Lemma 5 remains valid when
using aregular LDPC ensemble as the outer code in Algo-
rithm 2.

Proof: Lemma 4 shows that regular LDPC ensembles
have a threshold that is bounded away from zero. Thus,
retracing the proof of Lemma 5 and choosingB0 to be beneath
this threshold, proves the desired result with regular LDPC
code ensembles.

Some desired properties for practical implementation are
those of linear encoding complexity and systematic representa-
tion. Both can be easily achieved by replacing the outer LDPC
code in Lemma 4 with an IRA code, as the lemma remains
valid for such codes, as well.

B. Achieving Capacity under Belief Propagation Decoding

In this subsection we consider a slightly generalized variant
of the encoder of Algorithm 1: We userL independent LDPC
ensembles of the same parameters. That is, the columns in
the interleaver of Algorithm 1 are drawn from independently
generated LDPC codebooks. We note that all the results of
Section IV-A remain unchanged for this variant. This variant
allows to guarantee an extended tree assumption (formally
defined in the sequel), which is subsequently used to show
that BP decoding of the overall resulting code is at least as
good as that of the two-stage message-passing decoding of
Algorithm 2. In particular, it achieves universally the channel
capacity ofBMS(C) under BP decoding over thefactor graph
of the overall code, which results from the factor graph of the
convolutional codes and the factor graphs of the LDPC codes.

Before considering the extended tree assumption, let us
present the bipartite graph representation for our proposed
coding scheme. We userL LDPC codes, each of length



n for the outer layer, andn time-varying zero-terminated
convolutional codes each of lengthL for the inner code.10

Denote thej-th symbol of thei-th LDPC codeword byxi,j ,
where 1 ≤ i ≤ rL and 1 ≤ j ≤ n. The mapping of the
outer LDPC code variable nodes to the inner zero-terminated
convolutional codes is as follows. Symbolxi,j , 1 ≤ i ≤ rL,
is mapped to convolutional codej, i.e., the first symbol in
each LDPC code,xi,1, is mapped to the first block of the
zero-terminated convolutional codes,etc. Figure 4 presents an
example for the (bipartite) factor graph forn = rL = 3.

The following assumption will be used in the BP analysis
to follow.

Assumption 1 (Extended tree assumption): Theℓ-depth ex-
tended tree assumption states that variable nodexi,j shares
no loops with the subtrees of depthℓ spanned by each other
variable nodexk,t (with at least one ofi 6= k or j 6= t holding).

In the proposed construction, this assumption amounts to
the “regular” tree assumption (cf. [25, Ch. 3]) along with
an “extension”. The regular tree assumption states thatxi,j

shares no loop with the subtrees of depthℓ stemming from
variable nodes{xi,t|t 6= j}, which comprise with it the same
LDPC codeword. The extension to the regular tree assumption
assumes also thatxi,j shares no loop with the subtrees of
depth (ℓ − 1) stemming from variable nodes{xk,j |k 6= i},
which correspond to the same zero-terminated convolutional
codeword.

The following lemma states that the extended tree assump-
tion is satisfied for sufficiently long outer LDPC codes with
high probability, and is a simple extension of the regular tree
assumption [26].

Lemma 6: Let L be the length of the zero-terminated con-
volutional code. Then, for anyǫ

′

> 0 and ℓ > 0, we can
choose the lengthn of the LDPC ensembles to be sufficiently
large, such that theℓ-depth extended tree assumption is
satisfied with probability greater than1 − ǫ

′

over the factor
graph induced by the overall code.

Proof: The factor graph of the overall code is induced
by the factor graph of the outer LDPC codes and the factor
graph of the inner zero-terminated convolutional codes. Asthe
zero-terminated convolutional code lengthL and the number
of iterationsℓ are finite, the resulting tree has a finite number
of variable nodes, whereas the length of each of the outer
codesn can be chosen to be arbitrarily large. The proof
that the extended tree assumption holds with arbitrarily high
probability for a sufficiently largen, follows by retracing the
proof for the regular tree assumption for LDPC ensembles
(see,e.g., [25]).

Remark 7: The length of the LDPC ensemblesn needed to
satisfy theextended tree assumption with a given probability
is greater than that needed for the regular tree assumption to
hold with the same probability. Thus, the value ofn required
for the analysis of full BP to hold is greater than that needed

10Drawing n independent codewords from the same zero-terminated con-
volutional code, in the analysis to follow, yields the same results.

x1,1

x1,3 x2,1

x2,2x1,2

x1,4

x1,5

Fig. 5. The extended tree assumption. Solid lines connect symbols that take
place in the same LDPC parity check equation. Dashed lines connect symbols
that take place in the same convolutional code. The two-stage message-passing
algorithm decodes over the subtree consisting of solid circles, whereas the BP
decodes over the entire tree.

for the analysis of Algorithm 2 of Section IV-A.
We now describe the BP decoding algorithm over the overall

(bipartite) factor graph.

Algorithm 3 (Belief-propagation decoder):
Variable node: Sums all received LLR messages from

the check nodes it is connected to: LDPC check nodes,
convolutional code nodes and channel observation nodes. This
sum is then sent back to these nodes.

LDPC node: Operates as in “regular” BP decoding of an
LDPC code.

Convolutional code node: Operates as in regular BCJR
decoding with non-uniform prior, where the latter is dictated
by the messages coming from the LDPC codes.

The following lemma and theorem show that the concate-
nated LDPC ensemble achieves universally capacity under BP
decoding.

Lemma 7: Under the extended tree assumption (Assump-
tion 1), the BER achievable by Algorithm 3 is upper bounded
by the BER achievable by Algorithm 2.

Proof: Under the extended tree assumption (Assump-
tion 1), the two-stage message-passing decoding of Algo-
rithm 2 is carried over a subtree of the BP decoder (see also
the illustration in Figure 5). Since BP decoding is optimal
under the tree assumption (see,e.g., [25]), it follows that the
BER achievable by Algorithm 3 is upper bounded by the BER
achievable by Algorithm 2.

Theorem 2: For any gap from capacity∆ > 0, however
small, a code ensemble of rateR = C−∆ can be constructed
using Algorithm 1 withrL (independent) LDPC codes, that
(universally) achieves an arbitrarily small BER under the BP
decoding of Algorithm 3, overBMS(C).

Specifically, this is achieved by a convolutional code of rate
r ∈ (R,C) and a long enough constraint lengthK, such that
P̃ (K, r, b) of Corollary 2 satisfies

0 < 2

√

P̃ (K, r, b)
[

1− P̃ (K, r, b)
]

, B0 < 1−
R

r
; (11)

and LDPC ensemble of rateR/r whose threshold over a BEC
is aboveB0. By taking the lengthn of this ensemble to be



large enough, an arbitrarily small BER can be achieved.

Proof: Use Lemma 5 to establish the desired parameters
of the convolutional code for the two-stage message-passing
decoding of Algorithm 2. Now take the length of the LDPC
ensemble to be long enough such that the sum of the probabil-
ity that the extended tree assumption fails, and the BER of the
LDPC code, is smaller than the desired BER. Lemmata 5 and
7 guarantee that the BER of the overall code is lower than this
desired BER, as it can be made arbitrarily small, by choosing
large enoughn and ℓ. Finally note that, as in Lemma 5, the
rate of the overall code isR, as desired.

Corollary 4: A code as in Lemma 5 and Theorem 2 can
be devised that achieves capacity simultaneously for any
(finite) subsetS of BMS(C), for a sufficiently large constraint
lengthK, under the two-stage message-passing decoding of
Algorithm 2 or the BP decoding of Algorithm 3.

Proof: We start by generating an appropriate inner con-
volutional code. For anyε > 0, however small, defineAc as
the event that the BER of a randomly generated convolutional
code over channelc ∈ S is upper bounded by

Pb ≤ P̃ b(K, r, b)eK
b
r
ε , P̃ b(K, r, b, ε) ,

whereP̃ b was defined in (6).
Then for anyε > 0, there exists a convolutional code that

attains a BER of at most̃P b(K, r, b, ε), for all c ∈ S simul-
taneously, forK sufficiently large. We prove this by showing
that the probability that a randomly generated convolutional
code satisfies this with positive probability:

Pr

(

⋂

c∈S

Ac

)

= 1− Pr

(

⋃

c∈S

Ac

)

≥ 1−
∑

c∈S

Pr
(

Ac

)

(12a)

≥ 1− |S| e−K b
r
ε (12b)

> 0 , (12c)

whereAc denotes the complement ofAc, (12a) follows from
the union bound, (12b) follows from the Markov inequality

Pr
(

Ac

)

≤
P̃ b(K, r, b)

P̃ b(K, r, b, ε)
= e−K b

r
ε (13)

with the expected BERPb over the random-code ensemble
being upper bounded by the numerator in (13) according to
(6), and (12c) holds true for a sufficiently largeK. By taking
ε to be small enough we achieveB0 of (11).

Next, generate an LDPC code from the outer-code ensemble
proposed in the proof of Theorem 2,viz.. a long enough
ensemble, s.t. the sum of the probability that the extended tree
assumption fails and of the BER of the LDPC code is below
the desired BER of the overall code. Using theconcentration
of the BER phenomenon for LDPC codes (see,e.g., [25]),
an LDPC code with the desired BER can be generated with
high probability for a sufficiently largen. This establishes the

desired result for the two-stage message-passing decodingof
Algorithm 2.

Finally, as in the ensemble analysis, under the extended tree
assumption (which we already took into consideration when
bounding the BER), BP decoding of the overall concatenated
code as in Algorithm 3 is optimal and hence achieves a BER
which is upper bounded by that of the two-stage message-
passing decoder.

V. CONCLUSION AND EXTENSIONS

In this work, we have shown how the classical concatenated
approach allows constructing an LDPC ensemble that univer-
sally achieves capacity under BP decoding. The key elements
that were utilized are the BER extremal property of the BSC of
a random (convolutional) code and the performance guarantees
provided by the Bhattacharyya parameter of BP decoding of
LDPC codes.

Several interesting directions for further research are as
follows.

Time variance of convolutional codes.Throughout the
paper, we have made use oftime-variant convolutional codes.
Indeed, similar meaningful results for time-invariant andperi-
odically time-variant convolutional codes similar to the upper
bounds on the BER of Section III-C are not available [27],
which calls for further research.

Avoiding interleaving. For the proof of Lemma 5 and
Theorem 2 we assumed the incorporation of an interleaver.
This interleaver simplified analysis by providing effective
memoryless channels for the outer LDPC codes. However, as
in the construction the inner code is of fixed length and the
length of the outer LDPC codes goes to infinity (to achieve
an arbitrarily small BER), this interleaver is not materialand
can be dropped. This can be seen by noting that, in this
limit, according to the law of large numbers, the empiric
distribution of the LLRs within the blocklength of a single
LDPC code is close, with high probability, to their statistical
distribution,11 and since the LDPC ensembles are robust to
place permutations.

LDPC performance guarantees.In this paper, we have
used the performance guarantees offered by the Bhattacharyya
parameter, established by Khandekar and McEliece [15], [16],
coupled with the extremal properties of the BEC and the BSC.
Nevertheless, similar results were obtained by Burshtein and
Miller [17] via the expected soft-bit parameter, whereas other
parameters and analysis techniques were proposed in [28], [29]
and in references therein. These results can be applied to derive
similar universality results as well as improve the scalinglaws
of the proposed ensemble.

Replacing high-rate outer codes with fixed-rate codes.
The outer LDPC ensembles used were of a rate that ap-
proaches 1 with the decrease in the gap-to-capacity∆. This
is in contrast to spatially coupled codes, where the underlying

11This is, in fact, a finite-memory stochastic process, due to the finiteness
of the constraint length of the inner convolutional code.



regular LDPC code is of close-to-capacity rate. A simple
means allowing the outer LDPC ensemble, in our scheme,
to operate at any fixed rate is by splitting the coded bits of the
LDPC coder into two subsets, such that a subset of rate close to
1 is fed to the convolutional coder, whereas the other bypasses
the convolutional coder and is declared erased. This induces
an effective “nearly BEC”. Unfortunately, this construction
prohibits the usage ofregular LDPC ensembles. Note however,
that the locations of the injected erasures need not be random
and can be chosen to enhance the performance of the BP
decoder. Specifically, it would be interesting to investigate
whether a judicious design of the injection locations could
prevent the failure of BP decoding of regular LDPC codes
due to stopping sets; thus, attaining ML performance of the
underlying regular LDPC codes.
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