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Abstract—A framework is developed for decode-and-forward
based relaying using standard coding and decoding that are
good for the single-input single-output (SISO) additive white
Gaussian noise channel. The framework is applicable to various
scenarios and demonstrated for several important cases. Each
of these scenarios is transformed into an equivalent Gaussian
multiple-input multiple-output (MIMO) common-message broad-
cast problem, which proves useful even when all links are SISO
ones. Over the effective MIMO broadcast channel, a recently
developed Gaussian MIMO common-message broadcast scheme
is applied. This scheme transforms the MIMO links into a set
of parallel SISO channels with no loss of mutual information,
using linear pre- and post-processing combined with successive
decoding. Over these resulting SISO channels, “off-the-shelf”
scalar codes may be used.

Index Terms—Relay channel, rateless coding, MIMO channels,
successive interference cancellation.

I. INTRODUCTION

Relaying techniques are a key element in enhancing the per-

formance of wireless networks. Accordingly, a great amount

of research effort has been devoted to studying both the

information-theoretic limits of networks incorporating relays,

and to developing suitable coding techniques.

While the capacity of even the most basic relay channel,

namely the scalar Gaussian single-relay channel, introduced

in [1], [2], remains unknown, achievable rate regions, as well

as outer bounds, have been established for basic models,

following the pioneering work of [3]. The achievable regions

are largely based on a few key relaying approaches, and can

roughly be categorized around the Amplify-and-Forward (AF),
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Compress-and-Forward (CF), and Decode-and-Forward (DF)

paradigms. We refer the reader to [4]–[6] for a review of these

and other approaches.

Another key ingredient in enhancing the performance of

wireless networks is the use of multiple-input multiple-output

(MIMO) links [7], [8]. MIMO transmission can be used

in conjunction with any relaying technique to further boost

performance over that of single-input single-output (SISO)

transmission.

The present work provides a unified framework for con-

structing coding schemes that approach the optimal perfor-

mances of DF protocols over different Gaussian channel

topologies, using only “off-the-shelf” scalar codes designed

for the additive white Gaussian noise (AWGN) channel, for

both SISO and MIMO links, where perfect channel knowledge

is available at all transmission ends (“closed loop”). Specifi-

cally, we treat the important special cases of half-duplex (HD)

and full-duplex (FD) transmission over the (“triangular”)

relay channel [1]–[3] (both SISO and MIMO). The approach

proposed in this work is demonstrated for these basic settings,

laying the foundations for treating more complex Gaussian

networks in a unified manner.

The question of how to implement the full- and half-duplex

DF protocols over the relay channel is non-trivial even for

the SISO case, and has motivated numerous works that have

proposed coding techniques tailored to DF relaying; see [9]–

[15] and references therein for suggested coding techniques for

full-duplex relaying. For half-duplex relaying, Mitran et al. [5]

proposed a practical scheme, that employs rateless coding;

transmission is divided into two phases: During the first

(“listening” or “broadcast”) phase, the source broadcasts to the

relay and the destination, at the end of which the relay is able

to recover the message conveyed by the source. During the

second (“collaboration” or “multiple-access”) phase, both the

relay and the source transmit coherently, until the destination

is able to decode the message as well.1 We note that the

practicality of the scheme assumes the availability of good

rateless codes for the AWGN channel. Recent works address-

ing rateless coding for the AWGN channel include [16]–[18].

Since in such a transmission scheme, the relay decodes the

message from only the first part of the codeword — while the

destination from its full blocklength — DF over the HD relay

channel is sometimes referred to as rateless relaying [6], [19];

1This scheme assumes a degraded relay channel, namely that the relay is
able to recover the message prior to the destination; otherwise, the destination
is able to decode the message before the relay, and this scheme reduces to
that of direct transmission (“silent” relay) throughout the whole transmission
process.
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Fig. 1: SISO relay channel.

see [20]–[23] and references therein for works developing

various code designs for HD DF.

In the framework proposed in this paper, there is no need

for explicit design of rateless codes for a relay network.

Rather, rateless coding naturally emerges as an integral part in

the designed transmission schemes. In particular, the rateless

transmission scheme for the scalar AWGN channel, developed

previously in [16], is shown to be a special case of the

design problem addressed in this paper, as well as its MIMO

counterpart, and hence can be treated in a similar manner. The

resulting rateless coding scheme may also serve as a building

block in MIMO networks with several nodes, where one node

wishes to transmit the same information to several users, where

the latter nodes may wish to forward the decoded message

further to other destinations.

We show that it is possible to reduce the coding task for the

scenarios above to standard AWGN scalar coding, where en-

coding and decoding may be carried out using a modulation–

code separation (MCS) approach. This is done by employing

judiciously designed linear processing, in conjunction with

successive interference cancellation (SIC). That is, encoder

and decoder modules designed for SISO AWGN channels

can be used in a straightforward manner while the specific

relay architecture will influence only the linear processing

employed.

The system architecture developed in this paper for the

relaying problem builds on the work in [24], [25], where a

novel joint unitary decomposition is derived and is tightly

related to common-message broadcast (BC) (or physical-layer

multicast) over Gaussian MIMO channels.

The rest of the paper is organized as follows. We begin in

Section II by describing the half- and full-duplex SISO relay

channel models and the corresponding decode-and-forward

relaying variants. The coding schemes sought in this paper

are formally defined in Section II-C, and a capacity-achieving

scheme that uses such codes for the problem of broadcasting

a common message over MIMO channels is presented in

Section III. Building on this MIMO common-message BC

scheme, we construct decode-and-forward schemes for the

half- and full-duplex relay channel settings in Section IV,

and extend them in Section V to the MIMO case. These

results are then utilized for the derivation of a MIMO rateless

coding scheme in Section VI. Finally, generalizations of the

architecture to other input constraints and more relays, with

or without “line-of-sight”, are discussed in Section VII.

II. DECODE-AND-FORWARD RELAYING

In the triangular relay channel model, a source sends a

signal to a destination and a relay, where the relay transmits

an additional signal to the destination. We consider the SISO

relay channel setting, depicted in Fig. 1, in which all signals

pass through SISO channels:

yR = hR,SxS + zR , (1a)

yD = hD,SxS + hD,RxR + zD , (1b)

where x, y and z denote channel input, output and noise

vectors, respectively, using subscripts ‘S’, ‘R’ and ‘D’ to

indicate ‘source’, ‘relay’ and ‘destination’, respectively. The

channel gains are denoted by h with two subscripts, where

the first subscript indicates the channel output (“destination

node”), and the second indicates the channel input (“originat-

ing node”). We assume full knowledge of all channel gains at

all communication nodes (closed loop). We further assume that

all noise processes are mutually independent and circularly-

symmetric Gaussian. Without loss of generality we assume

that these noise processes are white and of unit power, that all

gains are real and non-negative,2 and that all channel inputs

are subject to the same average power constraint P .

Different settings have been considered for this channel,

the two most prominent being half- and full-duplex relaying.3

Since the capacity of this channel is not known in general

(for half- or full-duplex), different transmission protocols have

been proposed.

In the rest of this section, we recall the decode-and-forward

half- and full-duplex relaying protocols, in Sections II-A and

II-B, respectively. We formally define, in Section II-C, the

class of “practical schemes” we are after, that materialize these

protocols.

A. Half-Duplex Relaying

In the half-duplex setting, the relay may either receive or

transmit at each time instant, but not both simultaneously.

Thus, the system may be either in BC mode:

yR = hR,SxS + zR , (2a)

yD = hD,SxS + zD , (2b)

or in a multiple-access (MAC) mode:

yD = hD,SxS + hD,RxR + zD . (3)

We consider the construction of a two-phase DF protocol

for the case of hR,S > hD,S,4 following the rateless relaying

scheme proposed by Mitran et al. [5]. During the first (BC)

phase, consisting of n1 uses of the channel (2), both the

destination and the relay receive information from the source,

until the relay is able to decode; during the second (MAC)

phase, consisting of (n2−n1) uses of the channel (3), the relay

and the destination transmit coherently until the destination is

able to decode the transmitted message as well. Assume that

the ratio used between the total duration and the MAC duration

2Since any phase can be absorbed in the transmit signals.
3Other settings, such as their “non-coherent” variants (see, e.g., [26]), can

be treated in a similar manner to the one proposed in this work.
4Otherwise, the relay channel is reversely degraded and the decode-and-

forward scheme reduces to that of direct transmission, that is, point-to-point
communication where the relay stays silent. This is indeed optimal in the HD
case; see, e.g., [26] for further details.



3

is rational,5 i.e., n1 = m1n and n2 = m2n, for some positive

integers m1, m2 and n. Denote by P1 and P2 the average

power per channel use used by the source during the first and

second phases, respectively; these power allocations need to

satisfy the total power constraint

m1P1 + (m2 −m1)P2 ≤ m2P.

The optimal allocation should be chosen to maximize the

achievable rate, but its exact value is not material for the

formulation of the protocol.

Denote further the average power used during the second

phase by the relay by PR, which satisfies, in turn, the con-

straint

(m2 −m1)PR ≤ m2P.

Protocol (Half-duplex decode-and-forward relaying).

Offline:

• Choose admissible power allocations P1, P2 and PR.

• Construct a good code of blocklength n2 that can be

recovered (w.h.p.) from either

– n1 channel uses over an AWGN channel with signal-

to-noise ratio (SNR) equal to |hR,S|2P1.

– n2 channel uses with the first n1 channel uses

having an SNR of |hD,S|2P1, and the remain-

ing (n2 − n1) channel uses having an SNR of
(

hD,S

√
P2 + hD,R

√
PR

)2
.

Source during BC phase: Transmits the first n1 entries of

the codeword with average power P1.

Source during MAC phase: Transmits the remaining

(n2 − n1) entries of the codeword with average power P2.

Relay during BC phase: Recovers the codeword from the

first n1 channel uses.

Relay during MAC phase: Transmits the last (n2 − n1)
entries of the codeword with average power PR.

Destination: Receives the first n1 (corrupted) codeword

entries sent only by the source, and then the remaining

(n2 − n1) entries transmitted by both the source and the relay,

and recovers the codeword.

The optimal achievable rate using this scheme is equal to

(see, e.g., [5], [19])

R =
1

m2
min

{

m1 log
(

1 + |hR,S|2 P1

)

,

m1 log
(

1 + |hD,S|2 P1

)

+ (m2 −m1) log

(

1 +
[

hD,S

√

P2 + hD,R

√

PR

]2
)

}

,

(4)

where the multiplication by a factor of 1/m2 normalizes the

rate per physical channel use.

5Since the rational numbers form a dense subset of the reals, any real ratio
can be approached arbitrarily closely.

Note that the message is recovered after a different number

of time instants at the relay and the destination. Moreover, the

destination observes a “varying-SNR” channel, i.e., different

SNRs during the two transmission phases of the protocol. This,

in turn, complicates the implementation of this protocol.

B. Full-Duplex Relaying

In the full-duplex setting [3], the relay may receive and

transmit simultaneously. Hence the DF protocol, in this case,

has a sequential nature: The data is partitioned into a sequence

of messages {m[i]}. At each time instant, the source and relay

transmit functions of a “sliding window” of messages, and the

relay and destination decode messages sequentially.

In this subsection we consider explicitly transmission

blocks, represented by row vectors and denoted by xn ,
(

x1 . . . xn

)

.

Detailed Protocol (Full-duplex decode-and-forward relaying).

Offline:

• Generate two different (independent) good AWGN code-

books of the same length n, power P , and rate to be

specified in the sequel. We denote the codebooks by CC

and CI, where the subscript ‘C’ stands for ‘coherent’, and

‘I’ — for ‘incoherent’, the operational meanings of which

will become apparent shortly.

• Denote by ρ2 the portion of the available power P that

is allocated to to codebook CC, where 0 ≤ ρ ≤ 1; the

remaining power (1− ρ2)P is allocated to CI.

Source: For each block i, the information message m[i] is

encoded into two codewords, xn
C [i] ∈ CC and xn

I [i] ∈ CI. The

i-th block signal of length n, xn
S [i], sent by the source, is equal

to the sum of xn
C [i] and xn

I [i + 1]. Thus, the signal in block

(or “time frame”) i sent by the source, xn
S [i], is equal to

xn
S [i] = ρxn

C [i] +
√

1− ρ2xn
I [i+ 1] . (5)

Relay as Receiver: At time frame (i − 1), m[i − 1] is

assumed to be known to the relay (assuming correct decoding

of previous codewords, and predetermined m[1]), and the

output at the relay is

ynR[i− 1] = xn
S [i− 1] + znR[i− 1]

= ρhR,Sx
n
C[i− 1] +

√

1− ρ2hR,Sx
n
I [i] + znR[i− 1] .

From this single output block, m[i] is recovered by decoding

xn
I [i], where the contribution of xn

C[i − 1] (which is known,

since m[i − 1] is known) is subtracted from ynR[i − 1],
resulting in:

ỹnR[i− 1] = ynR[i− 1]− hR,Sρx
n
C[i− 1] (6a)

=
√

1− ρ2hR,Sx
n
I [i] + znR[i− 1] . (6b)

Relay as Transmitter: At time frame i, the relay knows

m[i] (and hence also xn
C[i]) and sends

xn
R[i] = xn

C [i] . (7)

Destination: At each time frame i, the destination recovers

m[i] based on two consecutive output blocks ynD[i − 1] and
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ynD[i], assuming m[i−1] is known (was decoded correctly from

previous outputs, except for m[1] which is predetermined). In

essence, the destination recovers m[i] from two observations

of the encoded message: the first being a noisy version of

xn
I [i], whereas the other being a noisy version of xn

C [i].
Specifically, we subtract hD,Sρx

n
C [i − 1] from ynD[i − 1] to

arrive at

ỹnD[i− 1] = ynD[i− 1]− hD,Sρx
n
C[i− 1] (8a)

=
√

1− ρ2hD,Sx
n
I [i] + znD[i − 1] . (8b)

This serves as the first noisy observation.

The second noisy observation is that of xn
C [i], which is

obtained from ynD[i] as follows. The components of xn
C [i] in

the source signal xn
S [i] and the signal transmitted by the relay

xn
R[i] sum up coherently, whereas xn

I [i + 1] plays the role of

noise, namely,6

ynD[i] = (ρhD,S + hD,R)x
n
C [i] + znequiv[i] , (9)

where

znequiv[i] =
√

1− ρ2hD,Sx
n
I [i] + znD[i] (10)

is of power Pequiv =
(

1− ρ2
)

h2
D,SP + 1. Normalizing the

power of the noise z
equiv
i , i.e., dividing ynD[i] by

√

Pequiv, we

arrive at

ȳnD[i] =
1

√

Pequiv

ynD[i] (11a)

=
ρhD,S + hD,R

√

(1− ρ2)h2
D,SP + 1

xn
C [i] + z̄nD[i] , (11b)

where z̄nD[i] is of unit power.

Note that the relay recovers m[i] based on only a single

observation (6), whereas the destination uses two observations

(8) and (11) to recover the same information. Thus, assuming

independent Gaussian codebooks, the achievable rate of the

DF protocol is limited by the minimum of the mutual infor-

mations of the two [3] (see also [26]):7

RDF = min

{

log
(

1 +
(

1− ρ2
)

h2
R,SP

)

,

log
(

1 +
(

1− ρ2
)

h2
D,SP

)

+ log

(

1 +
(ρhD,S + hD,R)

2
P

(1− ρ2)h2
D,SP + 1

)}

(12a)

= min

{

log
(

1 +
(

1− ρ2
)

SR,S

)

,

log
(

1+SD,S + SD,R + 2ρ
√

SD,SSD,R

)

}

, (12b)

where we define the SNRs as S , h2P where h may

correspond to hD,R, hD,S or hR,S.

Remark 1. The technique above is applicable for any value of

ρ between 0 and 1. An optimization of this parameter and its

6Again, we assume, w.l.o.g., that hD,S and hD,R are real and positive.
7Assuming many blocks, the loss due to predetermining m[1] is negligible.
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z1

z2
xS

y1

y2

Fig. 2: Two-user MIMO broadcast channel.

optimal explicit value, along with the corresponding optimal

rate in (12), can be evaluated; see, e.g., [26].

Even though the rate of the FD DF protocol is fully

determined, it is not clear how to achieve it using a prac-

tical scheme. The main difficulty is in how to combine

the information carried by the two codewords xn
C and xn

I

(drawn from two independent codebooks, but carrying the

same information) and at the same time recover it at the relay.

Different approaches, e.g., list decoding, were proposed, but

these are still hard to implement in practice; see [4] for a

detailed survey of these schemes. In the sequel, we show how

to overcome this hurdle, i.e., design a practical scheme that

approaches (12), as defined next.

Remark 2. Using the same codebook for both xn
C and xn

I ,

i.e., CC ≡ CI, and maximum-ratio combining (MRC), is

suboptimal, since in order to maximize mutual information,

the channel inputs in the two channel blocks need to be

statistically independent.

C. Black-Box Coding Schemes

In the present work we follow a “black box” approach to

coding: We only allow the use of standard codes that are

good for SISO point-to-point AWGN channels, along with

linear pre- and post-processing and SIC. This way, the linear

processing and the SIC procedures allow to decouple the

coding task from the modulation, where only the latter is

tailored to the specific channel topology. We further want

any performance loss of the whole transmission scheme to be

governed solely by the loss of the SISO point-to-point AWGN

codebooks. We refer to such schemes as MCS schemes.8

In the sequel we shall show that both of the DF variants,

namely half- and full-duplex, can be transformed into equiv-

alent MIMO common-message BC problems. We therefore

describe next how to construct an MCS scheme for MIMO

common-message BC.

III. MCS SCHEMES FOR MIMO COMMON-MESSAGE

BROADCAST VIA MATRIX DECOMPOSITION

We now describe the main tool used in this work. We review

the results of [24] where an MCS scheme is introduced for

8Of course, since SIC is employed, error propagation needs to be taken into
account, and can bounded in a simple manner using the union bound. Due to
these issues, we make no claims for optimality in terms of error probability,
but only in terms of achievable rates.
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MIMO common-message BC. The channel model, depicted

in Fig. 2, is described by

yi = HixS + zi , (13)

where yi is the received Mi × 1 vector of user i (i = 1, 2),

xS denotes the NS × 1 complex-valued input vector which

is limited to an average power P , Hi is the Mi × NS

complex channel matrix to user i, and zi is assumed to be

a circularly-symmetric Gaussian vector of length Mi with

identity covariance matrix.

For communication to a single user, the rate achievable for

an M ×NS channel matrix H and an input covariance matrix

K , E[xx†] is equal to the Gaussian mutual information (MI)

between the input and output vectors

C(H,K) , log
∣

∣I +HKH†
∣

∣ , (14)

where | · | denotes the determinant and I is an identity matrix

of dimension M . The common-message BC capacity of this

channel is given by the compound-channel capacity [27]–[29]

Ccommon = max
K

min
i=1,2

C(Hi,K) . (15)

The scheme of [24], which achieves the capacity (15), relies

upon the following joint matrix decomposition, also developed

in [24].

Theorem 1 (Joint equi-diagonal triangularization [JET]).

Let A1 and A2 be complex-valued full-rank matrices of

dimensions M1 × N and M2 × N , respectively, such that

M1 ≥ N and M2 ≥ N (implying that Ai are of rank N ).

If det(A†
1A1) = det(A†

2A2), then A1 and A2 can be jointly

decomposed as

A1 = U1T1V
†

A2 = U2T2V
† ,

where U1, U2 and V are unitary matrices of dimensions

M1 ×M1, M2 ×M2 and N×N , respectively; T1 and T2 are

generalized upper-triangular matrices of dimensions M1 ×N
and M2 × N , respectively, with positive equal diagonal ele-

ments, viz.

T1;ij = T2;ij = 0, i > j

T1;ii = T2;ii , ti ,

where Tk;ij denotes the (i, j) entry of Tk.

The following definition will prove useful in applying

Theorem 1 to common-message BC, as well as all other

communication settings considered in the sequel.

Definition 1 (Effective MMSE matrix). Let H be a channel

matrix of dimensions M × NS and let K be the NS × NS

input covariance matrix used over this channel. Then, the

corresponding effective minimum mean square error (MMSE)

matrix is the (M +NS)×NS matrix G:

G ,

(

HB
I

)

,

where I is the identity matrix of dimension NS and B is any

matrix satisfying BB† = K .9

This definition serves as the MIMO channel analogue of

the MMSE variant of decision feedback equalization for linear

time-invariant systems [30].

By applying the decomposition of Theorem 1 to the

effective MMSE matrices of (13), the following scheme,

reminiscent of V-BLAST [30]–[32], may be devised, which

transforms the problem to that of transmission over parallel

SISO channels.

Remark 3. We assume that the channel matrices H1 and

H2, and the input covariance matrix K used, satisfy

C(H1,K) = C(H2,K). This incurs no loss of generality,

since the common-message capacity is limited to the min-

imum between the two (15). This, in turn, means that the

corresponding effective MMSE matrices, G1 and G2, satisfy

|G†
1G1| = |G†

2G2|. In practice, the user having larger capacity

will enjoy, in each scalar sub-channel in the scheme to follow,

excess SNR that will not be utilized, due to the bottleneck

being the other user. For a more thorough account, see [24],

[25, Example 3].

Scheme (MIMO common-message broadcast).

Offline:

• Select an admissible NS×NS input covariance matrix K
that satisfies the input power constraint and an NS ×NS

matrix B satisfying BB† = K .

• Construct the effective MMSE matrices G1 and G2, of

dimensions (M1 + NS) × NS and (M2 + NS) × NS,

respectively, corresponding to the channel matrices H1

and H2 of (13) and K .

• Apply the JET of Theorem 1 to G1 and G2, to obtain

the unitary matrices U1, U2, and V , of dimensions

(M1 +NS), (M2 + NS), and NS, respectively, and the

generalized upper-triangular matrices T1 and T2 of di-

mensions (M1 + NS) × NS and (M2 + NS) × NS,

respectively.

• Denote the NS diagonal elements of T1 and T2 by {tj}
(which are equal for both matrices).

• Denote by Ũk (k = 1, 2) the Mk ×NS sub-matrix of Uk

composed of its first Mk rows.

• Construct good codes for scalar AWGN channels of SNRs

{t2j − 1} and blocklength n.

Transmitter:

• Constructs n vectors x̃S of length NS each, by taking

one sample from each codebook.

• Combines all these codewords by multiplying each x̃S

by the unitary matrix V and by B:

xS = BV x̃S .

• Transmits the n vectors xS.

Receiver k (k = 1, 2):

• Receives the n output vectors yk .

9Such a B can always be constructed, e.g., using the Cholesky decompo-
sition or unitary diagonalization.
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• For each ỹk, calculates

ỹk = Ũ †
kyk .

• Decodes the codewords using successive interference

cancellation, starting from the NS-th codeword and end-

ing with the first one: The NS-th codeword is decoded

first, using the NS-th element of ỹk, treating the other

codewords as AWGN. The effect of the NS-th element

of x̃S is then subtracted out from the remaining elements

of ỹk. Next, the (NS − 1) codeword is decoded, using

the (NS − 1) element of ỹk — and so forth.

Using capacity-achieving codes of SNRs {t2j−1}, i.e., codes

of rates close to
{

Rj

∣

∣Rj = log
(

t2j
)

, j ∈ {1, . . . , NS}
}

, (16)

the whole scheme achieves the common-message BC capacity

(15). This is formally proved in [24], and is, in turn, a

simple extension of the optimality proof of V-BLAST for the

MIMO single-user (“point-to-point”) channel [33] (see also

[34, Appendix A] and [35]).

Remark 4. The resulting diagonal values {tj} are greater or

equal to 1, due to the presence of I in the construction of the

effective MMSE matrices G1 and G2 (recall Definition 1).

Thus, the rates {Rj} in (16) are all non-negative.

Remark 5. Using an input covariance matrix K over the chan-

nels described by the matrices H1 and H2, is mathematically

equivalent to working with a unit covariance matrix I (“white

input”) over equivalent channel matrices F1 , H1B and

F2 , H2B, respectively.

We next show how this MIMO common-message BC

scheme can be leveraged for the construction of practical DF

schemes for the half- and full-duplex relay channel settings.

IV. MCS SCHEMES FOR DECODE-AND-FORWARD

RELAYING

In this section we construct MCS schemes for half- and full-

duplex decode-and-forward relaying. We do this by translating

the two problems to equivalent MIMO common-message BC

ones, which allows us, in turn, to apply the scheme of

Section III.

A. Half-Duplex Relaying

Assume, as in Section II-A, that the ratio used between the

total duration and the MAC duration is rational, i.e., n1 = m1n
and n2 = m2n, for some positive integers m1, m2 and

n. We view the ni (i = 1, 2) channel uses as n channel

uses of an “augmented channel” with m2 “transmit antennas”

(corresponding to m2 physical channel uses batched together).

The number of “receive antennas” of the augmented channel

corresponds to the number of channel uses needed by the relay

and the destination for the recovery of the message. Denote

by Im the identity matrix of dimension m, and by 0k×ℓ the

all-zero matrix of dimensions k × ℓ. Hence, the m1 × m2

augmented matrix from the source to the relay is

¯
HR,S =

(

hR,SIm1
0m1×m2−m1

)

, (17)

whereas the m2 ×m2 augmented matrices from the source to

the destination and the relay have the following forms

¯
HD,S = hD,SIm2

,

¯
HD,R = hD,RIm2

.

Note that, for notational convenience, we assume that the

relay can receive and transmit at all times, but during the

BC and MAC phases it has zero transmit and receive gains,

respectively. The latter is manifested in the zero columns

in (17), whereas the former is represented by the following

m2 ×m2 power-allocation matrices

¯
BS =

( √
P1Im1

0m1×m2−m1

0m2−m1×m1

√
P2Im2−m1

)

,

¯
BR =

(

0m1×m2

0m2−m1×m1

√
PRIm2−m1

)

,

where the input power constraints are translated into

trace
{

¯
B2

S

}

≤ m2P ,

trace
{

¯
B2

R

}

≤ m2P .

Moreover, since during the MAC stage the relay has full

knowledge of the message, we may view the source and the

relay as a single node that may coherently transmit over an

effective point-to-point channel to the destination.

The transmission task, therefore, reduces to that of two-user

MIMO common-message BC over

¯
y
R
=

¯
H1

¯
x+

¯
zR , (18a)

¯
y
D
=

¯
H2

¯
x+

¯
zD , (18b)

where
¯
H1 and

¯
H2 are the total augmented channel matrices

of dimensions m1 × m2 and m2 × m2, to the relay and the

destination:

¯
H1 =

¯
HR,S

¯
BS , (19a)

¯
H2 =

¯
HD,S

¯
BS +

¯
HD,R

¯
BR . (19b)

¯
x,

¯
y and

¯
z represent the corresponding augmented input,

output and noise vectors, respectively.

Note that the m2-length input vector
¯
x has entries of unit

power, as the power coefficients were absorbed in the total

augmented channel matrices (19).

Over these effective channel matrices, the MCS scheme for

MIMO common-message BC of Section III may be readily

applied, achieving a rate of

R = min
i=1,2

1

m2
C (

¯
Hi, I) , (20)

where again we multiply by a factor 1/m2 to normalize the

rate per physical channel use. This rate is equal, in turn, to

the desired rate of (4).

Note that, in order to materialize a single input vector
¯
x of

length m2, m2 physical channel inputs xS are required. Since

only the first m1 columns of
¯
HR,S are non-zero, sending

¯
x

or its first m1 entries followed by zeros is equivalent over

this channel. Thus, by transmitting, during each of the first

n1 (physical) channel uses, only the first m1 entries of the

appropriate augmented input
¯
x, we are able to effectively
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transmit the whole
¯
x vector over the channel

¯
HR,S. To

accommodate for the second user (the columns of which are all

non-zero, in general), the source then sends over the remaining

(n2 −n1) physical channel uses xS — the remaining parts of

the n1 augmented vectors
¯
x, in (any) systematic manner; see

Remark 7 for further discussion of the order of transmission

and Fig. 3 — for two such options. During the MAC phase,

the relay joins the source in transmitting a linear combination

of the codewords. That is, it transmits
¯
x multiplied by the

unitary matrix V and by
√
PR.

For completeness of presentation, we next describe the

entire MCS scheme for HD-DF relaying (with the MIMO

common-message BC scheme of Section III encapsulated

within the half-duplex protocol of Section II-A).

Scheme (Half-duplex decode-and-forward relaying).

Offline:

• Choose the power allocations P1, P2 and PR.

• Construct the effective (“total augmented”) channel ma-

trices (19).

• Construct the effective MMSE matrices
¯
G1 and

¯
G2, of

dimensions (m1+m2)×m2 and 2m2×m2, corresponding

to the effective channel matrices
¯
H1 and

¯
H2, respectively.

• Apply the JET of Theorem 1 to
¯
G1 and

¯
G2, to obtain

the unitary matrices U1, U2, and V , of dimensions

(m1 +m2), 2m2, and m2, respectively, and the gener-

alized upper-triangular matrices T1 and T2 of dimensions

(m1 +m2)×m2 and 2m2 ×m2, respectively.

• Denote the m2 diagonal elements of T1 and T2 by {tj}
(which are equal for both matrices).10

• Denote by Ũk (k = 1, 2) the mk × m2 sub-matrix

composed of the first mk rows of Uk.

• Construct good codes for scalar AWGN channels of SNRs

{t2j − 1} and blocklength n.

Source:

• Constructs n vectors ˜
¯
x of length m2 each, by taking one

sample from each codebook.

• Combines all these codewords by multiplying each ˜
¯
x by

the unitary matrix V and by
¯
BS, both of dimensions

m2 ×m2:

¯
xS =

¯
BSV ˜

¯
x .

Source during BC phase: Transmits the first m1 entries

of each of the n vectors
¯
xS.

Source during MAC phase: Transmits the rest of the

(m2 −m1) entries of each of the n vectors
¯
xS.11

Relay during BC phase:

• After receiving the first n1 = m1n output vectors yR,

constructs the n vectors
¯
y
R

.

• Multiples each vector
¯
y
R

by Ũ †
1 .

10Similarly to Remark 3, we assume, that |
¯
G

†
1¯
G1| = |

¯
G

†
2¯
G2|. Otherwise,

the achievable rate is limited to the minimum of the two determinants and
can be consequently improved by varying the transmission duration time of
the relay.

11See Remark 7 for discussion of the transmission order.

• Recovers the codewords using SIC, resulting in SINR

values of {t2j − 1}.

Relay during MAC phase: Transmits the last (m2 −m1)
entries of

¯
xR, which is equivalent to sending ˜

¯
x multiplied by

the unitary matrix V and by
¯
BR:

¯
xR =

¯
BRV ˜

¯
x,

since the first m1 rows of
¯
BR are all zero.

Destination:

• Receives the first n1 vectors sent only by the source, and

then the remaining (n2 − n1) vectors transmitted by both,

the source and the relay.

• Constructs the n output vectors
¯
y
D

out of the n2 = m2n
received vectors yD .

• Multiplies each vector
¯
y
D

by Ũ †
2 .

• Recovers the codebooks using SIC, resulting in SINR

values of {t2j − 1}.

Using capacity-achieving codes designed for AWGN chan-

nels, i.e., codes of rates close to
{

Rj

∣

∣Rj = log
(

t2j
)

, j ∈ {1, . . . ,m2}
}

,

the desired rate of (4) is achieved.

Thus, we were able to construct an MCS scheme that

achieves a total transmission rate approaching the optimum

(for this protocol).

Remark 6. The scheme uses m2 parallel codes. In practice,

a large number of codes may have a negative impact (due to

considerations such as error propagation and channel coher-

ence time). Thus, when implementing such a scheme, one may

choose to use an approximate fraction m1/m2 with smaller

denominator, striking a balance between the different losses.

Remark 7. Different orderings (“interleaving”) of the entries

of xS (and xR) are possible. Any ordering/interleaving of the

first m1 entries of each of the n1 vectors xS, which constitute

the first entries of the n1 vectors ˜
¯
x, followed by any ordering

of the rest, is applicable [achieves (20)]. Two orderings are of

particular interest. The first, illustrated in Fig. 3a, is the one

that enables to construct the vectors
¯
y
R

and
¯
y
D

in the fastest

manner possible; this, in turn, enables to process these vectors

(applying the unitary transformations Ũ1 and Ũ2) as early as

possible. The second ordering of interest, depicted in Fig. 3b,

is the systematic ordering according to which first the first

entry (“first layer”) of each of the vectors xS is sent, followed

by the second entry (“second layer”) of each of the vectors

xS, etc.; this ordering can be implemented more easily, being

“more systematic”, and is suitable for cases of more relays,

where each relay starts to transmit after a different number of

channel uses. In this case, the first “layer” is the least common

multiple (LCM) of {ni} — the number of uses needed by

each of the relays and the destination to recover reliably the

transmitted codewords.

B. Full-Duplex Relaying

We now show how to materialize the FD-DF relaying

protocol via an MCS scheme. To that end, we show how this
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1 1 +m1

1+

m1(n− 1)

2 2 +m1

2+

m1(n− 1)

m1 2m1 nm1

1+

nm1

2+

nm1

m2+

(n− 1)m1

1 +m2+

(n− 1)m1

2 +m2+

(n− 1)m1

2m2+

(n− 2)m1

1−m1+

m2(n− 1)

2−m1+

m2(n− 1)

m2n

(a) Transmission ordering that enables efficient processing (process-
ing can start earlier than in other orderings) of the received signals.

1 2 n

n+ 1 n+ 2 2n

n(m1 − 1)

+1

n(m1 − 1)

+2
nm1

nm1 + 1 nm1 + 2 n(m1 + 1)

n(m1 + 1)

+1

n(m1 + 1)

+2
n(m1 + 2)

n(m2 − 1)

+1

n(m2 − 1)

+2
m2n

(b) Systematic transmission ordering suitable for schemes with more
than two users.

Fig. 3: Examples of interleaving/ordering of transmitted signals. Each rectangle represents a physical input signal xS; each

column represents an augmented input vector
¯
xS of length m2; the indices inside the rectangle represent the transmission

ordering; rectangles with dark fill are received by both the relay and the destination, whereas the lighter-filled rectangles are

designated to the end destination only.

protocol may be formulated as an equivalent MIMO common-

message BC one. This allows, in turn, to apply the scheme of

Section III.

We extend the notation xn as follows. xn ,
(

x1 · · · xn

)

is a matrix of dimensions m × n of

m-length column vectors x.

Recall that the relay uses only a single observation, as

reflected in (6), to recover m[i]. The destination, on the other

hand, makes use of two consecutive observation blocks, as

given in (8) and (11), to recover the same message m[i]. This

can be reformulated in an equivalent matrix notation as

¯
yn

R
[i] =

¯
HR

¯
xn
S [i] + ¯

zn
R[i] ,

¯
yn

D
[i] =

¯
HD

¯
xn
S [i] + ¯

zn
D[i] ,

where

¯
HR =

√
2
(√

1− ρ2hR,S 0
)

(21a)

¯
HD =

√
2

(√

1− ρ2hD,S 0

0
ρhD,S+hD,R√

((1−ρ2)h2

D,S
P+1

)

(21b)

are the effective channel matrices,

¯
zn
R[i] , znR[i− 1]

¯
zn
D[i] ,

(

znD[i− 1]
z̄nD[i]

)

are additive white noise vectors with identity covariance

matrices,

¯
xn
S [i] ,

1√
2

(

xn
I [i]

xn
C [i]

)
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is the channel input vector subject to an average power

constraint P , and

¯
yn

R
[i] , ỹnR[i− 1]

¯
yn

D
[i] ,

(

ỹnD[i − 1]
ȳnD[i]

)

are the effective output vectors at the relay and the destination,

respectively.

The input dimension of the matrices
¯
HR and

¯
HD is equal to

two, since the input signal
¯
xS[i] consists of two independent

codewords. The output dimensions of these matrices reflect the

number of observation blocks utilized by each of the receive

nodes to recover these codewords.

Scheme (Full-duplex decode-and-forward relaying).

Offline:

• Choose the power allocation coefficient ρ ∈ [0, 1].
• Construct the effective (augmented) matrices

¯
HR and

¯
HD

of (21).

• Construct the effective MMSE matrices
¯
GR and

¯
GD, of

dimensions 3× 2 and 4× 2, respectively, corresponding

to the effective channel matrices
¯
HR and

¯
HD .

• Apply the JET of Theorem 1 to
¯
GR and

¯
GD, to obtain

the unitary matrices U1, U2, and V , of dimensions 3, 4,

and 2, respectively, and the generalized upper-triangular

matrices T1 and T2 of dimensions 3 × 2 and 4 × 2,

respectively.

• Since the diagonals of T1 and T2 are equal up to a scaling

factor, we denote the smaller diagonal pair by {t1, t2}.

• Denote by Ũ1 the 1× 2 sub-matrix composed of the first

row of U1, and by Ũ2 — the 2× 2 sub-matrix composed

of the first two rows of U2.

• Construct two good codes for scalar AWGN channels of

SNRs {t2j − 1} and blocklength n.

Source:

• Splits sub-message i, m[i], into two (independent) parts

and encodes them into two codewords, each from a

different codebook.

• Constructs n vectors ˜
¯
x of length two each, by taking one

sample from each codebook.

• Combines these codewords by multiplying each ˜
¯
x by the

2× 2 unitary matrix V and
√

P/2:

1√
2

(

xI

xC

)

,
¯
xS =

1√
2

√
PV ˜

¯
x .

• At time block i, transmits

xn
S [i] = ρxn

C[i] +
√

1− ρ2xn
I [i + 1].

Relay as Receiver: At time frame (i − 1):

• Computes12

¯
yn

R
[i] , ynR[i− 1]− hR,Sρx

n
C [i− 1]

=
√

1− ρ2hR,Sx
n
I [i] + znR[i− 1]

=
¯
HR

¯
xn
S [i] + ¯

zn
R[i] .

12As for the general FD-DF protocol of Section II-B, we assume correct
decoding of previous messages, including m[i− 1] (and xn

C
[i− 1]), as well

as known predetermined m[1].

• Multiplies
¯
yn

R
[i] by Ũ †

1 .

• Recovers the two codewords using SIC, resulting in

signal-to-interference-and-noise ratio (SINR) values of (at

least) {t21 − 1, t22 − 1}.

Relay as Transmitter: At time frame i, sends13

xn
R[i] = xn

C [i] .

Destination:

• For the recovery of m[i], calculates

¯
yn

D
[i] ,

(

ynD[i− 1]− hD,Sρx
n
C[i− 1]

1√
Pequiv

ynD[i]

)

(22a)

=

(√

1− ρ2hD,Sx
n
I [i] + znD[i− 1]

ρhD,S+hD,R√
(1−ρ2)h2

D,S
P+1

xn
C [i] + z̄nD[i]

)

(22b)

=
¯
HD

¯
xn
S [i] + ¯

zn
D[i] . (22c)

• Multiplies
¯
yn

R
[i] by Ũ †

1 .

• Recovers the two codewords using SIC, resulting in SINR

values of (at least) {t21 − 1, t22 − 1}.

Remark 8. In order to approach the rate RDF of (12) using

random Gaussian codes xn
C [i] and xn

I [i], one needs these

codes to be independent. In the proposed scheme, this will

be the case if one takes the entries of ˜
¯
x from equal-power

independent random Gaussian codebooks, since an orthogonal

transformation conserves independence in the Gaussian case.

V. EXTENSION TO MIMO RELAYING

In this section we extend the results of Section IV to the

MIMO case.

In the MIMO variant of the relay channel, the SISO links,

denoted by ‘h’ in (1), are replaced by MIMO ones, denoted

by ‘H’. Thus, (1) is replaced with

yR = HD,SxS + zR ,

yD = HD,SxS +HD,RxR + zD ,

where channel input and output dimensions are denoted by N
and M , respectively. The Gaussian noise vectors are mutually

independent and circularly-symmetric with identity covariance

matrices. As in the SISO case, all channel inputs are subject

to the same power constraint P and knowledge of all channel

matrices at all communication nodes is assumed (“closed

loop”).

A. Half-Duplex Relaying

In this case, the BC (2) and MAC (3) modes of the SISO

half-duplex case are replaced with

yR = HR,SxS + zR ,

yD = HD,SxS + zD ,

and

yD = HD,SxS +HD,RxR + zD ,

13Again, as in the protocol of Section II-B, assuming correct decoding,
m[i], and hence also xn

C
[i], are known at time frame i.
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respectively.

As in the treatment for the SISO case in Section IV-A, we

construct an MCS scheme that approaches capacity via the

MCS scheme for MIMO common-message BC of Section III.

To that end, we use a MIMO version of the representation (18),

repeated here for convenience:

¯
y
R
=

¯
H1

¯
x+

¯
zR , (23a)

¯
y
D
=

¯
H2

¯
x+

¯
zD . (23b)

The power allocation coefficients of the SISO case (
√
P1,

√
P2

and
√
PR), are replaced by beamforming matrices (B1, B2 and

BR, respectively). In contrast to the SISO case, alignment of

the transmission signals during the MAC phase, carried in

order to achieve full coherence, is non-trivial, and one has to

optimize over the beamforming matrices.14

We assume again, as in the SISO case, that for the chosen

beamforming matrices B1, B2 and BR: n1 = m1n and n2 =
m2n, for some positive integers m1, m2 and n, where n1

and n2 are the blocklengths of the two transmission phases as

defined in Section II-A.

Thus, the equivalent augmented channel matrices of (23),

in the MIMO case, take the form

¯
H1 =

¯
HR,S

¯
BS

¯
H2 =

¯
HD,S

¯
BS +

¯
HD,R

¯
BR ,

where

¯
HR,S =

(

Im1
⊗HR,S 0MRm1×NS(m2−m1)

)

,

¯
HD,S = Im2

⊗HD,S ,

¯
HD,R = Im2

⊗HD,R ;

and

¯
BS =

(

Im1
⊗B1 0NSm1×NS(m2−m1)

0NS(m2−m1)×NSm1
I(m2−m1) ⊗B2

)

, (24a)

¯
BR =

(

0NSm1×NSm2

0NS(m2−m1)×NSm1
I(m2−m1) ⊗BR

)

, (24b)

where ⊗ denotes the Kronecker product operation (see, e.g.,

[36, Ch. 4]), i.e., Im ⊗H is a block diagonal matrix with m
blocks that are all equal to H .

For these matrices, according to Theorem 1, an MCS

scheme achieving a rate of

R = min
i=1,2

log
∣

∣

∣I +
¯
Hi

¯
H†

i

∣

∣

∣

can be devised, by a simple adaptation of the scheme for the

SISO case of Section IV-B.

B. Full-Duplex Relaying

As in the HD setting, the DF protocol and scheme used

for the FD DF variant for the SISO case in Sections II-B

and IV-B, can be readily extended to the MIMO case. This

calls for replacing the scalar codebooks xn
I and xn

C with vector

codebooks whose entries are vectors of the same dimension

as the transmitted signal xS.

14The optimization of B2 and BR can be simplified by noting that
multiplying both matrices by the same unitary matrix on the right, results
in no change in performance.

Without loss of generality, we assume that the number of

transmit antennas at the source and the relay is equal, i.e.,

the column dimensions of HD,S and HD,R are equal, since

otherwise we may pad the matrix with the lower column

dimension with all-zero columns. Thus, xS and xR, and hence

also xI and xC, are all of the same length.

Note also that in this case the beamforming matrices, corre-

sponding to xI and xC at the source and to xC — at the relay,

can be shaped to improve the achievable rate, such that each

of these covariance matrices satisfies the power constraints.

More generally, we take xI and xC to be independent and

white of total average unit power and multiply them by suitable

precoding matrices, subject to an average power constraint P .

Hence, the signals sent by the source (5) and the relay (7)

should be replaced, in the MIMO case, with

xn
S [i] = ρB

(C)
S xn

C [i] +
√

1− ρ2B
(I)
S xI[i+ 1] ,

xn
R[i] = B

(C)
R xn

C[i] ,

respectively, where B
(C)
S , B

(I)
S and B

(C)
R are the precoding

matrices satisfying the power constraints:

trace

{

B
(C)
S B

(C)
S

†
}

≤ P ,

trace

{

B
(I)
S B

(I)
S

†
}

≤ P ,

trace

{

B
(C)
R B

(C)
R

†
}

≤ P .

Again, these precoding matrices should be chosen to maximize

the achievable rate, but their exact choice is not material for

the construction of the protocol and the corresponding MCS

scheme.

Remark 9. In the SISO case, the signal sent by the relay (7)

and the corresponding component xn
C in the signal of (5) need

to be multiplied by an appropriate phase, such that they sum

coherently (this was absorbed in the channel coefficients h
in the exposition of the SISO channel in Sections II and IV,

which were assumed to be real and positive); in the MIMO

case, this generalizes to multiplying by appropriate unitary

matrices prior to the covariance shaping, which together con-

stitute the precoding matrices.

The channel output at the relay, after subtracting the com-

ponent corresponding to xn
C (the MIMO equivalent of (6),

assuming correct decoding), is equal to

ỹn
R[i− 1] = yn

R[i− 1]− ρHR,SB
(C)
S xn

C[i− 1]

=
√

1− ρ2HR,SB
(I)
S xn

I [i] + zn
R[i− 1] .

At the destination, (22) is replaced by

yn
D[i − 1] =

√

1− ρ2HD,SB
(I)
S xn

I [i] + zn
D[i− 1] ,

whereas (9) and (10) are replaced by

yn
D[i] =

(

ρHD,SB
(C)
S +HD,RB

(C)
R

)

xn
C [i] + zn

equiv[i] ,

zn
equiv[i] =

√

1− ρ2HD,SB
(I)
S xn

I [i] + zn
D[i] ,
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respectively. The covariance matrix of the Gaussian noise is

Kequiv , (1− ρ2)HD,SB
(I)
S

(

HD,SB
(I)
S

)†

+ I .

This matrix is positive-definite and therefore can be decom-

posed according to the Cholesky Decomposition as

Kequiv = LequivL
†
equiv ,

where L is invertible. Hence, by applying L−1
equiv to yn

D[i] on

the right, we arrive at

ȳn
D[i] = L−1

equiv

(

ρHD,SB
(C)
S +HD,RB

(C)
R

)

xn
C[i] + z̄n

D[i] ,

where z̄n
D[i] = L−1

equivz
n
equiv[i] has an identity covariance matrix.

The effective matrices (21) of the scheme of Section IV-A,

need to be replaced, in the MIMO case, by the following

channel matrices:

¯
HR =

√
2
(

√

1− ρ2HR,SB
(I)
S 0

)

¯
HD =

√
2









√

1− ρ2HD,SB
(I)
S 0

0
L−1

equiv

[

ρHD,SB
(C)
S

+HD,RB
(C)
R

]









.

RDF = min

{

C
(

HR,SB
(I)
S ,
[

1− ρ2
]

I
)

,

C
(

HD,SB
(I)
S ,
[

1− ρ2
]

I
)

+ C
(

L−1
equiv

[

ρHD,SB
(C)
S +HD,RB

(C)
R

]

, I
)

}

,

where C(·, ·) was defined in (14).

VI. APPLICATION TO MIMO BROADCAST

RATELESS CODING

In this section, we treat the problem of designing practical

incremental redundancy codes over the AWGN channel, both

for the SISO and MIMO cases, by constructing an MCS

scheme. As discussed in Sections I and II-A, this problem

is closely related to the half-duplex relaying problem. In fact,

careful scrutiny reveals that it is actually a special case of the

half-duplex relay problem and therefore the MCS schemes

for the SISO and MIMO variants of Sections IV-A and V-A,

respectively, may be readily applied.

We start by providing a formal definition of the problem,

following Shulman [37].

A. Problem Setting

Consider the MIMO broadcast channel of Section III, and

denote the point-to-point capacity of user i by

Ci , C(Hi,Ki) ,

where Ki is the covariance matrix maximizing (14) for

H = Hi under a power constraint trace{Ki} ≤ P .

In a two-user rateless setting, the transmitter needs to send

the same k bits to both receivers. Each receiver “listens” to

the transmission from time instant 1 until it is able to reliably

decode all bits; then it may tune out. The online time of

user i, denoted by ni, is the number of channel uses that

is required for reliable recovery of the information, and the

resulting effective rates are defined as

Ri ,

⌊

k

ni

⌋

, i = 1, 2 , (25)

where ⌊·⌋ denotes the “floor” operation. The following, due to

Shulman [37], states the optimal rates.

Proposition 1. The effective rate pair (R1, R2) is achievable

under power constraint P if and only if there exists a covari-

ance matrix K with trace{K} ≤ P , such that

C(Hi,K)

Ri

+ Ci

[

1

Ri

− 1

Rī

]+

≥ 1 , i = 1, 2 ,

where [a]+ , max {a, 0} and

ī =

{

2 i = 1
1 i = 2

.

This result can be understood as follows. Without loss of

generality, assume that C(H1,K) ≥ C(H2,K). For the first

n1 = k/C(H1,K) channel uses, the transmitter uses the

covariance matrix K , at the end of which the first user obtains

enough mutual information to decode the message, and may

tune out. Once only the second user is online, the transmitter

switches to the best-matched covariance matrix for its channel,

K2. With this,

n2 − n1 =
k − n1C(H2,K)

C2

additional uses are needed until the second user obtains enough

mutual information, as well. We see, then, that the only

compromise is in the choice of covariance matrix for the

first period; given this choice, each receiver is able to use

all the mutual information provided by the channel, as if it

were a point-to-point scenario. Unfortunately, this information-

theoretic result does not tell us how to achieve these rates using

practical codes; in the sequel, we construct MCS schemes for

this problem, by reducing it to that of a (“classical”) MIMO

common-message BC one (as in Section III).

Remark 10. Proposition 1 generalizes to more than two users

in a straightforward manner; see [37].

Remark 11. A scheme for the case of equal channel matrices

up to a scalar constant, which is equivalent to the scenario of

a single channel matrix but unknown SNR, can be obtained

relying on the geometric mean decomposition (GMD). For

further details see [38].

B. Two-User Rateless MCS Scheme via Half-Duplex Relaying

In order to design an MCS scheme for the two-user case,

we observe that (for a specific choice of K in Proposition 1)

this problem can be regarded as a special case of the half-

duplex (or “rateless relay”) problem of Sections II-A and

IV-A, where the relay “tunes in” until it is able to decode, but

does not transmit any signal (corresponds to assigning B2 = 0
in (24b)).
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For completeness, we next present the MIMO incremental

redundancy coding scheme, which is first reformulated as

a “classical” (non incremental-redundancy) common-message

BC problem, using a matrix representation, as in the half-

duplex scheme of Section IV-A (being a special case of the

latter).

Again, we restrict attention to rational ratios between the

effective rates, i.e.,

n1 = m1n (26a)

n2 = m2n (26b)

for some positive integers m1, m2 and n. We view the ni

(i = 1, 2) channel uses as n uses of the equivalent channels,

¯
y
1
=

¯
H1

¯
xS +

¯
z1 ,

¯
y
2
=

¯
H2

¯
xS +

¯
z2 ,

represented by the block-diagonal matrices

¯
H1 =

¯
H ′

1¯
B , (27a)

¯
H2 =

¯
H ′

2¯
B , (27b)

of dimensions m1M1 × m2NS and m2M2 × m2NS, respec-

tively, where

¯
H ′

1 =
(

Im1
⊗H1 0m1M1×(m2−m1)NS

)

¯
H ′

2 = Im2
⊗H2 ,

and15

¯
B =

(

Im1
⊗B 0m1NS×(m2−m1)NS

0(m2−m1)NS⊗m1NS
Im2−m1

⊗B2

)

,

where B and B2 are (any) beamforming matrices satisfying

BB† = K and B2B
†
2 = K2.16 Define

¯
K =

¯
B
¯
B†.

Note that using (25) and (26), the effective rates of these

equivalent channels are equal, i.e.,

R , C (
¯
H ′

1, ¯
K) = C (

¯
H ′

2, ¯
K) , (28)

or alternatively (see Remark 5),

R , C (
¯
H1, I) = C (

¯
H2, I) .

Consequently, we can apply the MIMO common-message BC

scheme of Theorem 1 to the matrices
¯
H ′

1 and
¯
H ′

2 and input

covariance matrix
¯
K , or alternatively to the equivalent channel

matrices
¯
H1 ,

¯
H ′

1¯
B and

¯
H2 ,

¯
H ′

2¯
B with unit covariance

matrix, such that the optimum rates, as given in Proposition 1,

are achieved.

Scheme (Two-user rateless coding).

Offline:

• Choose admissible beamforming matrices B and B2.

• Construct the effective (augmented) channel matrices
¯
H1

and
¯
H2 (27).

• Construct the effective MMSE matrices
¯
G1 and

¯
G2, of dimensions (m1M1 +m2NS)×m2NS and

15Mind the different meaning of the indices of the beamforming matrices,
from that of (24), in this case.

16In contrast to the half-duplex transmission scheme, in this case, beam-
forming matrices which give rise to the same covariance matrix will result in
the same performance.

m2(M2 +NS)×m2NS, respectively, corresponding to

the effective channel matrices
¯
H1 and

¯
H2.

• Apply the JET of Theorem 1 to
¯
G1 and

¯
G2, to obtain

the unitary matrices U1, U2, and V , of dimensions

(m1M1 +m2NS), m2(M2 +NS), and m2NS, respec-

tively, and the generalized upper-triangular matrices T1

and T2 of dimensions (m1M1 +m2NS)×m2NS and

m2(M2 +NS)×m2NS, respectively.

• Denote the m2NS diagonal elements of T1 and T2 by

{tj} (which are equal for both matrices).

• Denote by Ũk (k = 1, 2) the mkMk ×m2NS sub-matrix

composed of the first mkMk rows of Uk.

• Construct good codes for scalar AWGN channels of SNRs

{t2j − 1} and blocklength n.

Transmitter:

• Constructs n vectors
¯
x of length m2NS using one sample

from each codebook.

• Combines all these codewords by multiplying each ˜
¯
x

by the unitary matrix V and by
¯
B, both of dimensions

m2NS ×m2NS:

¯
xS =

¯
BV ˜

¯
x .

• Transmits the first m1M1 entries of each of the n
vectors

¯
xS over m1 physical channel inputs xS.

• Transmits the rest of the entries of each of the n vec-

tors
¯
xS over (m2 −m1) physical channel inputs xS.

Receiver 1:

• After receiving the first n1 = m1n output vectors yD,

constructs the n output vectors
¯
y
1
.17

• Multiplies each vector
¯
y
1

by Ũ †
1 .

• Recovers the codewords using SIC, resulting in SINR

values of {t2j − 1}.

Receiver 2:

• Constructs the n output vectors
¯
y
2

out of the n2 = m2n
received vectors yD.

• Multiplies each vector
¯
y
2

by Ũ †
2 .

• Recovers the codewords using SIC, resulting in SINR

values of {t2j − 1}.

Using capacity-achieving scalar AWGN codes, i.e., codes

of rates close to

{

Rj

∣

∣Rj = log
(

t2j
)

, j ∈ {1, . . . ,m2NS}
}

,

the desired rate of (28) is achieved.

Remark 12. A similar scheme can be constructed for varying

(known) blocks on the diagonal of
¯
H ′

2. In fact, such a variation

was already used in the scheme of Section IV-A for the half-

duplex relay problem. In the case of different blocks on the

diagonal, however, the blocks on the diagonal of
¯
B will vary

as well. Yet, even in this more general case, fixed-rate scalar

AWGN codebooks suffice for achieving the optimum.

17As explained in Section IV-A, the other columns of U
†
1

are multiplied by
zeros because of the zero columns in

¯
H1. Hence, the first m1n physical output

vectors yD suffice to reconstruct the “interesting” part of
¯
y
1

at receiver 1.
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C. SISO Rateless Coding

We now show that the scheme proposed in this section may

be helpful even outside the MIMO setting. Consider the case

of a SISO channel, i.e., the channel matrices in (13) reduce to

scalars. This problem was considered in [16] and is described

by the channel

y = αx+ z ,

where α takes one of the values {α1, α2, . . .}, where

i log(1 + |αi|2) = R.

That is, the values {αi| i = 1, . . . ,M} are chosen such

that the ratios between the transmission durations lengths

{ni| i = 1, . . . ,M} required to recover the same message,

satisfy ni = in, for i = 1, . . . ,M and (any) integer n, where

the latter will serve as the basic blocklength of the schemes

to be described next.

A practical scheme based on linear pre- and post-processing

and SIC was proposed in [16] for any number M of possible

αi values, and it was shown that a perfect solution (i.e.

capacity-achieving) exists for M = 2 for any R, or for M = 3
up to some critical value of R.18

The case M = 2 falls under the category of channels

addressed in Section VI-B, with the augmented matrices being

¯
H1 =

(

α1 0
)

,

¯
H2 =

(

α2 0
0 α2

)

.

Interestingly, the explicit computation of the matrices U1, U2

and V of that scheme exactly coincides with the matrices

derived in [16]. However, our approach provides a straight-

forward extension to other cases with either two channel uses

or more, as long as the channel materialization is known to

be one of two options. Specifically, let α1,1, . . . , α1,M and

α2,1, . . . , α2,M be the sequences of SNRs according to both

options, such that

M
∑

i=1

log(1 + α1,i) =

M
∑

i=1

log(1 + α2,i) = R.

Then, our scheme achieves exactly the optimum rate R. This

holds also in the specific case where the trailing SNRs of

one of the sequences are zero, and hence applies to the two-

option rateless coding problem. For the case of M = 3
channel options (α values), the critical rate can be derived

via necessary and sufficient conditions for the possibility to

attain JET for three matrices [40]. For a discussion for more

than three channel options (M > 3), see Section VII.

VII. CONCLUDING REMARKS

The schemes derived in this work are applicable for any

choice of input covariance matrix K , achieving the corre-

sponding mutual information. Thus, the average power input

constraints assumed in this work can be replaced with other

18A numerical derivation of the precoding matrix V in the case of a rateless
code (even for parameters for which a perfect decomposition is not possible)
is available in [39].

input constraints, e.g., covariance constraints or individual

power constraints. Of course, this requires to carry out the

optimization problem of finding the optimal covariance matrix

K for the chosen constraints. The resulting covariance matrix

K can then be used in all of the proposed schemes.

Note that in the proposed schemes, the SISO codes used

are of different rates, which may be somewhat undesirable.

A seemingly different problem is extending the schemes of

Section IV to the case of more relays (possibly without a direct

link). For this to be possible, the MIMO common-message BC

scheme of Section III needs to be extended to the case of more

than two users.

Both of these problems can be resolved simultaneously by

incorporating a space–time coding structure, at the expense of

greater latency at the output, as explained in [25].

We finally note that networks containing more than one

source node as well as various secrecy scenarios can be treated

in a similar fashion, as demonstrated in [41], [42].
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