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Control over Gaussian Channels
With and Without Source–Channel Separation
Anatoly Khina, Elias Riedel Gårding, Gustav M. Pettersson, Victoria Kostina, and Babak Hassibi

Abstract—We consider the problem of controlling an unsta-
ble linear plant with Gaussian disturbances over an additive
white Gaussian noise channel with an average transmit power
constraint, where the signaling rate of communication may be
different from the sampling rate of the underlying plant. Such
a situation is quite common since sampling is done at a rate
that captures the dynamics of the plant and that is often lower
than the signaling rate of the communication channel. This
rate mismatch offers the opportunity of improving the system
performance by using coding over multiple channel uses to
convey a single control action. In a traditional, separation-based
approach to source and channel coding, the analog message is
first quantized down to a few bits and then mapped to a channel
codeword whose length is commensurate with the number of
channel uses per sampled message. Applying separation-based
approach to control meets its challenges: first, the quantizer needs
to be capable of zooming in and out to be able to track unbounded
system disturbances, and second, the channel code must be
capable of improving its estimates of the past transmissions
exponentially with time, a characteristic known as anytime
reliability. We implement a separated scheme by leveraging re-
cently developed techniques for control over quantized-feedback
channel and for efficient decoding of anytime-reliable codes.
We further propose an alternative, namely, to perform analog
joint source-channel coding instead, avoiding the digital domain
altogether. For the case where the communication signaling rate
is twice the sampling rate, we employ analog linear repetition
as well as Shannon–Kotel’nikov maps to show a significant
improvement in stability margins and linear-quadratic costs over
separation-based schemes. We conclude that such analog coding
performs better than separation, and can stabilize all moments,
even guaranteeing almost-sure stability.

Index Terms—Networked control, Gaussian channel, joint
source–channel coding, tree codes, anytime-reliable codes, Lloyd–
Max quantization.
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I. INTRODUCTION

The current technological era of ubiquitous wireless con-
nectivity and the Internet of Things exhibits an ever-growing
demand for new and improved techniques for stabilizing
networked control systems, which as a result have been the
subject of intense recent investigations [1]–[3]. Unlike tradi-
tional control with co-located plant, observer and controller,
the components of such systems are separated by unreliable
communication links. In many of these systems, the rate at
which the output of the plant is sampled and observed, as well
as the rate at which control inputs are applied to the plant, is
different from the signaling rate with which communication
occurs. The rate at which the plant is sampled and controlled
is often governed by how fast the dynamics of the plant is,
whereas the signaling rate of the communication depends on
the bandwidth available, the noise levels, etc. As a result, there
is no inherent reason why these two rates should be related
and, in fact, the communication rate is almost always higher
than the sampling rate.

This latest fact clearly gives us the opportunity to improve
the performance of the system by conveying the information
about each sampled output of the plant, and/or each control
signal, through multiple uses of the communication channel.

The standard information-theoretic approach suggests quan-
tizing the analog messages (the sampled output or the control
signal) and then protecting the quantized bits with an error-
correcting channel code whose block length is commensurate
with the number of channel uses available per sample. This
approach relies on the source–channel separation principle,
which proffers that quantization of the messages and channel
coding of the quantized bits can be done independently of one
another.

Nonetheless, while source–channel separation-based
schemes become optimal in communication systems where
large blocks of the message and the channel code are
processed together (necessitating non-causal knowledge of
all the message signals and entailing large delays) — a
celebrated result [4], [5, Ch. 3.9] — it is not true for control
systems which require real-time (low-delay) communication
of causally available messages. Furthermore, since any error
made in the past is magnified in each subsequent time step
due to the unstable nature of the plant, the source–channel
separation principle requires a stronger notion of error
protection, termed anytime reliability by Sahai and Mitter [6].
Anytime reliability guarantees that the error probability of
causally encoded quantized (“information”) bits decays faster
than the inflation factor at each step. Sahai and Mitter [6]
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further observed that anytime-reliable codes have a natural
tree code structure reminiscent of the codes developed
by Schulman [7] for the related problem of interactive
communication.

Sukhavasi and Hassibi [8] further showed that anytime relia-
bility can be guaranteed with high probability by concentrating
on the family of linear time-invariant (LTI) codes and choos-
ing their coefficients at random. Unfortunately, maximum-
likelihood (ML) (optimum) decoding of tree codes is infea-
sible.1 To overcome this problem, a sequential decoder [9],
[10, Ch. 10], [11, Sec. 6.9], [12, Ch. 6], [13, Ch. 6] for tree
codes was proposed in [14], [15] and was shown to achieve
anytime reliability with high probability while maintaining
bounded expected decoding complexity, albeit with some loss
of performance.

Tree codes transform the control task over a noisy channel to
that over a noiseless channel with finite-capacity C, implying
that the channel code needs to be supplemented with an
adequate fixed-rate quantizer (a.k.a. fixed-length lossy source
coder). Such a quantizer will compress the analog signal to
exactly C bits to be communicated from the observer to the
controller at every time step. As unstable systems with distur-
bances that have distributions with unbounded support cannot
be stabilized by a static quantizer [16, Sec. III-A], adaptive
uniform and logarithmic quantizers that establish stabilizabil-
ity guarantees were devised by Yüksel [17] and Minero et
al. [18], respectively. For the scenario of disturbances with
logarithmically concave (log-concave) distributions and scalar
measurements, an optimal greedy quantizer that (greedily)
minimizes the linear-quadratic cost at each step has been
recently devised in [19] and was shown to be essentially
globally optimal.

An obvious alternative strategy to separated source/channel
coding is to simply repeat the transmitted (analog) signal —
this adds a linear factor to the SNR (3 dB for a single
repetition). This strategy maps the analog control signals di-
rectly into analog communication signals, avoiding the digital
domain, and can therefore be viewed as a simple instance of
joint source–channel coding (JSCC) [20].

Surprisingly, in the Gaussian rate-matched case, in which
one additive white Gaussian noise (AWGN) channel use is
available per one white Gaussian source sample, a simple
amplifier achieves the Shannon limit with zero delay [21].
The optimality of linear schemes extends further to the case
where KC > 1 uses of an AWGN channel with perfect
instantaneous feedback are available per one white Gaussian
source sample [22]–[24], The reason is that a Gaussian source
is probabilistically matched to a Gaussian channel [25], an
uncommon coincidence. Tatikonda and Mitter [26] exploited
a special property of the erasure channel with feedback, in
which a retransmission scheme attains its capacity without
delay. A related example is control over a packet drop channel,
considered by Sinopoli et al. [27]. There, a simple retransmis-
sion scheme attains the optimum, as long as the packet drop
probability is not too high. Coding of Gauss–Markov sources

1Except over erasure channels, over which ML decoding amounts to solving
linear equations [8].

over a packet erasure channel with feedback is studied in [28],
[29].

Joint source-channel coding in the absence of probabilistic
matching is challenging. In the Gaussian rate-mismatched
case, in which KC > 1 AWGN channel uses are available per
one source sample, repetitive transmission of the source sam-
ple is suboptimal. Non-linear mappings are known to achieve
better performance, as noted originally by Shannon [30] and
Kotel’nikov [31].

In this work, we concentrate on the simple case of stabi-
lizing a scalar discrete-time linear quadratic Gaussian (LQG)
control system over an AWGN channel with KC = 2 channel
uses per control sample, with a fixed signal-to-noise ratio
(SNR). As we show in the sequel, this SNR imposes an upper
limit on the size of the maximum unstable eigenvalue of the
plant that can be stabilized.

We develop separation-based and JSCC schemes, and com-
pare their LQG costs, as well as the minimum required
SNR for stabilizing the system. We show that JSCC schemes
achieve far better performance while requiring far less com-
putational and memory resources. We further observe that an
inherent advantage of JSCC schemes is that they allow a
graceful improvement in performance with the SNR, while
the performance of separation-based schemes saturates due
to their digital nature. Moreover, whereas separation-based
schemes can guarantee only a finite number of bounded
moments, certain JSCC schemes, e.g., linear ones (repetition-
based included), can stabilize all moments and guarantee
almost-sure stability.

The schemes developed in this work have been implemented
in Python 3 and are available online in [32].

An outline of the rest of the paper is as follows. We
formulate the problem setup in Sec. II. Three different in-
gredients that are used to construct the networked control
schemes of this paper, namely, a quantizer for control over a
noiseless finite-rate channel, an anytime-reliable tree code and
an Archimedean bi-spiral-based JSCC map, are described in
Secs. III, IV and V, respectively. They are subsequently used in
Secs. VI and VII to develop source–channel separation-based
and JSCC-based schemes for LQG control over an AWGN
channel, and are compared in terms of their LQG cost in
Sec. VIII. We conclude the paper with Sec. IX, by discussing
the principal differences between the proposed schemes as well
as possible extensions.

II. PROBLEM SETUP

We now formulate the control–communication setting that
will be treated in this work, depicted in Fig. 1. We concentrate
on the simple case of a scalar fully observable state. In contrast
to classical control settings, the observer and the controller are
not co-located, and are connected instead via a scalar AWGN
channel.

The model and solutions can be extended to more com-
plex cases of vector states and multi-antenna channels;
see Sec. IX-B.

The control and transmission duration spans the time inter-
val [T ] , {1, . . . , T}.



3

Fig. 1. A scalar control system with an AWGN driving disturbance and an
AWGN communication channel. The dashed line represents the assumption
that the past control signals are available at the transmitter.

Plant: Scalar discrete-time linear system dynamic:

xt+1 = αxt + wt + ut, t ∈ [T − 1], (1)

where xt is the (scalar) state at time t, wt is an AWGN of
power W , α is a known scalar satisfying |α| > 1, and ut is
the control signal. We further that x0 = 0.

Channel: We assume KC ∈ N channel uses are available
per each control sample. Hence, at each time instant t we can
use the channel

bt;i = at;i + nt;i, i ∈ [KC ], t ∈ [T − 1], (2)

KC times, where bt;i is i-th channel output corresponding
to control sample t, at;i is the corresponding channel input
subject to a unit power constraint

E
[
a2
t;i

]
≤ 1, (3)

and nt;i is an AWGN of power 1/SNR.2 We collect all the KC

channel uses in a column vector and denote it, with a slight
abuse of notation, by at , (at;1, . . . , at;KC )T , where ‘T ’
denotes the transpose operation. The corresponding channel
output vector is denoted by bt , (bt;1, . . . , bt;KC )T .

Causal transmitter: At time t, generates KC channel
inputs by applying a causal function Et : Rt × Rt−1 → RKC
to the measured states xt , (x1, . . . , xt) and all past control
signals ut−1 , (u1, . . . , ut−1),

at = Et
(
xt, ut−1

)
, (4)

and the input is subject to an average power constraint (3).

Remark II.1. In this work, we assume that the ob-
server/transmitter knows all past control signals ut−1; for
a discussion of the scenario when such information is not
available at the observer, see Sec. IX-C.

Causal receiver: At time t, observes KC channel outputs
and generates a control signal ut by applying a causal function
Dt : RtKC → R to all the available channel outputs:

ut = Dt
(
bt
)
, (5)

2This representation is without loss of generality since the case of an
average power PC and noise power N can always be transformed to an
equivalent channel with average power 1 and noise power N/PC , 1/SNR
by multiplying both sides of (2) by 1/

√
PC .

where bt , (b1, . . . , bt)
T .

Cost: Similarly to the classical LQG control setting (in
which the controller and the observer are co-located), we wish
to minimize the average stage LQG cost at the time horizon T :

J̄T ,
1

T
E

[
QTx

2
T +

T−1∑
t=1

(
Qtx

2
t +Rtu

2
t

)]
,

for known non-negative weights {Qt} and {Rt}, by designing
appropriate operations at the observer, which also plays the
role of the transmitter over the channel (2), and the controller,
which also serves as the receiver over the channel (2).

For the important special case fixed parameters,

Qt ≡ Q,
Rt ≡ R,

we further define the infinite-horizon cost,

J̄∞ , lim
T→∞

J̄T , (6)

assuming the limit exists.
We recall next recently developed schemes for compression

and channel coding for control as well as results from infor-
mation theory for JSCC design with low delay.

III. CONTROL WITH NOISELESS FINITE-RATE FEEDBACK

In this section we consider the model of Sec. II with the
AWGN channel (2) replaced with a noiseless channel of finite
capacity C, depicted in Fig. 2. That is, in this case, the channel,
transmitter and receiver are as follows.

Channel: At time t, a packet `t ∈ {0, . . . , 2C − 1} is
sent over a noiseless channel of capacity C, meaning that the
receiver obtains `t at time t.

Transmitter: The function Et (4), in this case, has a discrete
codomain {0, . . . , 2C − 1} (with no power constraints).

Receiver: The domain of Dt (19) is {0, . . . , 2C − 1}.
Thus, the transmitter–receiver design amounts, in this case,

to fixed-length sequential quantization.
A recent result [19] shows that an adaptive quantizer that

successively calculates the probability density function (PDF)
of xt given `t and applies Lloyd–Max quantization with
respect to this PDF is greedily optimal and close-to-globally
optimal whenever fw is log-concave.

Definition III.1 (Log-concave function; see [33]). A function
f : R→ R≥0 is said to be log-concave if its logarithm log ◦f
is concave; we use the extended definition that allows f(x) to
assign zero values, i.e., log f(x) ∈ R∪ {−∞} is an extended
real-value function that can take the value −∞.

We recall the Lloyd–Max algorithm and its optimality
guarantees in Sec. III-A; the appropriate adaptive networked
control system is described in Sec. III-B.

A. Quantizer Design

Definition III.2 (Quantizer). A scalar quantizer Q of rate C is
described by an encoder EQ : R→ {0, . . . , 2C − 1} and a de-
coder DQ : {0, . . . , 2C−1} → {c[0], . . . , c[2C−1]} ⊂ R. With
a slight abuse of notation, we shall define the quantization
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Fig. 2. Scalar control system with a driving white Gaussian disturbance and
a noisless finite-capacity channel (“bit pipe”). The dashed line represents a
bit-pipe of capacity C.

operation Q : R → {c[0], . . . , c[2C − 1]} as the composition
of the encoding and decoding operations: Q = DQ ◦ EQ.3

The reproduction points {c[`]} are assumed, without loss of
generality, to be ordered:4

c[0] < c[1] < · · · < c[2C − 1].

We denote by I[`] the collection of all points that are mapped
to index ` (equivalently to the reproduction point c[`]):

I[`] , {x|x ∈ R, EQ = `}
= {x|x ∈ R,Q = c[`]}.

We shall concentrate on the class of regular quantizers,
defined next.

Definition III.3 (Regular quantizer). A scalar quantizer is
regular if every cell I[`] (` = 0, . . . , 2C − 1) is a contiguous
interval that contains its reproduction point c[`]:

c[`] ∈ I[`] = [p[`], p[`+ 1]) , ` = 0, . . . , 2C − 1,

where p ,
{
p[0], . . . , p[2C ]

}
is the set of partition lev-

els — the cells boundaries. Hence, a regular scalar quantizer
can be represented by the input partition-level set and the
reproduction-point set c ,

{
c[0], . . . , c[2C − 1]

}
.

Cost: The cost we wish to minimize is the mean squared
error distortion between a source w with a given log-concave
PDF fw and its quantization Q(w):

D , E
[
(w −Q(w))2

]
(7a)

=

2C−1∑
`=0

∫ p[`+1]

p[`]

(w − c[`])2fw(w)dw. (7b)

Denote by D∗ the minimal achievable distortion D; the
optimal quantizer is the one that achieves D∗.

Remark III.1. Since fw was assumed to be log-concave, it
is continuous [33]. Hence, the inclusion or exclusion of the
boundary points in each cell does not affect the distortion of
the quantizer, meaning that the boundary points can be broken
systematically.

3The encoder and decoder that give rise to the same quantizer are unique
up to a permutation of the labeling of the index `.

4If some inequalities are not strict, then the quantizer can be reduced to
another quantizer with lower rate.

Remark III.2. We concentrate in this work on input PDFs with
infinite support. Consequently p[0] = −∞ and p[2C ] =∞ and
the leftmost interval is open.

The optimal quantizer satisfies the following necessary
conditions [34]–[36], [37, Ch. 6.2], [38, Ch. 4.4].

Proposition III.1 (Centroid condition). For a fixed partition-
level set p (fixed encoder), the reproduction-point set c (de-
coder) that minimizes the distortion D (7) is

c[`] = E
[
w
∣∣ p[`] ≤ w < p[`+ 1]

]
, ` = 0, . . . , 2C − 1. (8)

Proposition III.2 (Nearest neighbor condition). For a fixed
reproduction-point set c (fixed decoder), the partition-level set
p (encoder) that minimize the distortion D (7) is

p[`] =
c[`− 1] + c[`]

2
, ` = 1, 2, . . . , 2C − 1, (9)

and p[0] = −∞ and p[2C ] =∞.

The optimal quantizer must simultaneously satisfy both (8)
and (9); iterating between these two necessary conditions gives
rise to the Lloyd–Max algorithm.

Algorithm III.1 (Lloyd–Max).
Initialization. Pick an initial reproduction-point set c.
Iteration. Repeat the two steps

1) Fix c and set p as in (9),
2) Fix p and set c as in (8),

interchangeably, until the decrease in the distortion D per
iteration goes below a desired threshold.

Propositions III.1 and III.2 suggest that the distortion at
every iteration decreases; since the distortion is bounded from
below by zero, the Lloyd–Max algorithm is guaranteed to
converge to a local optimum.

Unfortunately, multiple local optima may exist in general
(e.g., Gaussian mixtures with well separated components),
rendering the algorithm sensitive to the initial choice c.

Nonetheless, sufficient conditions for the existence of a
unique global optimum were established in [39]–[41]. These
guarantee the converges of the algorithm to the global opti-
mum for any initial choice of c. An important class of PDFs
that satisfy these conditions is that of the log-concave PDFs.

Theorem III.1 ( [39]–[41]). Let the source PDF fw be
log-concave. Then, the Lloyd–Max algorithm converges to
a unique solution that minimizes the mean squared error
distortion (7).

B. Controller Design

We now describe the optimal greedy control policy, the
implementation of which is available in [32, tree/master/code/
separate/control]. To that end, we make use of the following
lemma that extends the separation principle of estimation and
control to networked control systems.

Lemma III.1 (Control–estimation separation [42], [24]). The
optimal control law is given by

ut = −Ltx̂t,
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where

Lt =
St+1

Rt + St+1
α (10)

is the optimal linear quadratic regulator (LQR) control gain,
x̂t , E [xt|`t], and St satisfies the dynamic Riccati backward
recursion [43]:

St = Qt +
St+1Rt
St+1 +Rt

α2,

with ST = QT and ST+1 = LT = 0.
Moreover, this controller achieves the cost5

J̄T =
1

T

T∑
t=1

(
StW +GtE

[
(xt − x̂t)2

] )
,

with Gt = St+1α
2 − St +Qt.

Remark III.3. Lem. III.1 holds true for more general channels,
with x̂t = E [xt|bt], where bt is the channel output at time
t [24].

The optimal greedy algorithm minimizes the estimation
distortion E

[
(xt − x̂t)2

]
at time t, without regard to its effect

on future distortions. To that end, at time t, the transmitter and
the receiver calculate the the PDF of xt conditioned on `t−1

and ut−1, fxt|`t−1,ut−1 , and apply the Lloyd–Max quantizer
to this PDF.6 We refer to fxt|`t−1,ut−1 and to fxt|`t,ut−1 as the
prior and posterior PDFs, respectively.

Although the optimal greedy algorithm does not achieve
global optimality [44], its loss is negligible [19].

Algorithm III.2 (Optimal greedy control).

Initialization. Both the transmitter and the receiver set
1) `0 = x0 = u0 = 0.
2) Prior PDF: fx1|`0,u0

(x1|0, 0) ≡ fx1
(x).

Observer/Transmitter. At time t ∈ [T − 1]:
1) Observes xt.
2) Runs the Lloyd–Max algorithm (Alg. III.1) with respect

to the prior PDF f(xt|`t−1, ut−1) to obtain the quantizer
Qt(xt) of rate C; we denote its partition-level and
reproduction-point sets by pt and ct, respectively.

3) Quantizes the system state xt [recall Def. III.2]:

`t = EQt(xt),
x̂t = Qt(xt) = DQt(`t).

4) Transmits the quantization index `t.
5) Calculates the posterior PDF f(xt|`t):

fxt|`t,ut−1(xt|`t, ut−1)

=

{
fxt|`t−1,ut−1(xt|`t−1, ut−1)/γ, xt ∈ I[`t]

0, otherwise

5We set RT = 0 and `T = 0 for the definition of x̂T , as no transmission
or control action are performed at time T .

6Since ut−1 is a deterministic function of `t−1, it suffices to condition on
`t−1. However, when incorporating Alg. III.2 into a separation-based scheme,
this distinction becomes useful since ut−1 becomes a function of possibly
corrupted channel outputs in this case.

Encoder w(z|c) Decoder
ıt ct zt

{
ı̂i|t
}t
i=1

Fig. 3. MBIOS channel with reconstructions of all past information bits.

where I[`t] , [pt[`t], pt[`t + 1]) as in Def. III.3, and

γ ,
∫ pt[`t+1]

pt[`t]

fxt|`t−1,ut−1(α|`t−1, ut−1)dα

is a normalization factor.

6) Calculates the prior PDF of time t + 1 using (1) and
ut = −Ltx̂t:

fxt+1|`t,ut(xt+1|`t, ut)

=
1

|α|
fxt|`t,ut−1

(
xt+1 − ut

α

∣∣∣∣`t, ut−1

)
∗ fw (xt+1) ,

where ‘∗’ denotes the convolution operation, and the
two convolved terms correspond to the PDFs of the
quantization error α(xt − x̂t) and the disturbance wt.

Controller/Receiver. At time t ∈ [T − 1]:
1) Runs the Lloyd–Max algorithm (Alg. III.1) with respect

to the prior PDF f(xt|`t−1) as in Step 2 of the ob-
server/transmitter protocol.

2) Receives the index `t.
3) Reconstructs the quantized value: x̂t = DQt(`t).
4) Applies the control actuation ut = −Ltx̂t to the system.
5) Calculates the posterior PDF f(xt|`t) and the next

prior PDF f(xt+1|`t) as in Steps 5 and 6 of the ob-
server/transmitter protocol.

Theorem III.2 ( [19]). Let fw be a log-concave PDF. Then,
Alg. III.2 provides the optimal greedy control policy.

The following is an immediate consequence of the log-
concavity of the Gaussian PDF.

Corollary III.1. Let fw be a Gaussian PDF. Then, Alg. III.2
provides the optimal greedy control policy.

IV. ANYTIME-RELIABLE CODES

We now describe causal error correcting codes that allow to
meet the assumption of a noiseless finite-capacity channel of
Sec. III over the AWGN channel (2).

Since any decoding mistake is multiplied by α — and the
corresponding second moment (power) by α2 — at every time
step, the code should have an error probability that decays
exponentially with time with an exponent that is greater than
α2;7 see [6], [8], [14] for further details and discussion.

We construct such codes, termed anytime-reliable codes [6],
for memoryless binary-input output-symmetric (MBIOS)
channels and then apply these results for the AWGN channel
by employing appropriate digital constellations.

7To stabilize higher moments one needs higher exponents. See the discus-
sion in Sec. IX-A below.
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Definition IV.1 (MBIOS channel). A binary-input channel is
a system with binary input alphabet {0, 1}, output alphabet
Z and two probability transition functions: q(z|0) for input
c = 0 and q(z|1) for input c = 1. The channel is said to
be memoryless if the probability distribution of the output
depends only on the input at that time and is conditionally
independent of previous and future channel inputs and outputs.
It is further said to be output-symmetric if there exists an
involution π : Z → Z , i.e., a permutation that satisfies
π−1 = π, such that8

q(π(z)|0) = q(z|1)

for all z ∈ Z .

The encoder and resulting code need to be causal, in our
case, due to the sequential nature of the information stream.
That is, at time instant t, k new information bits ıt are fed to
the encoder; the encoder, then, produces n coded bits ct by
encoding all of the available information bits ıt:

ct = E'
t

(
ıt
)
, (11)

using a known encoding function E'
t : {0, 1}kt → {0, 1}n,

agreed upon by the encoder and the decoder prior to trans-
mission.

The sequential encoding operation can be conveniently
viewed as advancing over a prefix tree (trie) and the corre-
sponding codes are therefore referred to as tree codes.

At time t, the decoder recovers estimates {ıi|t}ti=1 of all
the past information bits ıt by applying a causal function
D' : Znt → {0, 1}kt to all the received channel outputs ct to
produce (

ı1|t, ı2|t, . . . , ıt|t
)

= D'
t

(
ct
)
. (12)

One is then assigned the task of choosing a sequence
of function pairs {(E'

t ,D
'
t )|t ∈ N} that provides anytime

reliability. We recall this definition as stated in [8].

Definition IV.2 (Anytime reliability). Define the probability
of the first error event at time t and delay d as

Pe(t, d) , P
(
ıt−d 6= ı̂t−d|t,∀δ > d, ıt−δ = ı̂t−δ|t

)
,

where the probability is over the randomness of the informa-
tion bits {ıt} and the channel noise. Suppose we are assigned
a budget of n channel uses per time step of the evolution of the
plant. Then, an encoder–decoder pair is called (R, β) anytime
reliable if there exist A ∈ R and d0 ∈ N, such that

Pe(t, d) ≤ A2−βnd, ∀t, d ≥ d0, (13)

where β is called the anytime exponent.

Remark IV.1. The requirement of d ≥ d0 in (13) can always
be dropped, by replacing A by a larger constant. Conversely,
A can be replaced with 1 by reducing β by ε > 0, however
small, and taking a large enough d0. Nonetheless, we use both
A and d0 in the definition for convenience.

8This also extends to additive noise channels, such as the binary-input
AWGN channel.

A. LTI Anytime-Reliable Codes under ML Decoding

Following Sukhavasi and Hassibi [8], we now present a
linear time-invariant (LTI) anytime-reliable code ensemble
under maximum-likelihood (ML) decoding.

When restricted to an LTI (“tree”) code, each function E'
t

can be characterized by a set of matrices {G1, . . . ,Gt}, where
Gt ∈ Zn×k2 . The sequence of quantized measurements at time
t, {bi}ti=1, is encoded as,

ct = G1ı1 + G2ı2 + · · ·+ Gtıt , (14)

or equivalently in matrix form:

c = Gn;Rı,

with

Gn,R =


G1 0 0 · · · · · ·
G2 G1 0 · · · · · ·

...
...

. . . . . . · · ·
Gt Gt−1 · · · G1 0

...
...

...
...

. . .

 , (15a)

ıT =
[
ıT1 ıT2 · · · ıTt . . .

]
, (15b)

cT =
[
cT1 cT2 · · · cTt . . .

]
. (15c)

We now define the random LTI tree code ensemble.

Definition IV.3 (LTI tree code ensemble). An LTI tree ensem-
ble of rate R = k/n, that maps kt information bits into n bits
at every time step t, where the entries in all {Gi} of Gn;R of
(15a) are i.i.d. and uniform.

Theorem IV.1 (Error exponent under ML decoding). Let q be
an MBIOS channel. Let further ε > 0 and d0 ∈ N. Then, the
probability that a particular code from the random LTI tree
code ensemble of Def. IV.3 has an anytime exponent (13) of
EG(R) − ε, for all t ∈ N and d > d0, under optimal (ML)
decoding, is bounded from below by

Pr

( ∞⋂
t=1

t⋂
d=d0

{
Pe(t, d) ≤ 2−[EG(R)−ε]nd

})
≥ 1− 2−εnd0

1− 2−εn

where EG is Gallager’s block random-coding error expo-
nent [45, Ch. 9], [11, Sec. 5.6], [10, Ch. 7]:

EG(R) , max
0≤ρ≤1

[E0(ρ)− ρR] , (16a)

E0(ρ) , − log
∑
z∈Z

[
1

2
q

1
1+ρ (z|0) +

1

2
q

1
1+ρ (z|1)

]1+ρ

. (16b)

Thus, for any ε > 0, however small, this probability can be
made arbitrarily close to 1 by taking d0 to be large enough.

Unfortunately, ML decoding requires searching over all pos-
sible codewords — the number of which grows exponentially
fast with time — rendering such decoding infeasible except
over erasure channels [8]. We therefore turn to sequential de-
coding, which trades some performance for feasible expected
complexity.
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Algorithm 1 Sequential Decoding Stack Algorithm.
Q← MaxPriorityQueue(node 7→ node.metric) . Leaf nodes, ordered by Fano metric
Q.push with priority(root)
while Q.top.depth < t do . Stop at the first sequence to reach full length

node← Q.pop() . Take the sequence with the largest metric
for child ∈ node.create children() do . Replace it with its 2k extensions

Q.push with priority(child)

return Q.top.input sequence() . Reconstruct the input sequence by backtracking

B. LTI Anytime-Reliable Codes under Sequential Decoding
Instead of an exhaustive search over all possible code-

words — the complexity of which grows as O
(
2kt
)

— as
is done in ML decoding, one may restrict the search to only
the most likely codeword paths, such that their per letter com-
plexity does not grow significantly with time. Such algorithms
are known collectively as sequential decoding algorithms.

In this work, we shall concentrate on one of the two popular
variants of this algorithm — the Stack Algorithm, the other
being the Fano Algorithm. The former achieves better time
complexity and smaller error probability but is more expensive
in terms of memory, compared to the latter. Nonetheless,
the anytime exponent of both algorithms is the same; for a
treatment of the Fano algorithm, which is similar to the one
presented next, the reader is referred to [14], [15].

We next summarize the relevant properties of the stack
decoding algorithm when using the generalized Fano metric
(see, e.g., [10, Ch. 10]) to compare possible codeword paths:

M(c1, . . . , cN ) =

T∑
t=1

M(ct), (17a)

M(ct) , log
q(zt|ct)∑

c′∈{0,1}n
(

1
2

)n
q(zt|c′)

− nB,(17b)

where B is referred to as the metric bias. It penalizes longer
paths when the metrics of different-length paths are compared.

In contrast to ML decoding, where at time t, all possible
paths (of length kt) are explored to determine the path with
the total maximal metric,9 when using the stack sequential
decoding algorithm, a list of partially explored paths is stored
in a priority queue, where at each step the path with the highest
metric is further explored and replaced with its immediate
descendants and their metrics. The stack algorithm is outlined
in Alg. 1 and implemented in [32, tree/master/code/separate/
coding]; for a detailed description of the stack algorithm (as
well as the Fano algorithm and variants thereof), see [10,
Ch. 10], [11, Sec. 6.9], [12, Ch. 6], [13, Ch. 6].

Theorem IV.2 (Error exponent under sequential decoding).
Let q be an MBIOS channel. Let further ε > 0 and d0 ∈ N.
Then, the probability that a particular code from the random
LTI tree code ensemble of Def. IV.3 has an anytime expo-
nent (13) of EG(R) − ε, for all t ∈ N and d > d0, under
sequential stack decoding, is bounded from below by

Pr

( ∞⋂
t=1

t⋂
d=d0

{
Pe(t, d) ≤ A2−[EJ (R)−ε]nd

})
≥ 1− 2−εnd0

1− 2−εn

9Note that optimizing (17a) in this case is equivalent to ML decoding.

where EJ is Jelinek’s sequential decoding exponent:

EJ(B,R) , max
0≤ρ≤1

ρ

1 + ρ

{
E0(ρ) +B − (1 + ρ)R

}
,

E0 is given in (16b), and A is finite for B < E0(1) and is
bounded from above by10

A ≤ 1− e−t[E0(ρ)−ρB]

1− e−[E0(ρ)−ρB]
≤ 1

1− e−[E0(ρ)−ρB]
<∞.

Thus, for any ε > 0, however small, this probability can be
made arbitrarily close to 1 by taking d0 to be large enough.

Since EJ(B,R) is a monotonically increasing function of
B, choosing B = R0 maximizes the exponential decay of
P̄e(d) in d.11 Interestingly, for this choice of bias, we have
EJ(R0, R) = EG(R) whenever EG(R) is achieved by ρ = 1
in (16a), i.e., for rates below the critical rate. For other values
of ρ, EJ(E0(1), R) is strictly smaller than EG(R).

The choice B = R, on the other hand, is known to minimize
the expected computational complexity (which has a Pareto
distribution; see [14], [15], for details), and is therefore a popu-
lar choice in practice. Moreover, for rates below the cutoff rate
R < E0(1), the expected number of metric evaluations (17b)
at each time instant is finite and does not depend on d, for any
B ≤ E0(1) [11, Sec. 6.9], [10, Ch. 10]. Thus, the only increase
in expected complexity of this algorithm with d comes from an
increase in the complexity of evaluating the metric of a single
symbol (17b). Since the latter increases (at most) linearly with
d, the total complexity of the algorithm grows polynomially
in d. Furthermore, for rates above the cutoff rate, R > E0(1),
the expected complexity is known to grow rapidly with the
code length for any metric [46], implying that the algorithm
is applicable only for rates below the cutoff rate E0(1).

C. Modulation

In order to support the transmission of more than one
coded bit per channel use, we modulate the bits using pulse-
amplitude modulation (PAM). Specifically, we map every
n/KC consecutive coded bits of ct = (ct;1, . . . , ct;n)T into
a constellation point of size 2k, where k is the number of

10Note that E0(ρ)/ρ is a monotonically decreasing function of ρ, therefore
B < E0(1) guarantees that E0(ρ)− ρB > 0.

11For finite values of d a lower choice of B may be better, since the constant
A might be smaller in this case.
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information bits than need to be conveyed at each time step t.
We normalize the constellation to have an average unit power:

at;i =

√
3

2k−1 − 1

k∑
j=1

2j−1(−1)ct;j+ki , i ∈ [KC ]. (18)

V. LOW-DELAY JOINT SOURCE–CHANNEL CODING

In this section, we review known results from information
theory and communications for transmitting an i.i.d. zero-mean
Gaussian source st of power PS over an AWGN channel (2).

Following the problem setup of Sec. II, we consider the case
where KC ∈ N channel uses of (2) are available per each
source sample st. We suppress the time index t throughout
this section.

The goal of the transmitter is to convey the source s to the
receiver with a minimal possible average distortion, where the
appropriate distortion measure for our case of interest is the
mean square error distortion.

Transmitter: Similarly to (4), generates KC channel inputs
by applying a function E : R→ RKC to the source sample s:

a = E (s) ,

where a is is defined as in (4) and is subject to an average
power constraint (3).

Receiver: Similarly to (4), observes the KC channel outputs
b [defined as in (4)], and constructs an estimate ŝ of s, by
applying a function D : RKC → R:

ŝ = D (b) . (19)

Cost: The cost, commonly referred to as average distortion
in the context of JSCC, is defined by

D = E
[
(s− ŝ)2

]
,

and the corresponding (source) signal-to-distortion ratio (SDR)
is defined as

SDR ,
PS
D

.

Our results here are more easily presented in terms of
unbiased errors, as these can be regarded as uncorrelated ad-
ditive noise in the sequel (when used as part of the developed
control scheme). Therefore, we consider the use of (sample-
wise) correlation-sense unbiased estimators (CUBE), namely,
estimators that satisfy

E [s (s− ŝ)] = 0.

We note that any estimator ŝB can be transformed into a CUBE
ŝ by multiplying by a suitable constant:

ŝ =
E
[
s2
]

E [sŝB ]
ŝB ; (20)

for a further discussion of such estimators and their use in
communications the reader is referred to [20].

Shannon’s celebrated result [4] states that the minimal
achievable distortion, using any transmiter–receiver scheme,
is dictated, in the case of a Gaussian source, by12

1

2
log (1 + SDR) = R(D) ≤ KCC = KC

2 log (1 + SNR)(21)

where R(D) is the rate–distortion function of the source and
C is the channel capacity [4]; this result remains true even
in the presence of feedback — when the channel outputs are
available at the transmitter [47, Ch. 1.5]. Thus, the optimal
SDR, commonly referred to as optimum performance theoret-
ically achievable (OPTA) SDR, is given by

SDROPTA = (1 + SNR)
KC − 1. (22)

While (22) is attainable by a separated scheme that maps Ks

source samples to KsKC channel uses, in the limit of large
ns, it is in general an open problem how closely (22) can
be approached at finite delay. Here we focus on the scenario
of interest to control, namely, the zero-delay case, in which
a single Gaussian sample is instantaneously mapped to KC

channel uses.
We next concentrate on the case of KC > 1, where perfect

instantaneous feedback is available, in Sec. V-A. We further
treat the case of KC = 2 when no feedback is available, in
Sec. V-B.

A. With Feedback

When perfect instantaneous feedback is available, the fol-
lowing simple scheme, due to Elias [22], is known to achieve
SDROPTA for KC ∈ N.

Scheme V.1 (JSCC with feedback).
Transmitter. At channel use i ∈ [KC ]:
• Calculates the MMSE estimation error of the source s

given all past outputs (b1, . . . , bi−1) (available via the
instantaneous feedback):

s̃MMSE
i−1 = s− ŝMMSE

i−1 ,

where the MMSE estimate ŝi of st given (b1, . . . , bi) is
equal to

ŝMMSE
i = ŝMMSE

i−1 + SNR

√
PS

(1 + SNR)
i+1

bi , (23a)

ŝMMSE
0 = 0. (23b)

• Transmits the estimation error s̃i−1 after a suitable power
adjustment:

ai =
(1 + SNR)

i−1

PS
s̃MMSE
i−1 . (24)

Receiver. At channel use i ∈ [KC ]:
• Calculates the MMSE estimate ŝMMSE

i of s from
(b1, . . . , bi) as in (23).

12The rate–distortion function here is written in terms of the unbiased SDR,
in contrast to the more common biased SDR expression log(SDR).
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• Calculates the CUBE estimate ŝi of s from (b1, . . . , bi)
using (20):

ŝi =
(1 + SNR)

i

(1 + SNR)
i − 1

ŝMMSE
i .

Theorem V.1 ([22]). Scheme V.1 achieves the OPTA SDR (22).

We provide a short proof, for completeness.

Proof. The transmitter calculates the MMSE estimate from the
channel outputs which are available to it via the feedback and
transmits the estimation error with a proper power adjustment.

Clearly, ŝMMSE
t;0 = E [st] = 0.

At channel use i, the MMSE estimate is given by

ŝMMSE
i , E [s|b1, . . . , bi] (25a)

= E
[
ŝMMSE
i−1 + s̃MMSE

i−1

∣∣b1, . . . , bi] (25b)

= ŝMMSE
i−1 + E

[
s̃MMSE
i−1

∣∣b1, . . . , bi] , (25c)

= ŝMMSE
i−1 +

SNR

1 + SNR

√
PS

(1 + SNR)
i−1

bi , (25d)

where (25c) holds since (s̃MMSE
i−1 , bi) are independent of

b1, . . . , bi−1 due to the structure of ai (24), the fact that the
MMSE estimation error is orthogonal to all the measurements,
and hence also independent by Gaussianity, and (25d) holds
since the MMSE estimatior is linear in the Gaussian case.

The MMSE is equal to the conditional MMSE in the
Gaussian case, and is given by

E
[
s̃2
i

∣∣b1, . . . , bi] = E
[
s̃2
i

]
=

1

(1 + SNR)
i
PS .

This concludes the proof.

Remark V.1 (Non-Gaussian noise). For the case of a
non-Gaussian additive noise channel with a given SNR,
Scheme V.1 achieves an SDR that is equal to (1+SNR)KC−1.
Since linear optimization is generally suboptimal in the non-
Gaussian case, better performance can be attained using an
appropriate scheme; a notable attempt in this direction was
made by Shayevitz and Feder [48]. In fact, for most noises,
OPTA performance can be attained only in the limit of large
KC and KS , even in the presence of feedback [47, Ch. 3.5].

B. Without Feedback

We now turn to the more involved case of low-delay JSCC
without feedback. We concentrate on the case of KC = 2.
That is, the case in which one source sample is conveyed over
two channel uses.

A naı̈ve approach is to send the source as is over both
channel uses, up to a power adjustment. The corresponding
unbiased SDR in this case is

SDRlin = 2SNR,

a linear improvement rather than an exponential one as in (22).
This scheme approaches (22) for very low SNRs, but suffers
great losses at high SNRs. We note that the linear factor 2
comes from the fact that the total power available over both

Fig. 4. Linear and Archimedean bi-spiral curves.

channel uses has doubled, and the same performance can be
attained by allocating all of the available power to the first
channel use and remaining silent during the second channel
use.

This suggests that better mappings that truly exploit the
extra channel use can be constructed. The first to propose
an improvement for the 1:2 case were Shannon [30] and
Kotel’nikov [31], in the late 1940s. In their works, the source
sample is viewed as a point on a single-dimensional line,
whereas the two channel uses correspond to a two-dimensional
space (represented by a dashed line in Fig. 4). In these terms,
the linear scheme corresponds to mapping the one-dimensional
source line to a straight line in the two-dimensional channel
space (see Fig. 4), and hence clearly cannot provide any
improvement, as AWGN is invariant to rotations. However,
by mapping the one-dimensional source line into a two-
dimensional curve that fills the space better, a great boost in
performance can be attained, as was demonstrated in [49]–[52]
and references therein, for different families of mappings.

In this work we concentrate on one the family that is based
on the Archimedean spiral, which was considered in several
works [51]–[54] (represented by the solid line in Fig. 4):{
areg

1 (s) = creg s cos(ωs) = creg |s| cos(ω|s|) sign(s)

areg
2 (s) = creg s sin(ωs) sign(s) = creg |s| sin(ω|s|) sign(s)

(26)

where ω determines the rotation frequency, the factor creg

is chosen to satisfy the power constraint, and the sign(s)
term is needed to avoid overlap of the curve for positive and
negative values of s (for each of which now corresponds a
distinct spiral, and the two meet only at the origin). This
spiral allows to effectively improve the resolution with respect
to small noise values, since the one-dimensional source line
is effectively stretched compared to the noise, and hence the
noise magnitude shrinks when the source curve is mapped
(contracted) back. However, for large noise values, a jump to
a different branch — referred to as a threshold effect — may
occur, incurring a large distortion. Thus, the value ω needs
to be chosen to be as large as possible to allow maximal
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stretching of the curve for the same given power, while
maintaining a low threshold event probability. The SDRs for
different values of ω are depicted in Fig. 5a.

Another ingredient that is used in conjunction with (26)
is stretching s prior to mapping it to a bi-spiral using
φλ(s) , sign(s)|s|λ:{
astretch

1 (s) = areg
1 (φλ(s)) = cstretch|s|λ cos

(
ω|s|λ

)
sign(s)

astretch
2 (s) = areg

2 (φλ(s)) = cstretch|s|λ sin
(
ω|s|λ

)
sign(s)

(27)

The choice λ = 0.5 promises a great boost in performance
in the region of high SNRs, as is seen in Fig. 5b. We
further note that although the optimal decoder is an MMSE
estimator E [s|b1, b2], in this case, the maximum-likelihood
(ML) decoder, p(b1, b2|s), achieves similar performance for
moderate and high SNRs. A joint optimization of λ and ω for
each SNR, for both ML and MMSE decoding, was carried out
in [53] and is depicted in Fig. 5.

A desired property of the linear JSCC schemes is that their
SDR improves with the channel SNR (“SNR universality”).
Such an improvement is not allowed by the separation-based
technique, as it fails when the actual SNR is lower than
the design SNR, and does not promise any improvement for
SNRs above it. This motivated much work in designing JSCC
schemes whose performance improves with the SNR, even for
the case of large blocklengths [55]–[57]. The schemes in these
works achieve optimal performance (22) for a specific design
SNR (22), and improve linearly for higher SNRs. Similar
behavior is observed also in Fig. 5 where the optimal ω value
varies with the (design) SNR, and mimics closely the quadratic
growth in the SDR. Above the design SNR, linear growth is
achieved for a particular choice of ω.

We further note that the distortion component due to the
threshold event grows with |s|. To avoid this behavior, instead
of increasing the magnitude

∥∥astretch
∥∥ proportionally to the

phase ∠
(
astretch

)
as in (27), we propose to increase it slightly

faster at a pace that guarantees that the incurred distortion does
not grow with |s|:{

abounded
1 (s) = cbounded|s|λβ cos

(
ω|s|λ

)
sign(s)

abounded
2 (s) = cbounded|s|λβ sin

(
ω|s|λ

)
sign(s)

(28)

for some β > 1. This has only a slight effect on the resulting
SDRs, as is illustrated in Fig. 5.

Finally, note that in no way do we claim that the spiral-
based Shannon–Kotel’nikov (SK) scheme is optimal. Various
other techniques exist, most using a hybrid of digital and
analog components [49], [50], [58], which outperform the
spiral-based scheme for various parameters. Nevertheless, this
scheme is the earliest technique to be considered and it gives
good performance boosts which suffice for our demonstration.

VI. CONTROL VIA SOURCE–CHANNEL SEPARATION

The separation-based control scheme, outlined next, applies
Alg. III.2 and sends the resulting quantization indices after
encoding with a tree code generated as in Sec. IV. The
observer/transmitter knowingly ignores any decoding errors
made by the controller/receiver by internally simulating the
system without any decoding errors. On the other hand,

(a) λ = 1.

(b) λ = 0.5.

Fig. 5. Performances of the JSCC linear repetition scheme, OPTA bound,
and the JSCC SK spiral scheme for optimized λ and ω, for the standard case
(β = 1) and distortion-bounded case. The solid lines depict the performance
of the standard spiral for various values of ω for two stretch parameters
λ = 0.5 and 1, which perform better at high and low SNRs, respectively.

the controller/receiver, upon detecting an error in the past,
recalculates the steps of Alg. III.2 starting from this error and
corrects for it in the following steps.
Scheme VI.1 (Separation-based).

Initialization.
1) Selects the number of information bits k that are encoded

at every time step t [recall (11), (14)].
2) Sets the size M of the PAM constellation to be 2k and

the number of coded bits — n to be KCk.
3) Generates G1, . . . ,GT as in Def. IV.3.
4) Assigns the noiseless-channel capacity C of Alg. III.2 to

equal k.
5) Initializes Alg. III.2.
Observer/Transmitter. At time t ∈ [T ]:

1) Runs the Observer/Transmitter steps of Alg. III.2 with
the control signal ut in Step 6 replaced by the signal
generated by the controller in (29).

2) Maps the resulting quantization index `t into the k-bit
input ıt of the tree encoder.
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3) Encodes ıt into n coded bits ct according to (14).
4) Maps ct into KC constellation points at as in (18).
5) Transmits the KC constellation points at over the KC

channel uses.
Controller/Receiver.

1) Receives the KC channel outputs bt.
2) Recovers estimates of all information bits until time t,(

ı̂1|t, ı̂2|t, . . . , ı̂t|t
)

as in (12) using Alg. 1.
3) Maps each ı̂τ |t (for τ ∈ [t]) into a quantization index es-

timate ˆ̀r
τ |t, where the superscript ‘r’ stands for ‘receiver’.

4) Finds the earliest time τ ∈ [t− 1] for which ˆ̀r
τ |t 6= ˆ̀r

τ |t.
We denote this time instant by t0. If no such time instant
exists set t0 = t.

5) Runs the Controller/Receiver steps of Alg. III.2 for
time instants τ = t0, . . . , t − 1, with `t replaced with
(ˆ̀r

1|t, . . . ,
ˆ̀r
t|t) and the used control signals ut−1.

6) Runs Steps 1 and 3 of the Controller/Receiver of
Alg. III.2 for time instant t with `t replaced with ˆ̀r

t|t.
7) Applies the control signal

ut = −Ltx̂r
t|t +

t−1∑
τ=0

αt−1−τLτ

(
x̂r
τ |t − x̂

r
τ |t−1

)
(29a)

= −Ltx̂r
t|t +

t−1∑
τ=t0

αt−1−τLτ

(
x̂r
τ |t − x̂

r
τ |t−1

)
, (29b)

to the system, where x̂r
τ |t denotes the estimate of the

source xτ given
(

ˆ̀r
1|t,

ˆ̀r
2|t, . . . ,

ˆ̀r
τ |t

)
at the receiver.

VII. CONTROL VIA LOW-DELAY JSCC

In this section we construct a Kalman-filter-like solu-
tion [43] by employing JSCC schemes. We note that the
additional complication here is due to the communication
channel (2) and its inherent input power constraint.

Denote by x̂r
t1|t2 the estimate of xt1 at the receiver given

bt2. Denote further its mean square error (MSE) by

P r
t1|t2 , E

[(
x̃r
t1|t2

)2
]
,

where

x̃r
t1|t2 , xt1 − x̂r

t1|t2 .

Then, the scheme works as follows. At time instant t, the
controller constructs an estimate x̂r

t|t of xt. It then applies
the control signal ut = −Ltx̂r

t|t to the plant, with Lt given
in (10). Note that, since both the controller and the observer
know the previously applied control signals ut, they also know
x̂r
t|t and x̂r

t+1|t.
Hence, in order to describe xt the observer can save transmit

power by transmitting the error signal (xt − x̂r
t|t−1), instead

of xt. The controller can then add back x̂r
t|t−1 to the received

signal to construct x̂r
t|t.

Scheme VII.1.

Observer/Transmitter: At time t
• Generates the desired error signal

st = x̃r
t|t−1 (30a)

= xt − x̂r
t|t−1 (30b)

of average power P r
t|t−1 (determined in the sequel).

• Since the channel input is subject to a unit power con-
straint (3), st is normalized:

s̄t =
1√
P r
t|t−1

st . (31)

• Maps s̄t into KC channel inputs, constituting the en-
tries of at, using a bounded-distortion JSCC scheme of
choice with (maximum given any input) average distor-
tion 1/SDR0 for the given channel SNR.

• Sends the KC channel inputs at over the channel (2).

Controller/Receiver: At time t
• Receives the KC channel outputs bt.
• Recovers a CUBE of the source signal s̄t: ˆ̄st = s̄t+neff

t ,
where neff

t ⊥ s̄t is an additive noise of power of (at most)
1/SDR0.

• Unnormalizes ˆ̄st to construct an estimate of st:

ŝt =
√
P r
t|t−1

ˆ̄st (32a)

=
√
P r
t|t−1

(
s̄t + neff

t

)
(32b)

= x̃r
t|t−1 +

√
P r
t|t−1 n

eff
t . (32c)

• Constructs an estimate x̂r
t|t of xt given bt. Since ŝt ⊥

x̂r
t|t−1, the linear MMSE estimate amounts to13

x̂r
t|t = x̂r

t|t−1 +
SDR0

1 + SDR0
ŝt , (33)

with an MSE of

P r
t|t =

P r
t|t−1

1 + SDR0
. (34)

• Generates the control signal

ut = −Ltx̂r
t|t ,

and the receiver prediction of the next system state

x̂r
t|t−1 = αx̂r

t−1|t−1 + ut−1 ,

where Lt is given as in Lem. III.1.
Using (34) and (1), the prediction error at the receiver is

given by the following recursion:

P r
t+1|t =

α2P r
t|t−1

1 + SDR0
+W. (35)

The recursive relation (35) leads to the following condition
for the stabilizability of the control system.

Theorem VII.1 (Achievable). The scalar control system of
Sec. II is stabilizable using Scheme VII.1 if α2 < 1 + SDR0,
and its infinite-horizon average-stage LQG cost J̄∞ (6) is
bounded from above by

J̄ ≤
Q+

(
α2 − 1

)
S

1 + SDR0 − α2
W. (36)

13If the resulting effective noise neff
t is not an AWGN with power that does

not depend on the channel input, then a better estimator than that in (33) may
be constructed.
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The following theorem is an adaptation of the lower bound
in [59] to our setting of interest.

Theorem VII.2 (Lower bound). The scalar control system of
Sec. II is stabilizable only if α2 < 1 + SDROPTA, and the
optimal achievable infinite-horizon average-stage LQG cost is
bounded from below by

J̄ ≥
Q+

(
α2 − 1

)
S

1 + SDROPTA − α2
W. (37)

By comparing (36) and (37) we see that the potential gap
between the two bounds stems only from the gap between the
bounds on the achievable SDR over the AWGN channel (2).

It is interesting to note that in this case, in stark contrast to
the classical LQG setting in which the system is stabilizable
for any values of α and W , low values of the SDR render
the system unstable. Hence, it provides, among others, the
minimal required transmit power for the system to remain
stable. The difference from the classical LQG case stems
from the additional input power constraint, which effectively
couples the power of the effective observation noise with that
of the estimation error, and was previously observed in, e.g.,
[23], [24], [59], [60]. The existence of a threshold SDR below
which the system cannot be stabilized parallels the result of
Sinopoli et al. [27] for control over packet drop channels,
showing that the system cannot be stabilized if packet drop
probability exceeds a certain threshold.

We next discuss the special cases of KC = 1 in Sec. VII-A,
KC ∈ N and instantaneous perfect output feedback in
Sec. VII-B, and KC = 2 in Sec. VII-C.

A. Source–Channel Rate Match

In this subsection we treat the case of KC = 1, namely,
where the sample rate of the control system and the signaling
rate of the communication channel match.

As we saw in Sec. V, analog linear transmission of a
Gaussian source over an AWGN channel achieves optimal
performance (even when infinite delay is allowed), namely,
the OPTA SDR (22), for any given input value. Thus, the
JSCC scheme that we use in this case is linear transmission —
the source is transmitted as is, up to a power adjustment
[recall (30) and (31)]:

at = s̄t

=
1√
P r
t|t−1

st .

Since in this case SDR0 = SDROPTA, the upper and lower
bounds of Thms. VII.1 and VII.2 coincide, establishing the
optimum performance in this case.

Corollary VII.1. The scalar control system of Sec. II with
KC = 1 is stabilizable if only if α2 < 1 + SNR, and the
optimal achievable infinite-horizon average stage LQG cost
satisfies (36) with equality with SDR0 = SNR.

Remark VII.1. The stabilizability condition and optimum
MMSE performance were previously established in [23], [60]
and extend also to the noisy-observation case [19].

B. Source–Channel Rate Mismatch with Feedback

When the AWGN channel outputs bt (2) are available to the
transmitter via an instantaneous feedback, we can incorporate
Scheme V.1 in Scheme VII.1 to attain the OPTA SDR and
again establish the optimal LQG cost of this setting.

Corollary VII.2. The scalar control system of Sec. II KC ∈ N
is stabilizable if only if α2 < (1 + SNR)

KC , and the optimal
achievable infinite-horizon average stage LQG cost satisfies
(36) with equality with SDR0 = (1 + SNR)

KC − 1.

Remark VII.2 (Non-Gaussian noise). Following Rem. V.1, the
achievable of Thm. 36 is attainable with SDR0 = SNR even
when the noise is non-Gaussian. In this case, however, the
variance W in the lower bound of Thm. VII.2 should be
replaced with its entropy-power (which is strictly lower than
the variance for non-Gaussian processes) [59], and therefore
better performance might be achievable.

C. Source–Channel Rate Mismatch without Feedback

We now consider the case of KC = 2 channel uses per
sample. As we saw in Sec. V, linear schemes are subop-
timal outside the low-SNR region. Instead, by using non-
linear maps, e.g., the (modified) Archimedean spiral-based SK
maps (28), better performance can be achieved. This scheme
is implemented in [32, tree/master/code/joint].

We note that the improvement in the SDR of the JSCC
scheme is substantial when α2 is of the order of SDR. That
is, when the SDR of the linear scheme is close to α2−1, using
an improved scheme with better SDR improves substantially
the LQG cost. Unfortunately, the spiral-based SK schemes
do not promise any improvement for SNRs below 5dB under
maximum-likelihood (ML) decoding.

Remark VII.3. By replacing the ML decoder with an MMSE
one, strictly better performance can be achieved over the linear
scheme for all SNR values.

Remark VII.4. The resulting effective noise at the output of
the JSCC receiver is not necessarily Gaussian, and hence the
resulting system state xt, is not necessarily Gaussian either.
Nevertheless, for the bounded-distortion scheme (28), this has
no effect on the resulting performance, as is demonstrated next.

VIII. SIMULATIONS

A. Rate-Matched Case

The optimal average-stage LQG cost is illustrated in Fig. 6,
for a system with α = 2 and two SNRs — 2 and 4. SNR = 4
satisfies the stabilizability condition α2 < 1 + SNR, whereas
SNR = 2 fails to do so. Unit LQG penalty coefficients
Qt ≡ Rt ≡ 1 and unit driving noise power W = 1 are used.

B. JSCC for Rate-Mismatched Case

The effect of the SDR improvement is illustrated in Fig. 7
for a system with α = 3 and W = 1, for Qt ≡ 1 and
Rt ≡ 0, by comparing the achievable costs and lower bound
of Theorems VII.1 and VII.2. We note that the JSCC scheme
with (intermediate) feedback always achieves OPTA.
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Fig. 6. Optimal average stage LQG cost J̄ of a single representative run
for KC = KS = 1, α = 2, and SNRs 2 and 4 which correspond to a
stabilizable and an unstabilizable systems. The driving noise and observation
noise powers and the LQG penalty coefficients are Qt = Rt = W = 1.

C. Comparison of Separation-based and JSCC Schemes for
Rate-Mismatched Case

We now compare the performance of the separation-based
scheme of Sec. VI with the JSCC schemes of Sec. VII. The
implementations of these schemes are available in [32].

Fig. 8 shows a comparison of the control costs J̄t achieved
by these schemes for a perfectly observed scalar plant with
α = 1.2, W = 1, Qt ≡ 1 and Rt ≡ 0, over 256 runs.

Clearly, the JSCC-based schemes outperform the separation-
based schemes by a large margin.

Note that while larger constellations perform better for high
SNRs, the situation is reversed when the SNR is low.

We further include a simulation of a single run of each of the
schemes in Fig. 9. For the separation-based scheme, decoding
errors (times when ˆ̀r

t|t 6= `t) are highlighted. Their impact
is clear: while the decoder is in error, it applies the wrong
control signal, causing the cost function to rapidly deteriorate.
In the instance shown, these decoding errors are clearly the
major factor degrading performance.

IX. DISCUSSION AND FUTURE RESEARCH

A. Excess transmission power versus excess cost

As is evident from the simulation results in Sec. VIII-C, in
addition to demanding far less computation time and memory,
and being considerably simpler to implement than separation-
based schemes, the JSCC-based schemes also perform much
better in terms of control cost.

A key component behind this improvement is the fact that
the JSCC schemes of Sec. V allow the (rare) utilization of large
(unbounded) excess transmission power. The separation-based
schemes, on the other hand, are limited by the transmission
power of the maximum constellation point, which increases
as the square root of the average power.14 Namely, these
schemes have a peak power constraint, which is known to
have a detrimental effect on the performance [61].

14In the limit of infinite-size constellations, the distribution of the con-
stellation tends to a continuous uniform PDF over [−M/2,M/2] of power
P = M2/12.

Fig. 7. Average stage LQG costs when using the (distortion-bounded)
SK Archimedean bi-spiral, repetition and the lower bound of Thm. VII.2
for α = 3,W = 1, Qt ≡ 1, Rt ≡ 0. The vertical dotted lines represent the
minimum SNR below which the cost diverges to infinity.

Fig. 8. Average-stage LQG costs averaged over 256 runs when using
the (distortion-bounded) JSCC SK Archimedean bi-spiral scheme, linear
(repetition) scheme, separation-based scheme for 2-PAM and 4-PAM, and the
(OPTA) lower bound of Thm. VII.2 for α = 1.2,W = 1, Qt ≡ 1, Rt = 0.
The SNRs for which the separation based schemes were simulated are marked
with squares and circles for 2-PAM and 4-PAM, respectively.

Another unfortunate shortcoming of using separation-based
schemes is their incompetence to stabilize higher moments.
As was noted already in the seminal work of Sahai and
Mitter [6], in order to stabilize higher moments, increased error
exponents are required, that need to grow linearly with the
moment’s order — this behavior is manifested by the abrupt
jumps in the cost of this scheme in Fig. 9. In contrast, JSCC
schemes (which in our case enjoy an implicit feedback via the
control-system loop) can attain a super exponential decay of
the error probability, when used to send bits [62] (cf. [61]).
Thus, such schemes can stabilize more and even all moments,
and guarantee almost-sure stability (by using, e.g., the simple
linear/repetition based scheme), as was noted already by Sahai
and Mitter [6, Sec. III-C] in the context of anytime reliability.

B. Partially observable vector systems

In this paper we focused on the simplest case of scalar
systems, and KC = 2. As implied by the JSCC theorem (21),
an exponentially large (in KC) gain in the cost can be
achieved.
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We further note that the results of Thms. VII.1 and VII.2
readily extend to systems with noisy observations [63] as well
as vector states xt and vector control signals ut but scalar
observed outputs yt.

Interestingly, for the case of vector (observation, state and
control) signals, even if the signaling rate of the channel
and the sample rate of the observer are equal (rate matched
case), conveying several analog observations over a single
channel input may be of the essence. This is achieved by a
compression JSCC scheme, e.g., by reversing the roles of the
source and the channel inputs in the SK spiral-based scheme.
Similarly to their expansion couterparts, such compression
JSCC schemes provide exponentially growing gains with the
SNR and dimension [30], [31], [50]–[53], [64], and promise
better LQG costs than their linear counterparts, proposed and
explored in [23], [60].

C. Oblivious transmitter

In this work, we assumed that the observer knows all past
control signals. We note that such information is not needed
for the JSCC schemes (without feedback), for the special case
of variance control, i.e., Rt ≡ 0.

For the more general LQG-cost setting (Rt 6≡ 0), this
assumption can be viewed as a two-sided side-information
scenario. Nevertheless, although this is a common situation in
practice, there are scenarios in which the observer is oblivious
of the control signal applied or has only a noisy measurement
of the actuation signal generated by the controller. Such
settings can be regarded as a JSCC problem with side infor-
mation at the receiver (only), and can be treated using JSCC
techniques designed for this case, some of which combine
naturally with the JSCC schemes for rate mismatch [50],
[58], [65]. In fact, this idea was recently applied for the
related problem of communication over an AWGN channel
with AWGN feedback in [66].

We further note that for bounded noise (even worst-
case/arbitrary), parallel results can be achieved.

D. Packet-based transmission with erasures

In the separation-based schemes, following the work of
Sahai and Mitter [6], we used a decoder that ought to make
a decision on all information bits transmitted until that time,
even if its “belief” of a particular bit — quantified by an
appropriate metric, say Fano’s metric — is low.

An alternative to this approach is to allow declaring an
erasure, for bits of “low belief”. This idea was advocated
and explored in the celebrated work of Fano [67] for block
codes, where a tradeoff between the achievable error erasure
exponents was established.

Furthermore, by substantially increasing the error exponent
(lowering the error probability), at the expense of decreasing
the erasure exponent (increasing the erasure probability), one
can drive the separation-based scheme toward that of a noise-
less channel with occasional packet erasures. Interestingly,
Alg. III.2 and the lower bound of Thm. VII.2 readily extend
to this case due to their “greedy nature” [28].
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Fig. 9. LQR cost comparison of the separation-based scheme with k = 2
(2-PAM constellation), the JSCC SK bi-spiral scheme, and the OPTA lower
bound for α = 1.2, SNR = 4.5 dB,W = 1, Qt ≡ 1, Rt ≡ 0. The schemes
were simulated for the same disturbance and noise sequences and their results
are compared to the analytically derived cost of the JSCC scheme and the
OPTA lower bound. Times when decoding errors in the separation-based
scheme occur are marked by a thick line.
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