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Abstract— A long-standing question in coding theory is hence the search for practical codes (and decoderes) remain
whether code ensembles having a low-density parity check gn active area.

(LDPC) matrix can attain capacity under belief propagation (BP) The goal of achieving capacity over the binary erasure

decoding. An affirmative answer to this problem was recently - . ; .
given by the special class of spatially-coupled LDPC enserig channel (BEC) with practical coding and decoding has been

In this work, we provide a simple derivation of a different Met by irregular low-density parity check (LDPC) codes unde
LDPC ensemble that approaches capacity under BP decoding, belief propagation (BP) decoding (which has linear decgdin
following the classical approach of serial concatenationThis complexity), originally in the works of Lubyet al. [5] and
LDPC ensemble is constructed by concatenating a high-rate Shokrollahi [6].

outer LDPC code with an inner random convolutional one. Recent anproaches for constructing capacitv-achieving lo
The analysis of the concatenated-coding framework takes a Pp ucting capacity ievig

particularly simple — “black box” — form. Specifically, the ~complexity codes over general binary-input memorylespuatut
joint effect of the particular inner code and the binary-input symmetric (BMS) channels include polar codes, conceived
memoryless symmetric-output (BMS) channel is encapsulatein by Arikan [7], and spatially-coupled low-density parityecti

a single parameter — the Bhattacharyya parameter, which is (LDPC) codes, that were introduced by Felstrom and Zi-

maximal for the binary symmetric channel (BSC). This implies . . .
that an inner convolutional code designed for the BSC achims gangirov [8]. Polar codes have encoding and decoding com-

good performance over all BMS channels with a given capacity Plexities of the order ofO_(_N I_Og N) and su_b-exponential
Moreover, the performance guarantee of the outer LDPC code decay of the error probability iV, where N is the block-

under BP decoding is shown to be dictated solely by this pa- |ength. Spatially-coupled LDPC codes have been shown, by

rameter. This, in turn, implies that the overall concatenaed code k\,dekaret al [9], to approach capacity under BP decoding
approaches capacity under BP decoding for all BMS channels (which has Iir.lear, complexity)

with a given capacity, simultaneously. . )
Index Terms—LDPC codes, convolutional codes, concatenated 1 N€ latter answers the question of whether codes having an

codes, belief propagation, Bhattacharyya parameter, ermexpo- LDPC matrix representation can achieve capacity under BP
nent, compound channel, BMS channels. decoding for general BMS channels.

Another attractive property that spatially-coupled coples-
sess isuniversality. That is, they have been shown to achieve
capacity simultaneoushedmpound channel setting [10]-[12])

Since the early days of information theory, a great defdr the class of BMS channels with a given capacity. We
of the effort has been dedicated to finding low-complexityote, however, that even though the concatenated codes of
schemes that are able to approach capacity. A major stegrney and Gl were designed for the binary-symmetric chan-
towards this goal was made by Forngy [1], who proposed usingl (BSC), they attain capacity over the whole class of BMS
concatenated codes, taking timner code to be a random channels simultaneously. This easily follows by noting tha
convolutional code and theuter code — a Reed—Solomon inner codes used in the analysis of the concatenated schemes
(RS) one. Due to the polynomial decoding complexity adre random, and hence the recent resultsih [13] that shdw tha
RS codes, the resulting code has complexity that growse error exponent of the BSC is the lower envelope (poirgwis
polynomially with the code blocklength, while achieving annfimum) of the error exponents of all possible BMS channels
exponentially decaying error probability. In order to ashl@ with a given capacitﬂ,readily apply. Indeed, the BEC and the
a similar result but with linear complexity, Guruswami an®SC serve as extremes for the class of BMS channels in terms
Indyk (GI) proposed to replace the outer RS code, whiasf many properties (seé [13[, [14] and references theraimj,
is a maximum distance separable (MDS) code, with a near- their extremal properties shall be used in the proposedjdesi
MDS code [2] which they devised, that has linear decodirand its analysis.
complexity and is based upon expander codes. Similar esultIn this work, we provide a simple derivation of an LDPC
were also obtained by Barg and zZémior [3], [4]. ensemble, which is different from the spatially-coupled en

While the latter works have established that approaching _ _ _ _

As will be shown in Sectiof ]I, a straightforward conseceerof the

capacity with |0W complexny ISina theoret'(?al sense phll.ESI results of [18] is that the BSC has the worst (pointwise) reexponent also
these constructions are generally not considered praetith for randomconvolutional codes.

I. INTRODUCTION
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Fig. 1. Code concatenation.
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semble, that universally approaches capacity for all BMS

channels with a given capacity under BP decodirghis Outer-code
LDPC ensemble is constructed by concatenating a high-rateutput #3
outer LDPC code with an inner random convolutional one.
The analysis of the concatenated-coding framework takes a
particularly simple — “black box” — form. Specifically, the
joint effect of the particular inner code and the BMS channel
is encapsulated in a single parameter — the Bhattacharyyaiter-code
parameter. Coupled with the elegant result by Khandekar arpgtput #L
McEliece [15], [16], the performance guarantee of an LDPC
code under BP decoding is dictated solely by this pararEeter. Fig. 2. Interleaving process used.
This, in turn, allows to translate the performance under BP d
coding of LDPC codes over the BEC, to any BMS channel.We
note that, as for convolutional codes belief propagaticd@IB second inner code, possibly interleaved prior to their ditap
algorithm [18]) amounts to (bitwiseinaximum a-posteriori  Finally, the outputs of the inner code are transmitted oker t
decoding[[19], the proposed overall scheme achieves dgpaghysical channel.
under BP deCOding. Furthermore, by inVOking the extremal Decoding is carried out by reversing the process: The
properties of the binary-symmetric channel (BSC) lofl [13hhysical-channel outputs are fed to the decoder of the inner
designing the inner convolutional code for the BSC guaemtecode; whose outputs (either bits/discrete symbols or “soft
the universality of the scheme over the whole class of BM§ecoded” real numbers) serve as the inputs to the decoder
channels with a given capacity. Finally, as we shall showén t of the outer code. The decoder of the outer code recovers the
sequel, since the outer LDPC ensemble is of high-rate, it C@fiormation bits.
be chosen to be regular, or alternatively having liremaoding Forney, in his original schemél[1], proposed to use convo-
complexity (in addition to the lineadecoding complexity |ytional codes as the inner code and Reed-Solomon (RS) [21]
implied by BP decoding) and systematic representation, B¥ the outer one. By properly choosing the growth rates of the
incorporating irregular repeat-accumulate (IRA) codeS][1 two codes, he showed that this ensemble can attain capacity
[20]. with polynomial complexity and with an error probabilityath

The rest of the paper is organized as follows. We start I@écays exponentially.

presenting an overview of concatenated codes in Setfion Il.gruswami and Indyk (GI)[]2] leveraged this result by
We then introduce the necessary tools for the construction@pjacing the RS codes in Forney’s scheme — which are
the proposed scheme in Sectlag Ill. We construct a sequengSimum distance separable (MDS) codes (namely codes
of LDPC codes that universally approach capacity underygai achieve the Singleton bound [22]) having polynomial
two-stage message-passing decoding algorithm havingrlingecoding complexity — with near-MDS codes having linear
decoding complexity, as well as under BP decoding, in Segacoding complexity. Thus, for any gap to capacity, however

tion[[V] We conclude the paper in Sectibd V. small, using an inner code with long enough (yet fixed!)
Il. BACKGROUND: CONCATENATED SCHEMES blocklengthj such that its error probability is small enough,

c d cod ved by F i hi Phand a sequence of near-MDS codes, the error probability can
oncatenated codes were conceived by Forney in his (gg made to decay exponentially with linear complexity, with

thesis .[D]' .SUCh codes are cqnstru_cted_ from two ba;e co rst”exponent arbitrarily close to Forney’s error exponenit &
operating in tandem, as depicted in Figlile 1: The mformgl-J

tion bits are first encoded using the outer code, resulting in
codeword whose entries are then used as the inputs to tg

fficiently large blocklength).

A frequently-used variant of the concatenation scheme in-
8rporates systematic interleaving between the codedager
2with a slight abuse of notation, we shall refer to a sequerfceDC depicted in Figuré]1 and described next. Denote land L the
code ensembles as an LDPC code ensemble of growing length.

®A similar and earlier universality result was obtained gsihe expected 5GI employ an inner block code in contrast to Forney. Howeverney uses
soft-bit parameter by Burshtein and Miller{17]. Gallager’s error exponerit [23] fdrtock codes for the analysis of convolutional

4When viewed as symbols, these codewords are referredstpasymbols ~ codes. Thus, the results of both Forney and Gl are valid foeriblock and
. convolutional codes alike.



convolutional codes, and combine them with the recent tesul
of [13] on the universality of error exponents of block cades
We use the notation and definitions [of [24, Part 2] for convo-
lutional codes. A compact representation (and implemiemipat
of a convolutional code is via a shift register, as depicted i
Figure[3. The lengtti of the shift register is referred to as the
constraint length of the resulting convolutional code, relas
its width b is the number of information bits entering the shift
register at each time instance. Thus, the total memory size
is equal toKb bits. At each time instance; code bits are
generated by evaluating functionals over the/Xb memory
bits and the news information bits. Therefore, the rate of the
code is equal to

r=—
n

bits per channel use. In general, these functionals maygehan
K at each time instance, resulting itime-varying convolutional
code. If these functionals are constant in time, we shadirref
to the resulting code asme invariant.

Fig. 3. Linear convolutional encode® denotes the exclusive-OR operation.

Remark 1. The analysis in[[24] considers an infinite stream
outer- and inner-code blocklengths, respectively, and by  of information and resulting code bits. Nevertheless, the d
the rate of the inner code. Then, the interleaver accunailatézed bounds on the BER remain the same when terminating
rL consecutive outer-code codewords of lengthsuch that the convolutional code to a finite length. That is, using an
they comprise the rows of anl x n matrix. The columns of information stream of finite length followed bl zero inputs
the matrix are then fed to the inner coder, one by one, and thfewidth b, results in an effective finite block code. As long as
output of the coder is sent over the channel. At the decodtre resulting block length is larger thdtb, the bound on the
the received outputs are recovered using the inner decod®R for infinite-length stream remains valid. This, however
Every n such recovered outputs of lengtil. each are then comes at the price of reduced rate due to the zero termination
accumulated at the de-interleaver, formingrarx L matrix which can be made as small as desired by taking a long enough
(which corresponds to the transpose of the matrix formed iaput stream-length (and blocklength).
the encoder). The columns of this matrix are then fed one . . .
by one to the outer decoder who recovers the informatio.nDe.note the channel capacny 16y. The following proposi-
bits. This interleaving spreads adjacent errors withinitimer- tion is due to Viterbi and Yudkin (VY)[[24, Chapter 5].
code block between different outer LDPC codewords, suchproposition 1: The BER of a random time-varying convo-
that bursts of errors (stochastic process with memory) ef tlutional code with constraint length, width b and rater < C
inner code are translated into independent error eventseat ver a BMS channel is upper bounded by
decoding of the outer code.

_KYE
In the remainder of the paper, we provide a simple deriva- P, < (2b _ 1)P 2~ KrEole) (1)
tion of an LDPC ensemble that universally approaches capac- - . 2_()(,3%@)_,)) 2
ity under BP decoding. This LDPC ensemble can be regarded N

as a variant of the concatenated codes of Forney and
with the inner code being a random time-varying and zer
terminated convolutional code, and the outer code — an LDPC l

gglr any0 < p < min{1, Ey(p)/r}, where

14+p
1 a1
¥ gt

x

one. Ey (p) & —log Z

Y

Ill. BUILDING BLOCKS is the well-knownE, of Gallager [23] and the logarithm is

In this section we introduce the tools that will serve imvith respect to base

Sectiorll¥ for obtaining the desired result. Note thatRy = Ey (p = 1) is the cutoff rate of Gallager’s

error exponent for block codes [23]. Beneath this rate, due t
the expression in the denominatorlilh (1), the optimizatioero

We now derive an achievable bit error rate (BER) ovef should be carried oveb, 1], whereas above the cutoff rate,
the set of all BMS channels with a given capacity, using

time-varying convolutional codes. For this, we review the stne circular definition of < p < Eo(p)/r means that we do not take
results of [24, Chapter 5] on the error exponent and BER fo consideration the cases in whigh> Eq (p) /7.

A. Universality of Convolutional Codes



the optimization is restricted to the intervél Ey(p)/r). Note convolutional codes of the class of BMS channels with a given
that £y (p) encapsulates the channel law in the upper bourdpacity is bounded away from zero, and reduces to that of
expression for the BER i l(1). This will allow us, in turn, tathe BSC. This result is based upon its parallel for block sode
establish universal upper bounds f&f (p), and hence also of [13].
for the BER. To that end, denote the compound channel,whose possible
As the complexity per bit for convolutional codes is protransition distributions comprise all BMS channels with ca
portional to 250 = 2K it is meaningful to normalize pacity C, by BMS(C); denote further the BSC with capacity
—log (P, (p, K,b)) by Kn when considering the error ex-C' by BSC(C). Block-code error exponents will be denoted
ponent of convolutional codes. The interplay between thg a subscripts, and the convolutional-code error exponents
asymptotics of K’ and b may lead to different optimization of (3) — by VY; superscripts indicate to which channel these
problems for the error exponent of the convolutional codgrror exponents refer.

ensemble. For instance, at a fixed rateand fixed K, for -
asymptotically largé — nr, we get the following optimization ~ 11eorem 1 ([IL3]): The error exponent of a random block
problem code over any channele BMS(C) is lower bounded by the

_ random block-code error exponentBSC(C):
max hm — log (Pb (p’ K’ TLT)) = (c) BSC
0§p<min(E°T(p),l) n—oo Kn EG (T) > EG (T) .

max Ey (p) — pi. Corollary 1: The (universal) error exponent of a random

0§p<min(E°f(”)71) K block code over the compound chanfB¥S(C) is equal to

Note that for K’ = 1 this optimization reduces to Gallager’sthe random block-code error exponent over BEL(C):

random block-coding error exponent. On the other hand, for EEMS(T) = Egsc(r),

fixed r andb, the optimization problem translates to )
We next connect the universal error exponent of block codes

max lim _log (P, (p, K1) (2) to that of convolutional codes.

0<p<min(—E0(p) 1) K—roo Kn
= T Lemma 1: For any BMS channet € BMS (C'), the BER

= max Eo (p). can be upper bounded as il (4), wifd5 (r,¢) replaced
0<p<min(252,1) with EB5C (ﬁ) > 0, for 0 < 7 < (1—¢)C and for any
The solution of [R) is larger or equal to Gallager's random < e < 1.
block-coding error exponerit.

In the expressions above, takipg= Ey (p) /r nullifies the
denominator in[{l1) which corresponds to a trivial upper wbu
on the BER. The following resolves this issue by introducing ¢ ¢ r r
an additional constartwhich can take any value withif, 1): B (r,€) > B <:) > Eg¢ <:) >0,

Proof: The optimization problem in{3) and Theorém 1
rgive rise to the following chain of inequalities

Eyy (r,e) = (max o )EO (p) if r<C(1—¢), foranye € (0,1) andc € BMS (¢). [ |
0<p<min( (1—e)=22 1 Lo . . . .
’ Similarly to Corollary[1, the following is an immediate

_ {Ro 0<r<Ro(l—e) 3) consequence of the randomness of the ensemble.

_ < _
Eo(po) Ro(1—¢) <r<C(1—¢) Corollary 2: The BER of a random time-varying convo-

wherepy is the largest solution ofr = (1 — €) Ey (p). lutional code over the compound chan®VIS(C') is upper

By assigningEyy (7, €) of (@) in Propositiori 1L, the follow- bounded (universally) as il(4), WitE\(,ﬁ() (r,€) replaced with
ing is attained. EBSC (ﬁ) >0,for0<r<(l—¢)C andanyd <e<1:

Proposition 2: The BER of a random time-varying convo- CKEES (1)
lutional code with constraint lengti’, width b and rater < C' P,< (20 —1) 277 re i
over a BMS channel with capacity is upper bounded by B {1 _ 27e$E?;5C(1;)r

27K£Evy (r,€) A
P, < (21;_1) - () £ Py(K,rbe).
762 T,€
{1 — 27 B (o) Denote further

for anye € (0,1). Py(K,r,b) £ min PJ(K,r,be). (6)

We next show that the infimum of the error exponents of €€(0,1)

_ ~ Consequently, for fixedr < C, b and n, an arbitrarily
“Note that whileEyy (r,€) may be larger than Gallager’s random codin

error exponent, it scales with, whereas Gallager’s error exponent scales Witgr$m6_‘”_ BER can be aChle_VEd universally O\EMS(C)* for a
the blocklength. sufficiently large constraint length'.



B. Bounds on the Performance of Ensembles of LDPC Codes A (1 —p {1 _E [e#

=0 .
via the Bhattacharyya Parameter D }
We now obtain performance guarantees for LDPC codes
under BP decoding over general BMS channel via its Substituting[(P) in[(B) completes the proof. [ |
performance over the BEC. These guarantees are formulatedsing Propositioi 13 we obtain the following guarantee for
in Lemmal2 in terms of an upper bound on the achievaliee BER after/ iterations.
BER after ¢ iterations; this bound is based, in turn, on the
density-evolution (DE) equations for the BEC, with the eras
probability replaced by the Bhattacharyya parameter of the Pr (x(é) > 0) < z®
BMS channel, and is given as part of the proof of Theorem 4.2
in [16]. We base our notation, as well as the conditiorBhus, if lim Z(® = 0, then Jim Pr (z(9 > 0) = 0 as well.
needed for the DE analysis to hold (the tree assumption, the fmreo
concentration propertgic.), on [25]. Proof: Sincez¥) is equal to the LLR in thé-th iteration,
We state this result explicitly in the next proposition and@n error occurs it~ =7 > 1. Thus, using Markov’s inequality
provide its proof for completeness. and [7), we attain

Lemma 2: The BER in iteratior? is upper bounded as

Proposition 3: Consider a BMS channeP (y|z), where ! _=
x € {0,1}. Generate an LDPC ensemble w.r.t. variable- and Pr (x() - 0) =P (e t e 1)
check-node edge distributions(x), p (z) respectively, and
denote byz(®) the log-likelihood ratio (LLR) of a variable- <E [6_2
node message in iteratioh> 0. Without loss of generality,

assume that the zero codeword is transmitted. Then, iriiara S desired. u
A threshold [25, Ch. 4] for the upper bound on the DE

1waha
E e = 0] <zt A gy (1 _ (1 _ Z(f))) . equations is defined as the largest Bhattacharyya parameter

:13:0} gZW

By, such that for any0 < Z(© = B < B, we get
) limy_,oo Z) = 0. In the next subsection we derive a perfor-
where Z(®) = B, 2 denotes the transmitted codeword, mance guarantee based on the existence of such a threshold,
as well as provide a proof for the existence of a threshold for
2© 2 Jog <P (y|0)> regular LDPC codes.
P (y|1)

C. LDPC Codes Achieve Capacity Under BP Decoding over
Almost-Clean Channels

BéZ\/P(y|O)P(y|1) In [2] it has been shown that by considering for the

Yy outer code an algebraic “near-MDS” code of rate approaching
1, Forney’s error exponent][1], and as a consequence also
the BSC capacity are achieved with linear complexity. The
Proof: Combining equationg4.6), (4.7) of [16], we mechanism that enables this concatenated coding scheme to

is the initial LLR variable node message, and

is the Bhattacharyya paramﬂer.

obtain attain arbitrarily small error probability relies on thecfahat
_stern | 8 the minimal distance of the outer code grows linearly with th
Eler e =0 (®) block length. Therefore, if the inner code induces a traonsit

minimum distance, then the outer code error probability wil
decrease as desired for increasing block length. Furtimee s
the rate of the outer code is nearly the rate penalty is

probability for the outer code, that is smaller than thetieda
T = 0}) } .

20
B-/\{l—p(l—E[e_2

Now, by noting that negligible.
(0 o Similarly, in our scheme we also consider an outer
0<FE [ = 0} <z <l LDPC/IRA code with a rate very close tb. However, the

mechanism that enables the outer code in our scheme to

reduce the error probability as desired is the existence of a
threshold for the bound on the DE equatibh (7). The inner code

= 0} =B induces a transition probability for the outer code suct e
Bhattacharyya parametét is small enough to guarantee that
E [exp {—2*1D /2}|x = 0] approaches zero dsincreases.

A (1 —p (1 _ Z(l))) > (99  The next lemma shows that an LDPC ensemble at rate

1 — 4, for which the upper bound on the DE equatibh (7) has

8The summation ovey is replaced by an integral for continuous alphabe?- threShom’ attains a fraction— ¢ of capacity for any BMS
channels. channel withB smaller than the threshold.

it can be shown by induction, with

2(0)

ﬂsz%—z

serving as the base case, that



Lemma 3: Consider an ensemble of LDPC codes at dlate capacity. The construction is a concatenated one, as ddpict
§, where0 < § < 1. Assume that the upper bound on the DEigure[1, where the inner code is a convolutional code whose
equation in[(¥) converges to zero &sncreases, for an§ < constraint length is chosen according to the desired gap to
B < By. In this case the LDPC ensemble achieves a fracticapacity, and the outer code is chosen to be an LDPC code
1 — § of capacity for any BMS channel with Bhattacharyyavhose length should be taken long enough to achieve any
parameterB3 smaller thanB,. desired BER.

Proof: The channel capacity of any BMS channel is upper F_or the sake of simplicity of Qnalysis, we c.onsider a sub-
bounded byl. Based on Proposition] 3 and Lemrh 2, ir?pt'mal message-passing decoding algorithm in SeEfioA] V-

case the upper bound for the DE equation has a threshold"‘[::lfi TQ‘hOW that it achieves the de§|red re;ult. We then argue, |
By, then arbitrary small error probability will be achieved foseCt'o'ﬂIB’ that fl_J” BP decoding ach|eV(_es perfor_mance at
any BMS channel for whichB < B,. Therefore, the LDPC least as good as this crude message-passing algorithm.
codes ensemble achieves at least a fracli;eqn of the channel

capacity for these BMS channels. B A Achieving Capacity under Suboptimal Message-Passing

This lemma will serve as a building block for showing The concatenated code used throughout this section is
that the considered concatenated coding scheme uniyersglnerated using the following encoder.

achieves capacity. )
Moreover, among other desired properties, three appealing\lgorithm 1 (Concatenated encoder):

choices are those of lineancoding complexity, systematic 1) Encodes the information bits using an outer LDPC coder
codes, and regularity (of LDPC codes). The first two properti of lengthn.

are offered by the special clags of IRA codes, inFroduced ir?) Interleaves systematically the output of the LDPC coder,
[16]. In fact, the results of Sectidn 1B, were also intumed by accumulating, outer-code words of length, as
in the Ph.D. thesis of Khandekar [16], and were shown t0  yaqcribed in Sectiofilll and Figuf@ 2.

be valid both for general LDPC codes and for IRA code_s.s) Encodes the output of the interleaver using an inner zero-

Achieving the desired result with regular LDPC codes is . .
. . - terminated convolutional coder of lengthand rater.
possible for a channel with a sufficiently small Bhattaclyary

parameter, as follows. Remark 2: As the outer LDPC code blocklength is much

Lemma 4: Consider any ensemble of regular LDPC coddarger than that of the inner zero-terminated convolutiona
with variable nodes of degre&, and check nodes of degreecode, the resulting overall code has an LDPC structure.
d.. Then, there exists a threshold for the upper bound on theln this subsection we make use of the following two-stage
DE equation[{7) for this ensemble. message-passing decoding algorithm.

Proof: For a regular ensemble of LDPC codes the upper Algorithm 2 (Two-stage decoder):
bound for the DE equation in iteratichtakes the following  Inner code decoding:Calculates the LLRs of each input

form (see,eq., [25, Ch. 4]): bit of the inner code using the BCJR algorithm; these bits
g1\ du—1 constitute the outer LDPC coded bits.
zE+1) — B. <1 — (1 — Z(E)) ‘ > : (10) De-interleaving: Reverses the interleaving used at the en-
coder, as described in Sectigh II.

In order to show the existence of a threshold we wish to find Outer code decoding:Applies BP decoding for the outer
a certain valueBy for which when assignind3 < By in (I0) LDPC code of lengthn, over the effective BMS channel
and also considering® < 1 we get thatlim,_,.. Z) = 0. induced by the LLRs of the inner code.

AssumingZ®) < 1, (@Q) can be approximated via its first-

order Taylor expansion as Remark 3: This message-passing algorithm is not equiva-

lent to full BP decoding over the entire scheme, as will be
20+ — B (d, — 1) ! (Z(z))d“_l ' discussed in Sectidn TViB.

. dy—1 The following lemma states that the two-stage decoding of
Therefore, taking B < 1/(dc—1) leads 10 Ajgorithm 2 universally achieves capacity with linear com-

. é o . 0 o . .
limg— o0 200 = 0. Since 2 = B, considering B that 5 exiry over all BMS channels with a given capacity.
satisfies bothB <« 1 and B < 1/(d. —1)™ ", leads to

lim Z® =0, which proves the existence of a threshols Lemma 5: For any gap to capacith > 0, however small,
fmeo a code ensemble of rafe = C'— A can be constructed using
IV. PUTTING IT ALL TOGETHER Algorithm[d, that universally achieves an arbitrarily shBER
We build on the results of the previous section for thever BMS(C) under the two-stage message-passing decoding
construction of a special ensemble with an LDPC matrix thaf Algorithm [2 with linear complexity.
approaches capacity under BP decoding over a factor graphSpecifically, this is achieved by a convolutional code oérat
universally for the whole class of BMS channels with a given € (R, C) and a long enough constraint lenghh such that



P(K,r,b) of Corollary[2 satisfid% LDPC Var. Nodes
LDPC Check Eq. Conv. Codes
s s N R _,_---0
O<2\/P(K,r,b) {I—P(K,r,b)} L2 By<1- e
r LDPC 1 -
T
and an LDPC ensemble of rafe/r whose threshold over a mre

BEC is aboveB,. By taking the lengtm of this ensemble to
be large enough, an arbitrarily small BER can be achieved.

Conv. code 1

Proof: We start by showing that a random convolutional LDPC 2 '—L\\ Conv. code 2
code and an LDPC code can be generated with the desired E}:——"’
parameters. Tl
As shown in[13], the Bhattacharyya parameter of any BMS ~ -—————————=/>g/~ """~~~
channel with a given capacity, is upper bounded by that of ,—}:————’O
the BSC of the same capacity. Moreover, the Bhattacharyya  ppcs R Conv. code 3
parameter of a BSC monotonically decreases with capacity. I

Therefore, the Bhattacharyya parameferof the effective

EMSJhggnelﬁnduﬁed b{] the LLRs of the m?e;.COdhe’ IS u|pp§[9' 4. Bipartite graph representation of the concatenateting scheme for
ounde y the B a_ttac aryya parameter of this channel alie— ;, — 3. The dashed squares represent the LDPC code parity check

applying hard decoding (“slicing”) to the channel outpdtse equations. The convolutional codes are represented by dfie squares.

latter results in an effective BSC with a transition proliiqbi Finally, the circles represent the LDPC code variable nodes

that is upper bounded b (K, r, b). This leads, in turn, to the

bound
Hpper botn The following is a simple corollary of Lemmala 4 ahnd 5.

B < By. . .
=0 Corollary 3: The result of Lemm&]5 remains valid when

By choosingK large enoughP (K, r,b), and hence als@®,, using aregular LDPC ensemble as the outer code in Algo-
can be made as small as desired, according to Cordllary 2tithm[2.

LDPC ensembles of rat&/r that have a threshold that is
larger thanB, over the BEC are well known to exist|[5],1[6] hav

(see also[[25],[[16]). Propositidd 3 and Lemida 2 guarant?&racing the proof of Lemnid 5 and choosiBgto be beneath

that these ensembles_ achieve a BER as small as desired i rthreshold, proves the desired result with regular LDPC
all BMS channels with the same Bhattacharyya parametg&de ensembles -

simultaneously.
By concatenating such codes, as in Algorifiim 1, we achieveSome desired properties for practical implementation are
a code of total rateR. The decoder of Algorithni]2 first those of linear encoding complexity and systematic repitese
recovers the LLRs of each input bit of the inner code, usiritpn. Both can be easily achieved by replacing the outer LDPC
the BCJR algorithm. This induces an effective BMS channepde in Lemm4l4 with an IRA code, as the lemma remains
with Bhattacharyya parameté&r that is upper bounded b§,. valid for such codes, as well.
The de-interleaving guarantees that this channel is melesxy o _ _ _ _
[]. Lastly, decoding the LDPC code over this induced BM&: Achieving Capacity under Belief Propagation Decoding
channel withB < By, achieves the desired result. | In this subsection we consider a slightly generalized waria
Remark 4: L should be taken large enough such that th(«?aJc the encoder of Algorithrll1: We usel independent LDPC .
Qsembles of the same parameters. That is, the columns in

loss in rate due to the zero-padding is negligible. This Io%e interleaver of Algorithni]l1l are drawn from independently

can be absorbed i\ and can be made arbitrarily small b
choosing a large enough, but yet finite. y ygenerated LDPC codebooks. We note that all the results of
' ' Section IV-A remain unchanged for this variant. This vatian
Remark 5: As is evident from the bounds in Lemnid 5allows to guarantee an extended tree assumption (formally
considering an inner convolutional code that is designedfo defined in the sequel), which is subsequently used to show
BSC(C) and an outer code that is designed for a BEC, sufficdsat BP decoding of the overall resulting code is at least as
to prove the universality of the scheme over the whole clagsod as that of the two-stage message-passing decoding of
of BMS(C). Algorithm[2. In particular, it achieves universally the chel
Remark 6: In the proposed scheme, the rate of the Convg?pacny ofBMS(C) und_er BP decoding over tifector graph
. . ) the overall code, which results from the factor graph &f th
lutional code is chosen to be close to capacity, whereas e .
. convolutional codes and the factor graphs of the LDPC codes.
rate of the outer LDPC code is close to 1. o .
Before considering the extended tree assumption, let us
9By is the resulting Bhattacharyya parameter of an effectiveC Bth pre§ent the bipartite graph representation for our prapose
transition probabilityP(K, r, b). coding scheme. We usel LDPC codes, each of length

Proof: Lemmal4 shows that regular LDPC ensembles
e a threshold that is bounded away from zero. Thus,



n for the outer layer, anch time-varying zero-terminated @
convolutional codes each of length for the inner cod&] L

Denote thej-th symbol of thei-th LDPC codeword by, ;, N
wherel < i < rL and1 < j < n. The mapping of the @

outer LDPC code variable nodes to the inner zero-terminated

convolutional codes is as follows. Symhoj ;, 1 <1 < rL, | - PN
is mapped to convolutional codg i.e, the first symbol in !\11,2/\___/\12,2/\

each LDPC codeg; , is mapped to the first block of the
zero-terminated convolutional codess. Figure[4 presents an

; ; _ _ Fig. 5. The extended tree assumption. Solid lines conneunbels that take
example for the (blpartlte) factor graph for=rL = 3. .place in the same LDPC parity check equation. Dashed linesem symbols

The following assumption will be used in the BP analysigat take place in the same convolutional code. The twoestagssage-passing
to follow. algorithm decodes over the subtree consisting of solidesravhereas the BP

Assumption 1 (Extended tree assumption): The¢-depth ex- decodes over the entire tree.
tended tree assumption states that variable nadeshares

e e oot the anlyis of Agori@2 of Sect VA
' ] ] ] ' We now describe the BP decoding algorithm over the overall

In the proposed construquon, this assumption amOL_mts (Fﬂpartite) factor graph.
the “regular” tree assumptiorcf( [25, Ch. 3]) along with
an “extension”. The regular tree assumption states that  Algorithm 3 (Belief-propagation decoder):
shares no loop with the subtrees of degtstemming from  Variable node: Sums all received LLR messages from
variable nodeqz; ;|t # j}, which comprise with it the samethe check nodes it is connected to: LDPC check nodes,
LDPC codeword. The extension to the regular tree assumpti@®nvolutional code nodes and channel observation nodés. Th
assumes also that; ; shares no loop with the subtrees ofum is then sent back to these nodes.
depth (¢ — 1) stemming from variable node§ry ;|k # i}, LDPC node: Operates as in “regular” BP decoding of an
which correspond to the same zero-terminated convolutiondPC code.
codeword. Convolutional code node:Operates as in regular BCIR

The following lemma states that the extended tree assungigcoding with non-uniform prior, where the latter is dietht
tion is satisfied for sufficiently long outer LDPC codes wittby the messages coming from the LDPC codes.
high probability, and is a simple extension of the regulaetr
assumption[[26].

Lemma 6: Let L be the length of the zero-terminated con
volutional code. Then, for any > 0 and ¢ > 0, we can
choose the length of the LDPC ensembles to be sufficiently Lemma 7: Under the extended tree assumption (Assump-
large, such that the/-depth extended tree assumption ision[d]), the BER achievable by Algorithii 3 is upper bounded
satisfied with probability greater thah— ¢ over the factor by the BER achievable by Algorithfd 2.
graph induced by the overall code. Proof: Under the extended tree assumption (Assump-
ct}jon [T), the two-stage message-passing decoding of Algo-

o ek e fecr s of e v coe i el i e a e of e B oot (e a1
t

graph of the inner zero-terminated convolutional codesth&s € illustration in F|gure_E|5). Since BP Qecodmg is optimal
under the tree assumption (sed., [25]), it follows that the

zero—ter_mmated cc_>n_vo|ut|onal code lengthand th_e_number BER achievable by Algorithil3 is upper bounded by the BER
of iterations? are finite, the resulting tree has a finite number _ . .
chievable by Algorithni2. [

of variable nodes, whereas the length of each of the oufet
codesn can be chosen to be arbitrarily large. The proof Theorem 2: For any gap from capacith > 0, however
that the extended tree assumption holds with arbitrarighhi small, a code ensemble of rale= C' — A can be constructed
probability for a sufficiently large:, follows by retracing the using Algorithm[1 withrL (independent) LDPC codes, that
proof for the regular tree assumption for LDPC ensemblgsniversally) achieves an arbitrarily small BER under tHe B
(see,eq., [25)). B decoding of Algorithni B, oveBMS(C).

Specifically, this is achieved by a convolutional code oérat
€ (R,C) and a long enough constraint lenghh, such that
(K,r,b) of Corollary[2 satisfies

The following lemma and theorem show that the concate-
nated LDPC ensemble achieves universally capacity under BP
decoding.

Remark 7: The length of the LDPC ensemblesneeded to
satisfy theextended tree assumption with a given probability’-
is greater than that needed for the regular tree assummionpt
hold with the same probability. Thus, the valuerofequired - - . R
for the analysis of full BP to hold is greater than that needed 0 < 2\/P(K’ r,b) {1 - P(K,m, b)} =Bo<1--—5(11)

19Drawing n independent codewords from the same zero-terminated coﬁnd LDPC ensemblle of rail@/r whose thr_eShO|d over a BEC
volutional code, in the analysis to follow, yields the sarasuits. is aboveBy. By taking the lengthn of this ensemble to be



large enough, an arbitrarily small BER can be achieved. desired result for the two-stage message-passing decotling
. _ Algorithm [2.

Proof: Use_Lemm{B to establish the desired parametgrsFinally’ as in the ensemble analysis, under the extended tre
of the convolutional code for the two-stage message-passifi,mption (which we already took into consideration when

decoding of Algorithmil2. Now take the length of the LDP ounding the BER), BP decoding of the overall concatenated
ensemble to be long enough such that the sum of the proba

ity that the extended tree assumption fails, and the BERef

de as in Algorithni3 is optimal and hence achieves a BER
t{R/hich is upper bounded by that of the two-stage message-

LDPC code, is smaller than the desired BER. Lemrhata 5 ar?gssing decoder =

[1 guarantee that the BER of the overall code is lower than this '

desired BER, as it can be made arbitrarily small, by choosing V. CONCLUSION AND EXTENSIONS

large enough: and /(. Finally note that, as in Lemnfd 5, the | s work, we have shown how the classical concatenated

rate of the overall code i®, as desired. B approach allows constructing an LDPC ensemble that univer-

Corollary 4: A code as in Lemm&l5 and Theordth 2 cafally achieves capacity under BP decoding. The key elements
be devised that achieves capacity simultaneously for am/at were utilized are the BER extremal property of the BSC of
(finite) subse® of BMS(C), for a sufficiently large constraint & random (convolutional) code and the performance guaante
length &, under the two-stage message-passing decodingpé?V'ded by the Bhattacharyya parameter of BP decoding of

Algorithm[2 or the BP decoding of Algorithfd 3. LDPC codes. _ o
Several interesting directions for further research are as

Proof: We start by generating an appropriate inner cotiellows.
volutional code. For any > 0, however small, definel. as  Time variance of convolutional codes.Throughout the
the event that the BER of a randomly generated convolutiongiper, we have made usetahe-variant convolutional codes.
code over channel € S is upper bounded by Indeed, similar meaningful results for time-invariant goeti-
~ b = odically time-variant convolutional codes similar to t r
Py < Py(K, 7, b)e" e £ Py(Krbye), boundg on the BER of Sectidn III}C are not availa?.g[ﬂ],
where P, was defined in[{6). which calls for further research.

Then for anys > 0, there exists a convolutional code that ayoiding interleaving. For the proof of Lemmdl5 and
attains a BER of at mosP, (K, 7,b,¢), for all ¢ € § simul- Thegrem® we assumed the incorporation of an interleaver.
taneously, fork’ sufficiently large. We prove this by showingrhis interleaver simplified analysis by providing effeetiv

that the probability that a randomly generated convol@ionymemoryless channels for the outer LDPC codes. However, as

code satisfies this with positive probability: in the construction the inner code is of fixed length and the
length of the outer LDPC codes goes to infinity (to achieve
Pr (ﬂ Ac> =1—-Pr (U A_c> an arbitrarily small BER), this interleaver is not mateéald
ces ces can be dropped. This can be seen by noting that, in this
>1 _Zpr (A) (12a) limit, according to the law of large numbers, the empiric
s distribution of the LLRs within the blocklength of a single
> 18] o~ Kle (12b) LDPC code is close, with high probability, to their statsti

distributio and since the LDPC ensembles are robust to

>0, (12¢)  place permutations.

where A. denotes the complement df., (I2a) follows from | ppC performance guarantees.In this paper, we have
the union bound[(I12b) follows from the Markov inequality ysed the performance guarantees offered by the Bhatta@hary
L Py(K,7,b) ke parameter, established by Khand(_akar and McEliece [15], [16
Pr(A;) < =———"* = : (13)  coupled with the extremal properties of the BEC and the BSC.
Py(K,1,b,¢) Nevertheless, similar results were obtained by Burshtath a
with the expected BERP, over the random-code ensemblawiller [L7] via the expected soft-bit parameter, wheredseot
being upper bounded by the numerator[in] (13) according garameters and analysis techniques were proposed|in 23], [
(), and [1Zc) holds true for a sufficiently largé. By taking and in references therein. These results can be appliedit@de
¢ to be small enough we achiev, of (L) similar universality results as well as improve the scalmgs
Next, generate an LDPC code from the outer-code ensembfehe proposed ensemble.

proposed in the proof of Theore %z. a long enough Replacing high-rate outer codes with fixed-rate codes.

ensemble, s.t. the sum of the probability that the extenba tThe outer LDPC ensembles used were of a rate that ap-

assumption fails and of the BER of the LDPC code is below . . Iy
the desired BER of the overall code. Using tlomcentration proaches 1 with the decrease in the gap-to-capakityhis

of the BER phenomenon for LDPC codes (seeg., [25]). is in contrast to spatially coupled codes, where the unaegly
a_n LDPC que with the .dfes'red BER Cal’.l be geqerated W'tthhis is, in fact, a finite-memory stochastic process, duééofiniteness
high probability for a sufficiently large. This establishes the of the constraint length of the inner convolutional code.



regular LDPC code is of close-to-capacity rate. A simplgo] H. Jin, A. Khandekar, and R. McEliece, “Irregular repemcumulate
means allowing the outer LDPC ensemble, in our scheme, ¢odes,” inProc. 2nd Int. Symp. Turbo Codes and Related Topics, Sept.

. . - . 2000, pp. 1-8.
to operate at any fixed rate is by splitting the coded bits ef thy1; | ‘5" Reed and G. Solomon, “Polynomial codes over cefiaite fields,”

LDPC coder into two subsets, such that a subset of rate @ose t  J. Society for Industrial and App. Math. (SAM), vol. 8, no. 2, pp. 300—
1 is fed to the convolutional coder, whereas the other bygsass_ 304, 1960.

. . .o 22] R. C. Singleton, “Maximum distance g-nary codelEEE Trans. Info.
the convolutional coder and is declared erased. This irduCe” tpeory vol. 10, pp. 116-118, Apr. 1964.

an effective “nearly BEC”. Unfortunately, this construeti [23] R. G. Gallager)nformation Theory and Reliable Communication. John
prohibits the usage atgular LDPC ensembles. Note howeve Wiley & Sons, 1968.

r
. . 24] A.J. Viterbi and J. K. OmuraRrinciples of Digital Communication and
that the locations of the injected erasures need not be nanolo ] Coding. New York: McGraw-Hill p1979_ 9

and can be chosen to enhance the performance of the [B# T. Richardson and R. Urbank&lodern Coding Theory. Cambridge:
decoder. Specifically, it would be interesting to invediga _ Cambridge University Press, 2008.

AN . L . %6] A. Khina, Y. Yona, and U. Erez, “LDPC ensembles
whether a judicious design of the injection locations cou that universally achieve capacity under BP decoding: A

prevent the failure of BP decoding of regular LDPC codes simple derivation” Tech. Rep., Nov. 2014. [Online]. Awdile:

due to stopping sets; thus, attaining ML performance of ﬂEe www.eng.tau.ac. it*anatolyk/concatidpe. pdf o

derlvi lar LDPC codes 27] N. Shulman and M. Feder, “Improved error exponent foretinvariant
underlying regu : and periodically time-variant convolutional code$ZEE Trans. Info.
Theory, vol. 46, pp. 97-103, 2000.
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