
1

On the Robustness of Dirty Paper Coding
Anatoly Khina and Uri Erez, Member, IEEE

Abstract—A dirty-paper channel is considered, where the
transmitter knows the interference sequence up to a constant
multiplicative factor, known only to the receiver. Lower bounds
on the achievable rate of communication are derived by proposing
a coding scheme that partially compensates for the imprecise
channel knowledge. We focus on a communication scenario where
the signal-to-noise ratio is high. Our approach is based on
analyzing the performance achievable using lattice-based coding
schemes. When the power of the interference is finite, we show
that the achievable rate of this lattice-based coding scheme may
be improved by a judicious choice of the scaling parameter at
the receiver. We further show that the communication rate may
be improved, for finite as well as infinite interference power, by
allowing randomized scaling at the transmitter.

Index Terms—Dirty paper coding, Tomlinson-Harashima pre-
coding, channel estimation error, compound channel, channel
state information.

I. INTRODUCTION

THE dirty-paper (DP) channel, first introduced by
Costa [1], provides an information theoretic framework

for the study of interference cancellation techniques for inter-
ference known to the transmitter. The DP channel model has
since been further studied and applied to different communica-
tion scenarios such as ISI channels (see, e.g., [2]), the MIMO
Gaussian broadcast channel [3], [4], [5] and information
embedding [6]. The DP channel is given by1

Y = X + S + N, (1)

where X is the channel input and is subject to an average
power constraint PX , N is AWGN with variance PN and S
is interference which is known causally (“causal DP”) or non-
causally (“non-causal DP”) to the transmitter but not to the
receiver. We note that the DP channel expressed in (1) models
communication scenarios where the channel (i.e., all channel
coefficients) is known perfectly to both transmission ends.

Costa [1] showed that, for an i.i.d. Gaussian interference
with arbitrary power, the capacity in the non-causal scenario
is equal to that of the interference-free AWGN channel,
1
2 log(1 + SNR), where SNR , PX/PN . This result was ex-
tended in [7], [8] to the case of general interference.

In this work we focus our attention on scalar precoding,
both since it results in simpler coding schemes but also since
the benefit of using a vector approach (at least using the
methods we study) diminishes in the presence of imprecise

The material in this paper was presented in part at the 2008 IEEE
Information Theory Workshop, Porto, Portugal. This work was supported in
part by the Israeli ministry of trade and commerce as part of Nehusha/iSMART
project. The work of A. Khina was supported in part by a fellowship of the
Yitzhak and Chaya Weinstein Research Institute for Signal Processing at Tel
Aviv University. The work of U. Erez was supported in part by the ISF under
grant # 1234/08 and by the Braun-Roger-Siegl Foundation.

1We denote random variables by uppercase letters. Vectors are denoted by
bold and random vectors by bold uppercase letters.

channel knowledge, as will be shown in Section VI. Note
that scalar precoding is applicable when the interference is
known causally, whereas vector approaches require non-causal
knowledge, see, e.g., [8]. We consider the real channel case;
for treatment of the case of imperfect phase knowledge, in the
complex channel case, see [9], [10].

The capacity of the DP channel with causal knowledge
of the interference is not known but upper and lower
bounds were found in [8], which coincide in the high-SNR
regime, thus establishing the capacity for this case to be
1
2 log(1 + SNR) − 1

2 log
(

2πe
12

)

− o(1), where o(1) → 0 as
SNR → ∞. Thus, causality incurs a rate loss of 1

2 log( 2πe
12 )

(commonly known as the shaping loss), relative to the capacity
of the interference-free AWGN channel. This result implies
that in the limit of strong interference and high SNR, the
well-known Tomlinson-Harashima precoding (THP) technique
[11], [12] is optimal. For general SNRs, the lattice-based
coding techniques of [13], [14], [8] are an extension of
Tomlinson-Harashima precoding where a scaling parameter is
introduced at the transmitter and receiver. In this work the term
Tomlinson-Harashima precoding is used in this wider sense.
A review of THP and its extensions is presented in [8].

In many cases of interest, the transmitter has imprecise
channel knowledge. For instance in a multi-user broadcast
scenario, the interference sequence S corresponds to the
signal intended to another user multiplied by a channel gain.
While the transmitter knows the transmitted interfering signal,
only an estimate of the channel gain is known (for instance
by quantized feedback; see, e.g., [15]). This leads to the
question, studied in this paper, of how sensitive dirty-paper
coding (DPC) is to imprecise channel knowledge. We address
this question by adapting the extended Tomlinson-Harashima
precoding as presented in [8] to the case of imprecise channel
knowledge.

The paper is organized as follows: in Section II we dis-
cuss the compound causal dirty-paper channel. We then turn,
In Section III, to the more general problem of the com-
pound state-dependent discrete memoryless channel (DMC)
and determine its capacity where the state is known causally.
In Section IV we consider the case where the interference
S is i.i.d. (of some distribution) with power PS , and show
how using a modified front-end can outperform the regular DP
channel receiver, which ignores the inaccuracy in the channel
knowledge. We then concentrate on the high-SNR regime
and show that using random scaling improves performance
further, in Section V. Finally in Section VI, we discuss the
extension of the scheme to the non-causal case, as well as
some implications to multiple-input multiple-output (MIMO)
broadcast channels with imperfect channel knowledge at the
transmitter.
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Fig. 1. The compound dirty-paper channel.

II. CHANNEL MODEL AND MOTIVATION

We consider the channel model, depicted in Figure 1:

Y = X +
S

β
+ N, (2)

where β ∈ I∆ = [1−∆, 1+∆] is a constant that is unknown to
the transmitter. Thus, ∆ is a measure of the degree of channel
uncertainty.

Consider first the limit of high SNR. At first glance, one
might suspect that a reasonable approach could be to use
standard THP since, as mentioned above, THP is optimal
at high SNR in the perfect channel knowledge case. This
would correspond to pre-subtracting the interference S at the
transmitter, applying a modulo operation and treating the resid-
ual interference as noise. However, the residual interference,
namely (1− 1

β
)S, left at the receiver, may be large if the power

of the interference is large. In fact, in the limit PS → ∞,
the achievable rate, for reliable communication using this
approach, would vanish. Thus naı̈ve implementation of THP
is not robust to channel uncertainty.

We observe, in Section IV, that by using a carefully chosen
scaling parameter at the receiver, reliable communication, at
strictly positive rate, is possible, regardless of the interference
power. The optimal scaling parameter does, however, depend
on the power of the interference and should strike a balance
between the residual interference, the “self-noise” component,
and the Gaussian noise.

We then show, in Section V, that performance may further
be improved by using randomized (time-varying) scaling at the
transmitter. We begin by examining the more general problem
of compound channel with side information, considered pre-
viously by Mitran, Devroye and Tarokh [16].

III. COMPOUND CHANNELS WITH CAUSAL STATE
INFORMATION AT THE TRANSMITTER

The causal DP channel model (1) is a special case of the
more general problem of a channel with side information
(SI) at the transmitter. This problem was first introduced by
Shannon [17], who considered a DMC whose transition matrix
depends on the channel state s, where the latter is independent
of the message W that is sent, i.i.d. and known causally to the
transmitter but not to the receiver. This channel is described
by

p(y|s, x) =
∏

i

p(yi|si, xi)

p(s) =
∏

i

p(si),

where x ∈ X is the channel input, y ∈ Y is the channel output,
s ∈ S; and X ,Y and S denote the channel input alphabet,
channel output alphabet and state alphabet, respectively, all of
which are finite sets. Shannon showed that the capacity of the
above channel is equal to that of an equivalent DMC whose
inputs are mappings t ∈ T , which will be referred to hereafter
as strategies, from S to X (T denotes the set of all mappings
from S to X ), and the corresponding transition probabilities
of this channel are

p(y|t) =
∑

s

p(s)p(y|x = t(s), s).

Note that this result uses mappings of the current state only,
even though the transmitter has access to all past states.

A compound (discrete memoryless) channel is a channel
whose transition matrix depends on a parameter β, which is
constant and not known to the transmitter but is known to the
receiver2 and takes values from B, where the alphabet B is a
finite set.3

The (“worst-case”) capacity of this channel was found, by
several different authors [19], [20], [21] (see also [18]), to be

C = sup
p(x)∈P(X )

inf
β∈B

Iβ(X ; Y ),

where Iβ(X ; Y ) denotes the mutual information of X and
Y with respect to the transition matrix pβ(y|x) and P(X )
is the set of all probability vectors over X . This result may
be easily extended to the case of a compound channel with
SI available causally to the transmitter, as implied by the
following theorem, which is proved in Appendix A.

Theorem 1: The worst-case capacity of a compound DMC
with causal SI at the transmitter is given by

C = sup
p(t)∈P(T )

inf
β∈B

Iβ(T ; Y ),

where T denotes the set of all random strategy functions of
the form t : S −→ X , and P(T ) is the set of all probability
vectors over T .

Remark 1: The case of non-causal SI is more difficult. The
converse of Gel’fand-Pinsker [22] is not easily extended to
the compound scenario. In [16] Mitran, Devroye and Tarokh
derived upper and lower single-letter bounds for the capacity
with non-causal SI. Using Theorem 1, a non single-letter
expression for the worst-case capacity in the non-causal SI
case, using k-dimensional vector strategies and taking k to
infinity, follows:

Cnon−casual = lim sup
k→∞

sup
p(t)

inf
β

1

k
Iβ(T ; Y ).

IV. COMPENSATION FOR CHANNEL UNCERTAINTY AT
RECEIVER

The compound DP channel was defined in (2). In this
section, we consider the case of i.i.d. interference of finite

2Sometimes a channel is said to be compound if β is not known at
both ends. The capacity however is the same in both scenarios (see, e.g.,
Wolfowitz [18, chap. 4]), as the receiver may estimate β to within any desired
accuracy (with probability going to one), using a negligible portion of the
block length.

3B plays the role of the interval I∆ of Section II.
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power PS . The results of Section III may readily be extended
to continuous alphabet and to incorporate an input constraint
(see [16], Sec. IV). Thus, Theorem 1 holds for this setting as
well.

Since the capacity of the dirty-paper channel with causal SI
is unknown even in the standard (non compound) setting, we
do not attempt to explicitly find the capacity in the compound
setting. Rather, we shall examine the performance of THP-like
precoding schemes and suggest methods by which the lack of
perfect channel knowledge at the transmitter may be taken into
account, and partially compensated for.

A. THP With Imprecise Channel Knowledge

Denote the one-dimensional lattice, whose basic interval is
V0 ,

[

−L
2

L
2

)

, by Λ = LZ where L is chosen such that
PX = L2

12 , and by SIR , β2 PX

PS
the signal-to-interference

ratio. Let U ∼ Unif(V0) be a random variable (dither) known
to both transmitter and receiver. We consider an extended THP
scheme given by:

• Transmitter: for any v ∈ V0, the transmitted signal is

X = [v − αT S − U ] mod Λ.

• Receiver: the receiver computes,

Y ′ = [αRY + U ] mod Λ.

The channel from v to Y ′ can be rewritten as:

Y ′ = [αRY + U ] mod Λ

= [v − (v − αT S − U) + αRX

+(αR − αT β)
S

β
+ αRN

]

mod Λ

= [v − (1 − αR)X+

+(αR − αT β)
S

β
+ αRN

]

mod Λ.

Due to the dither U , X is independent of S and of the
information signal V , and is uniform over Λ (see, e.g., [8],
[23]). Therefore, this channel is equivalent to the modulo-
additive channel:

Y ′ = [v + Nβ
eff] mod Λ (3)

Nβ
eff , (1 − αR)U + (αR − αT β)

S

β
+ αRN, (4)

where Nβ
eff is the “effective noise”, composed of a “self noise”

component (1 − αR)U , a residual interference component
(αR − αT β)S

β
and a Gaussian noise component αRN . The

average power of the effective noise is

P
N

β
eff

= (1 − αR)2PX + (αR − αT β)2
PS

β2
+ αR

2PN .

and the corresponding signal-to-effective noise power is

SNReff ,
PX

P
N

β
eff

=

[

(1 − αR)2 +
(αR − αT β)2

SIR
+

αR
2

SNR

]−1

.

We denote the maximal achievable rate under these settings
by Rd

THP, where “d” stands for “deterministic” (choice of) αT

(in contrast to the random strategies treated in Section V),
and the achievable rate for a specific triplet (αT , αR, β) by
Rd

THP(αT , αR, β).
Lemma 1: The maximal achievable rate using the scheme

described above is lower-bounded by:

Rd
THP ≥ max

αT

min
β∈I∆

max
αR

1

2
log(SNReff)

+ ε(β, αT , αR) −
1

2
log

(

2πe
12

)

,

where ε(β, αT , αR) , h
(

Nβ
eff,G

)

− h
(

Nβ
eff

)

, h(·) denotes the

differential entropy and Nβ
eff,G is Gaussian with the same

variance as Nβ
eff.

Thus ε(β, αT , αR) is a measure of non-Gaussianity. Note that
ε(β, αT , αR) ≥ 0.

Proof: First note that for any triplet (αT , αR, β), the
mutual information is maximized by taking V ∼ Unif(V0).
Hence:

Rd
THP(αT , αR, β) = h(Y ′) − h(Y ′|V )

= log(L) − h([Nβ
eff] mod Λ).

The maximal achievable rate Rd
THP is therefore lower-bounded

by

Rd
THP = max

αT

min
β∈I∆

max
αR

Rd
THP(αT , αR, β)

= max
αT

min
β∈I∆

max
αR

[

log(L) − h([Nβ
eff] mod Λ)

]

≥ max
αT

min
β∈I∆

max
αR

[

1

2
log(L2) − h(Nβ

eff)

]

= max
αT

min
β∈I∆

max
αR

[

1

2
log(L2) − h

(

Nβ
eff,G

)

+ ε(β, αT , αR)

]

= max
αT

min
β∈I∆

max
αR

[

1

2
log(SNReff)

+ε(β, αT , αR) −
1

2
log

(

2πe
12

)]

.

where ε(β, αT , αR) , h
(

Nβ
eff,G

)

− h
(

Nβ
eff

)

and Nβ
eff,G is

Gaussian with the same power as Nβ
eff.

We are left with the task of choosing αT , αR, β.

B. Naı̈ve Approach

One could ignore the presence of the inaccuracy fac-
tor β and apply standard THP, using the parameters
αR = αT = αMMSE , SNR

1+SNR , which is the best selection of
αR and αT in this case (see [8]). This gives rise to the
following signal-to-effective noise ratio at the receiver:

SNReff = λNaı̈ve(β)(1 + SNR)

λNaı̈ve(β) ,
1

1 + 1
SIR + SNR

SIR (1 − β)2
.
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Note that since (1 + SNR) is the output SNR in the perfect
SI case, the loss due to the imprecision (1 − β) is manifested
in the multiplicative factor 0 < λNaı̈ve(β) ≤ 1.

Moreover, when the interference is very strong, ı.e., SIR →
0, even if the SNR is high, the effective SNR goes to zero
along with the rate (as further explained in Section V-A1).
Nonetheless, a strictly positive rate can be achieved in this
scheme, using a smarter Rx-Tx pair, as is shown in the
following sections.

C. Smart Receiver - Ignorant Transmitter

Using the fact that ε(β, αT , αR) ≥ 0, we can further loosen
the lower-bound of Lemma 1 to

Rd
THP ≥ max

αT

min
β∈I∆

max
αR

1

2
log(SNReff)

−
1

2
log

(

2πe
12

)

. (5)

Note that optimizing the r.h.s. of (5) is equivalent to maxi-
mizing SNReff with respect to {αT , αR}. In this section we
shall optimize with respect to αR (“smart receiver”) and use
αT = αMMSE , SNR

1+SNR (“ignorant transmitter”) as was done
in Section IV-B, and leave the treatment of a smarter selection
of αT (“smart transmitter”) to Section V.

By solving the problem of maximizing the signal-to-
effective noise ratio, the following αR value and corresponding
SNReff are obtained:

αMMSE
T = αMMSE ,

SNR
1 + SNR

αMMSE
R =

1 +
αMMSE

T β

SIR

1 + 1
SIR + 1

SNR

SNReff = λMMSE(β)(1 + SNR)

λMMSE(β) ,
1 + 1

SIR + 1
SNR

1 + 1
SIR + 1

SNR + SNR
SIR (1 − β)2

, (6)

where again, the loss due to β is captured by 0 < λMMSE ≤ 1.
Note that the loss in SNReff is smaller than that of the naı̈ve
approach since λNaı̈ve(β) < λMMSE(β), for every β.

Using αMMSE
R rather than the standard αR = SNR

SNR+1 im-
proves SNReff, for all values of β. A lower-bound on the
achievable rate is therefore given by,

Rd
THP ≥

1

2
log(1 + SNR) −

1

2
log

(

2πe
12

)

−
1

2
log

(

1

λMMSE(β = 1 + ∆)

)

.

The gains of the this approach over the naı̈ve one of Sec-
tion IV-B, for different SNR values and ∆ = 1/3, are depicted
in Figure 2.

Remark 2:
1. In the weak interference regime, SIR → ∞, we have

λMMSE(β) → 1 (for all β) and hence αR = SNR
SNR+1 and

SNReff = 1 + SNR. This is of course a non-interesting case
as THP is unattractive in this regime.

2. In the strong interference regime, SIR → 0, the residual
interference component of Nβ

eff has to be completely can-
celled. This is done by selecting αR = αT β and results
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Fig. 2. SNReff as a function of SNR for different SIR values and ∆ = 1/3.
Continuous line - (−10)dB; dashed line - 0dB; dot-dashed - 10dB. Within
each pair: Thick line - “Smart Rx” approach; thin line - “Naı̈ve” approach.

in an effective noise with finite power (dictated by the
magnitude of ∆). Thus reliable communication is possible
at strictly positive rates, even when the interference is
arbitrarily strong.

D. High SNR Regime

In the high SNR regime, i.e., SNR � 1, the choice αT = 1
becomes optimal. Using this choice of αT in (6), we have the
following effective SNR:

SNReff ≥
1 + SIR
(1 − β)2

(

1 − o(1)
)

,

where o(1) → 0 as SNR → ∞. By substituting this effective
SNR in the lower-bound of Lemma 1, we obtain the following
achievable rate:

Rd
THP ≥

1

2
log(1 + SIR) + log

(

1

∆

)

−
1

2
log

(

2πe
12

)

+ min
β∈I∆

ε(β, αT = 1, αR) − o(1) ,(7)

where again, o(1) → 0 as SNR → ∞.
Remark 3:

1. In the case of strong interference and high SNR (SIR →
0, SNR → ∞), with the choice of αT = 1 and the
corresponding optimal choice of αMMSE

R = 1
β

, the effective
noise Nβ

eff has virtually only a self-noise component, i.e.,
Nβ

eff ≈ (1 − αR)U . Hence, ε(β, αT = 1, αMMSE
R ) →

1
2 log

(

2πe
12

)

as SNR → ∞ (for ∀β ∈ I∆). Thus, there
is no shaping loss compared to high-dimensional lattices
in this case, as further explained in Section VI-A, and the
corresponding achievable rate is Rd

THP = log
(

1
∆

)

− o(1).
2. The lower bound of (7) can be evaluated for

any specific distribution of S, by calculating
minβ ε(β, αT = 1, αMMSE

R ). For instance, if S is uniform,
that is the limit of an M -PAM constellation (M → ∞),
then Rd

THP can be lower-bounded by

Rd
THP ≥

1

2
log(1 + SIR) + log(

1

∆
) −

1

2
log
( e

2

)

− o(1) ,
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where o(1) → 0 as SNR → ∞. This can be done for a
general SNR as well, viz., not only in the limit of high-
SNR.

3. Even in the limit of strong interference, i.e., SIR → 0,
in the “smart-receiver” approach, SNReff ≥ 1, due to the
extra 1 in the nominator. Hence a strictly positive rate is
achieved in this regime, contrary to the effective SNR of
the naı̈ve approach, SIR

(1−β)2 , which goes to zero along with
the achievable rate.

4. In the case of equal interference and signal powers,
SIR = 1, there is a gain of 3dB over the naı̈ve approach,
as is seen in Figure 2.

5. When the signal and interference have the same power,
SIR = 1, αMMSE

R strikes a balance between the two effective
noise components, the powers of which become both equal
to 1

4 (1 − β)2PX for αR = αMMSE
R . Thus, αMMSE

R gives
a total noise power of P

N
β
eff

= 1
2 (1 − β)2PX , which is half

the noise power obtained by cancelling out the interference
component completely (αR = β), or alternately, half the
noise power obtained by cancelling out completely the self-
noise component (αR = 1).

6. Due to the modulo operation at the receiver side and
since the effective noise is not Gaussian, the choice
αR = αMMSE

R does not strictly maximize the mutual infor-
mation I(V ; Y ′), but rather is a reasonable approximate
solution. Moreover, in the compound case, in contrast to the
perfect SI case, minimizing the mean-square error (MSE)
is not equivalent to maximizing the effective SNR or the
rate, as may be seen in Example 1 below.

V. RANDOMIZED SCALING AT TRANSMITTER

For simplicity, we now restrict our attention to the case of
strong interference and high SNR, i.e., SIR → 0, SNR → ∞.
More specifically, we consider a noise-free channel model:

Y = X +
S

β
.

In this case, the receiver must completely cancel out the
interference by choosing αR = β · αT . Note that if β were
known at the transmitter, the capacity would be infinite.

We now investigate whether performance may be improved
by introducing a random scaling factor α at the transmitter
(αT = 1

α
), which is chosen in an i.i.d. manner at each

time instance and is assumed known to both transmitter
and receiver. Thus, we consider the following transmission
scheme:

• Transmitter: for any v ∈ V0, sends

X = [v −
1

α
S − U ] mod Λ.

• Receiver: the receiver applies the front end operation,

Y ′ = [αRY + U ] mod Λ,

where αR = β/α.
The above channel can be shown (by retracing the steps of

(3), (4)) to be equivalent to the modulo-additive channel

Y ′ =
[

v + Nβ
eff

]

mod Λ,

where Nβ
eff ,

α−β

α
U . Note that the average power of Nβ

eff now
varies from symbol to symbol according to the value of α.

The rationale for considering such scaling at the transmitter
is that had the transmitter known β, it would choose α = β to
match the actual interference as experienced at the receiver. By
using randomization, this will occur some of the time. Since
β is unknown however (to the transmitter), one might suspect
that using a deterministic selection of α = 1 may be optimal,
as was done in Section IV-A. However, due to convexity, it
turns out that a better approach is to let α vary4 from symbol
to symbol (or block to block) within the interval of uncertainty
I∆.

Example 1: To further motivate this we shall look at the
simple case of a binary alphabet β ∈ B = {1 ± ∆}. In this
case the best deterministic selection of α is α = 1, which
gives rise to a finite rate for every β ∈ B. However, consider
choosing α at random, in an i.i.d. manner for each symbol,
according to

P (α = 1− ∆) = P (α = 1 + ∆) =
1

2
.

When the transmitter uses this selection policy of α, approx-
imately for half of the transmitted symbols the chosen α will
equal β, even though β is unknown to the transmitter; while
for the other half of the symbols, the mismatch between β
and the chosen α will be greater than that obtained by taking
α = 1. Since, whenever the chosen α is (exactly) equal to β,
the mutual information between the conveyed message v and
the channel output Y is infinite, since the channel is noiseless,
the total rate is infinite as well.

Remark 4: In the absence of noise, if β takes only a finite
number of values, i.e. |B| < ∞, then the achievable rate is
infinite. The achievability is shown by generalizing the idea of
the binary case: by varying α in an .i.i.d manner from symbol
to symbol according to the uniform distribution α ∼ Unif(B).
However a straightforward extension to the case of an infinite
countable cardinality (all the more to a continuous alphabet),
is not possible.

We denote the maximal achievable rate of this scheme by
Rr

THP, where “r” stands for “random”. It is given by:

Rr
THP = max

f(α)
Rr

THP(f) = max
f(α)

min
β∈I∆

Iβ(V ; Y ′|α), (8)

where f(α) is the PDF according to which α is drawn and
Rr

THP(f) denotes the mutual information corresponding to the
specific choice of f(α). Note that in this case the distribution
of α that minimizes the MSE is not necessarily the one that
maximizes SNReff. Hence a direct optimization of (8) needs
to be done. Note that in this case the effective noise will vary
with time along with α.

Lemma 2: The maximal achievable rate, when ∆ ≤ 1
3 , for

the noiseless DP channel, using the “extended THP scheme”,
is

Rr
THP = max

f(α):
Supp{f(α)}⊆I∆

min
β∈I∆

−Eα

[

log

∣

∣

∣

∣

α − β

α

∣

∣

∣

∣

]

. (9)

4Note that by doing so, we in effect extend the class of strategies used in
the transmission scheme.
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Fig. 3. Achievable rates and upper-bound on the deterministic THP scheme.

The proof of this lemma is given in Appendix B along with
the treatment of the case of ∆ > 1

3 .
Finding the optimal distribution of f(·) in (8) is cumber-

some. Instead, we suggest several choices for the distribution
f(·) which achieve better performance than that of any deter-
ministic selection of α as well as derive an upper bound on
Rr

THP.

A. Quantifying the Achievable Rates

As indicated by Lemma 2, we restrict attention to the case
of ∆ ≤ 1

3 . We consider three different distributions for α:
deterministic selection, a uniform distribution and a V-like
distribution.

1) Deterministic Selection: One easily verifies that the
value of α, which achieves the maximal rate, is α = 1 and
the corresponding rate is

Rr
THP(fDeter) = − log∆ = log

1

∆
.

Note that this result coincides with the result for Rd
THP of

Section IV-A (ε(β, αR) − 1
2 log( 2πe

12 ) is equal to zero in this
case, as mentioned in Remark 3).

2) Uniform Distribution: Taking α ∼ Unif(I∆) yields the
following achievable rate:

Rr
THP(fUnif) =

1

2∆

[

(1 + ∆) log(1 + ∆)

− (1 − ∆) log(1 − ∆) − 2∆ log(2∆)
]

.

Hence, even this simple randomization improves on the deter-
ministic selection, as may be seen in Figure 3.

3) V-like Distribution: A further improvement is obtained
by taking a V-like distribution,

fV−like(α) =
|α − 1|

∆2
, |α − 1| ≤ ∆.

The resulting rate is

Rr
THP(fV−like) = −

1

2∆2

[

(1 − ∆2) log(1 − ∆2)

+ ∆2 log(∆2)
]

.

We have not pursued numerical optimization of f(·). We
note that none of the three distributions above are optimal
since Iβ(V ; Y ′) varies with β. Moreover, the optimal PDF will

not be totally symmetric around 1 due to the first term log(α)
in (16). This term becomes, however, less and less significant
(and hence the optimal PDF more and more symmetrical) for
small ∆. We next derive an upper bound on the achievable
rate which holds for any choice of f(·).

B. Upper-Bound on Achievable Rates

Lemma 3: The rate achievable, using THP with randomized
scaling, is upper bounded by

Rr
THP ≤ log(1 + ∆) − log(∆) + 1

for any distribution f(α), when ∆ ≤ 1
3 .

Proof: Using (16), for every distribution f(α), we have

Iβ(V ; Y ′) = min
β

{Eα [log α] − Eα [log |α̃ − β|]}

(a)

≤ min
ε

{log(1 + ∆) − Eα [log(|α − β| mod Λ)]}

(b)

≤ log(1 + ∆) −
1

2∆

∫ ∆

−∆

log |x|dx

= log(1 + ∆) − log(∆) + 1,

where (a) holds since Supp {f(α)} ⊆ I∆ and (b) is true
due to the monotonicity of the log function where equality is
achieved for α ∼ Unif(I∆).

C. Noisy case

The randomized approach taken may be extended to the
noisy case:

Y ′ =
[

v + Nβ
eff

]

mod Λ

Nβ
eff = (1 − αR)U +

(

αR −
β

α

)

S

β
+ αRN.

This result is easily proved simply by choosing αT = 1
α

in
(4).

Consider the case of SIR → 0 (and finite SNR). In this
case, αR has to be chosen to be β

α
, in order to eliminate the

residual interference component in the effective noise. The
effective noise in this case is hence:

Nβ
eff =

α − β

α
U +

β

α
N.

Unlike in the noiseless case, in which the effective noise had
only a finite support (“self-noise”) component α−β

α
U , here the

noise has an additional Gaussian component β

α
N .

We only examine the deterministic and uniform distribu-
tions from Section V and minor variations on them, taking
αT = αMMSE

α
, 1

α̃
, where α is selected according to the distri-

butions of Section V and αMMSE , SNR
1+SNR . The performances

of the different choices for f(·) are shown in Figure 4.
Note that in the high-SNR regime, the non-deterministic

distributions prove to be more effective than the best determin-
istic scheme, whereas in the low-SNR regime the deterministic
selection becomes superior. This threshold phenomenon can be
explained by considering the two components of Nβ

eff: in the
high-SNR regime, the dominant noise component is the “self-
noise” component α̃−β

α̃
U , which is minimized by a “smart” se-

lection of f(·); in the low-SNR regime, on the other hand, the
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Fig. 4. Achievable rates in the random THP scheme for SNR = 17dB.

dominant noise component is the Gaussian part β

α̃
N , whose

multiplicative factor β

α̃
should be deterministic to minimize its

average power. In general, there is a tradeoff between the best
deterministic selection of αT which minimizes the power of
the Gaussian component and the self-noise component, which
is to be minimized by a random αT selection.

VI. EXTENSIONS AND IMPLICATIONS

A. Multi-Dimensional Lattices

It is well known, that a multi-dimensional extension of
THP (i.e., lattice-based precoding), allows to approach the full
capacity of the DP channel (with non-causal knowledge of the
interference) with perfect channel knowledge. Somewhat sur-
prisingly, we observe that the channel knowledge is imperfect
multi-dimensional lattice precoding yields identical results to
those obtained by scalar (one-dimensional lattice) precoding,
in the limit of high-SNR. This is seen by simply repeating the
proof of Lemma 2 for a multi-dimensional lattice Λ. It can be
explained by the fact that, in the “noiseless case” no shaping
gain can be obtained using higher dimensional lattices, as the
self-noise “gains shaping” just as the signal. Hence, using
high-dimensional lattices does not increase the achievable rates
for lattice-based precoding schemes in the absence of channel
noise. In the noisy case, however, multi-dimensional strategies
allow gaining some of the shaping gain, due to the presence of
a Gaussian noise component as was discussed in Section V-C.

Note that multi-dimensional lattice correspond to non-causal
SI case, .i.e, S is known non-causally. For this case an
inner-bound on the capacity, due to Mitran, Devroye and
Tarokh [16], is given by

C ≥ sup
p(u|x,s,w),p(x|s,w),p(w)

inf
β∈B

[

Iβ(U ; Y |W ) − I(U ; S|W )
]

,

(10)

where U is auxiliary, W is a time-sharing random and X, S
and Y are the channel input, side-information at the transmitter
and channel output, respectively.5 The authors of [16], suggest
using an auxiliary random variable, similar to that of Costa [1],
viz.,

U = X + αS. (11)

5The upper bound, given in [16], tends to infinity, and thus, not interesting
in our problem.

By selecting the parameter α of (11), in the same manner
as αT of the THP schemes of Section IV and Section V, we
arrive to the same performances when using multi-dimensional
lattices of dimensions going to infinity, in all scenarios (fi-
nite/infinite SIR, finite/infinite SNR).

B. Implications to MIMO Broadcast Channels

Consider a Gaussian MIMO channel. For simplicity we
consider a real-valued channel model. We further consider the
case of two transmitting antennas and two receivers, with one
receiving antenna each:

Yi = hT
i X + Ni, (12)

where Yi is the channel output received by user i = 1, 2, X is
the 2×1 channel input, and Ni is an AWGN. Without loss of
generality, we take the power of Ni to be 1. We consider the
case where only private messages are sent to the two users.
Hence, for linear zero-forcing or linear MMSE as well as for
dirty paper coding, the transmitted signal can be decomposed
into the form

X = W1t1 + W2t2,

where Wi is the signal intended for user i of average power
Pi, and ti is a unit vector in the direction of the transmitted
direction of this message. Without loss of generality, we shall
assume that P2 ≥ P1. In a similar way we shall rewrite the
channel vectors hi in the form

hi = hiei,

where hi is the signed-amplitude and ei is a unit vector in the
direction of hi. Let us denote the acute angle between h1

and h2 by θ (see Figure 5):

θ , min
{

arccos
(

〈e1, e2〉
)

, arccos
(

− 〈e1, e2〉
)

}

.

In practice, the channel vectors hi are known up to some
finite accuracy, due to estimation errors or limited feedback,
at the transmitter end. We assume that the transmitter knows
the channel vectors hi up to some small angular errors εi ∈
[−∆, ∆] (∆ � 1),6 that is:

hi = h̃i

〈ei, ẽi〉 = cos(εi), (13)

where hi (i = 1, 2) are the estimations of the channel vectors
available at the transmitter and h̃i = h̃iẽi are the true channel
realizations.

Linear zero forcing
According to this strategy, the transmitter avoids interferences
by transmitting x1 in an orthogonal direction to h2, and x2 -
orthogonally to h1, as depicted in Figure 5 (see, e.g., [24]).
However, in the case of imperfect channel knowledge at the
transmitter, described by (13), the presence of an additional
residual noise component is inevitable. The simplest approach

6 One may assume a presence of a small magnitude error as well.
However, such an error would have no effect when performing first-order
approximations.
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and only approach we consider here, is ignoring the estimation
inaccuracy, that is, transmitting as if εi were 0. Hence by
using codebooks that achieve capacity for the (interference-
free) AWGN channel, any rate pair (R1, R2) satisfying:

R1 ≥
1

2
log

(

1 +
SNR1 ‖h1‖

2
sin2(θ)

SNR2 ‖h1‖
2
∆2 + 1

)

− o(1)

R2 ≥
1

2
log

(

1 +
SNR2 ‖h2‖

2
sin2(θ)

SNR1 ‖h2‖
2
∆2 + 1

)

− o(1) (14)

is achievable, under first-order approximations (∆ � 1),
where o(1) → 0 as ∆ → 0 (see details in [25]).

Dirty paper coding
Instead of using linear precoding approaches, one may transmit
the message to user 1 in an orthogonal direction to the channel
vector of user 2, and apply dirty paper coding to eliminate the
interference of the user 2 on its own channel vector, as depicted
in Figure 6. The expressions we provide below are for the non-
causal case, i.e., correspond to using multi-dimensional THP
where the dimension goes to infinity.7 For a more thorough
discussion of this approach see [3], [24].

Using the “smart receiver” approach and taking αT = 1 and
assume ∆ small enough such that ∆ � ctg(θ), any rate pair

7The results for the causal case are identical up to a subtraction of the
shaping loss 1

2
log
(

2πe
12

)

in (14).

(R1, R2) satisfying:

R1 ≥
1

2
log

(

1 +
SNR1 ‖h1‖

2
sin2(θ)

SNR1 ‖h1‖
2
sec2(θ)∆2 + 1

)

− o(1)

R2 ≥
1

2
log

(

1 +
SNR2 ‖h2‖

2

SNR1 ‖h2‖
2
∆2 + 1

)

− o(1). (15)

is achievable, under first-order approximations, where o(1) →
0 as ∆ → 0 (see details in [25]).

It has been speculated in some works, e.g., [26], [27],
[28], that DPC has a significant drawback in the presence of
channel estimation errors, compared to linear approaches such
as linear-ZF. However, by comparing the achievable rates using
DPC (15), to those achievable by linear-ZF (14), one sees that,
at least for small ∆ values, DPC is “more robust” than linear-
ZF, when

SNR2 sec2(θ) > SNR1.

We note that the performance of both schemes, i.e., the
dirty paper coding scheme and the linear-ZF scheme, can
further be improved by employing MMSE optimization at the
receiver as was done in Section IV-A in conjunction with
a randomized “guessing” of ε1 and ε2 (chosen in an i.i.d.
manner according to a judicious distribution function), as was
explained in Section V.

VII. SUMMARY

In this work, the compound dirty paper channel was con-
sidered. We studied the performance that may be achieved
by an extended Tomlinson-Harashima precoding scheme and
derived lower bounds on the capacity of the channel. We
derived the MMSE scaling that can be applied at the re-
ceiver to compensate for imprecise channel knowledge at the
transmitter. We further showed that randomized α scaling
at the transmitter may further improve the achievable rate.
It was also shown that the potential shaping gain of higher
lattice dimensions diminishes with the increase of the channel
estimation inaccuracy.

This work focused exclusively on the performance achiev-
able using THP-like schemes. It would be interesting to obtain
an upper bound on the capacity (without any restriction on
the coding technique) of noiseless DP channel under channel
uncertainty.

APPENDIX A
PROOF OF THEOREM 1

Direct: Denote by T the family of all mappings from S to
X . Use a transmitter that sends x = t(s), where t is chosen
in an i.i.d. manner, according to some predefined probability
distribution p(t). In this case, the problem reduces to that of
a compound channel with no side-information, with an input
alphabet T (see [17]), the same output alphabet Y and the
corresponding transition probabilities

p(y|t) =
∑

s∈S

p(y|x = t(s), s) .
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Hence, by maximizing over all possible input probabilities,
p(t), of the equivalent channel, we have an inner bound on
the (worst-case) capacity (see, e.g., [19]):

C ≥ sup
p(t)∈P(T )

inf
β∈B

Iβ(T ; Y ) .

Converse: For each n, let the information message W be
drawn according to a uniform distribution over {1, ..., 2nR}.
Denote the error probability corresponding to β ∈ B by P

(n)
e,β

and the error probability of the scheme as the supremum of
these probabilities, P

(n)
e ,

∑

β∈B P
(n)
e,β . Then we have:

nR = H(W ) ≤ 1 + P
(n)
e,β nR + Iβ(W ; Y n

1 )

≤ 1 + P (n)
e nR +

n
∑

i=1

Iβ(W ; Yi|Y
i−1
1 ) ,

where the first inequality is due to Fano’s inequality (see, e.g.,
[29]) and the second inequality follows from the chain-rule for
mutual information. By retracing the steps of Shannon in [17],
for every β ∈ B, we have Iβ(W ; Yi|Y

i−1
1 ) ≤ Iβ(W, Si−1

1 ; Yi).
Since

{

W, Si−1
1

}

does not depend on the value of β, the
following inequality holds true as explained in detail in [17]:

nR ≤ P (n)
e nR +

n
∑

i=1

Iβ(Ti; Yi), ∀β ∈ B

The inequality above needs to be held for all β ∈ B simulta-
neously, and hence can be rewritten as

nR ≤ sup
p(t)∈P(T )

inf
β∈B

P (n)
e nR + nIβ(T ; Y ) .

Finally, dividing by n, taking Pe → 0 and letting n → ∞,
we obtain

R ≤ sup
p(t)∈P(T )

inf
β∈B

Iβ(T ; Yi) .

�

APPENDIX B
PROOF OF LEMMA 2 AND TREATMENT FOR ∆ > 1/3

Lemma 2: The term

Iβ(V ; Y ′|α) = hβ(Y ′|α) − hβ(Y ′|V, α)

is maximized by taking V ∼ Unif(Λ). Moreover, it is easily
seen that the support of f(α) should be restricted to I∆. It
follows that,

Iβ(V ; Y ′|α) = hβ(Y ′|α) − hβ(Y ′|V, α)

= log(L) − hβ(Y ′|V, α)

= log(L) − h([Nβ
eff] mod Λ)

= log(L) − Eα

[

h

([

α − β

α
U

]

mod Λ

)]

.

The term α−β
α

is maximized when α = 1−∆ and β = 1 + ∆,
and is equal to 2∆

1−∆ . Hence, for ∆ ≤ 1
3 , we have α−β

α
≤ 1.

Therefore,

Iβ(V ; Y ′|α) = log(L) − Eα

[

h

(

α − β

α
U

)]

= log(L) + Eα

[

− log(∆) − log

∣

∣

∣

∣

α − β

α

∣

∣

∣

∣

]

= −Eα log

∣

∣

∣

∣

α − β

α

∣

∣

∣

∣

= Eα [log(α) − log |α − β|] . (16)

The case of ∆ > 1/3 can be treated in a similar manner by
employing the following lemma.

Lemma 4: Suppose U ∼ Unif(V0). Then for every a > 1,
the entropy of

(

[aU ] mod Λ
)

is bounded by

log(L) − log

(

dae

a

)

≤ h([aU ] mod Λ) ≤ log(L) .

Proof: The upper-bound follows easily from the fact that
differential entropy is maximized by a uniform distribution,
when subject to an amplitude constraint, see, e.g. [29]. To
prove the lower-bound, note that there is a unique index k ∈ Z

which satisfies

aU = [aU ] mod Λ + kL,

and the cardinality of k equal to |K| = dae. One may easily
verify [30], that the following relation holds

h(aU) = h([aU ] mod Λ) + H(k|[aU ])

which leads to the desired bound:

h([aU ] mod Λ) = log(aL) − H(k|[aU ])

≥ log(aL) − H(k)

= log(aL) − log(a + 1)

= log(L) − log

(

dae

a

)

.
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