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Abstract—This work considers communication networks where the I1SI and MIMO channels usingon-orthogonakquivalent
individual links can be described as MIMO cr_]annels. Unlike channels, by a receiver which performgangularization of
orthogonal modulation methods (such as the singular-valuele- - 1na channdl (rather than diagonalization) and then decision-

composition), we allow interference between subchannelghich feedback lizati ive interf articel]
can be removed by the receivers via successive cancellation eeaback equalization or successive interierence ¢

The degrees of freedom earned by this relaxation are used for (SIC), see e.g. [1]. This is done without performing any
obtaining a basis which is simultaneously good for more thamne transformation at the transmitter. It is therefore naturl
link. Specifically, we derive necessary and sufficient contions for  ask, what can be achieved by allowitgth a transmitter
shaping the ratio vector of subchannel gains of two broadcas transformation (in addition to the receiver one) and SIC.

channel receivers. We then apply this to two scenarios: Fits . . . . .
in digital multicasting we present a practical capacity-adieving One such direction, pursued by Jiang, Hager and Li [2], is

scheme which only uses scalar codes and linear processindnen, Fhe generalized triangular decompositid@TD): A matrix A
we consider the joint source—channel problem of transmiting a is decomposed as t
Gaussian source over a two-user MIMO channel, where we show A=UTVT,

the existence of non-trivial cases, where the optimal disttion . . T .
pair (which for high signal-to-noise ratios equals the optnal wherel andV’ are unitary matrices’ denotes the conjugate

point-to-point distortions of the individual users) may beachieved {ranspose oft” and 7" is upper-triangular with a prescribed
by employing a hybrid digital-analog scheme over the indua diagonal. It is shown in [3], [4] that the transforming ma&s
equivalent channel. These scenarios demonstrate the adtage {7 and V' exist if and only if the (desired) diagonal elements
of Chocl’(s'“r? a mOd“'.at'Oh“ basis baieg upon IE““'“S'el links infte  of 7" obey Weyl's multiplicative majorization relation with the
network, thus we coin the approach “network modulation”. singular values ofd (see also [5]). Since the product of these
Index Terms—Broadcast channel, MIMO, multicasting, gener- diagonal elements equals the product of the singular valties
alized triangular decomposition, geometric mean decompdson, A, the decomposition perfornasagonal shapinglt distributes
GSVD, GDFE, multiplicative majorization, joint source-channel the total gain between the diagonal elements in a desired way
coding. An important special case is where balanced gains are sought
i.e., the diagonal elements @f should all be equal. In that
|. INTRODUCTION case, named thgeometric mean decompositig@MD) [6],
: . . . .the majorization condition holds for any. When applied to
The choice of modulation domain plays a major role i L
. . . Sl .MIMO communication, GMD has an advantage over SVD,
communication, both in deriving performance limits and i ) )
. . . 't ?t all subchannels enjoy the same gain, and thus may suppor
the design of practical schemes which decouple the signa - . .
: o . codebooks of the same rate, avoiding the need for a bit#gadi
processing task of channel equalization from coding. Thus

choosing the “right” basis is of central importance. For exrpechanlsm. This comes at the price of performing SIC at the

. o : receiver. The GMD has received considerable attention; see
ample, the capacity of the Gaussian inter-symbol intenfeze e.q., [7], [8] for some of its applications
(ISl) channel is given by the water-filling solution, applia 9. LU, PP '

the frequency domain; the same transformation also allows We take a different path, in which we wish to jointly
quency ", ' sthape the diagonals of two matrices, for the purpose of multi

use popular schemes such as Orthogonal Frequency-Divi . - . . . .
Multiplexing (OFDM) which employs the discrete Fouriesr'!gnmnal communication. Since with this approach the ahoic

transform. The sinaular value decomposition (SVD) pla Sof basis depends upon more than one communication link,
. ‘ gular comp ( ) play We call it network modulationWe jointly triangularize two
similar role for multiple-input multiple-output (MIMO) &m-

o L : matricesA; and A as
nels. Common to both cases dsagonalization They yield ! A2 TVt i1 L
parallel independent equivalent channels. But do we really ¢ = Yiddv o, =4, 2, @)
need such orthogonality? Capacity can be achieved for baethereU;, U, and V' are unitary andl; and 7T, are upper-
" ‘ of th 4 auth od | by theon triangular. Having the same matriX on one of the sides of
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We start by deriving the necessary and sufficient condi- Definition 2 (Square part)Let A be a matrix of dimen-
tions for joint unitary triangularization of two matrices) sionsm x n wherem > n. The square part ofi, denoted
Section 1I-B. In the rest of the paper we apply this result i4], consists of the first rows of A.
two different scenarios, where in one we present an optimalDefinition 3 (Generalized triangular matrix)tet 7" be a
practical scheme for a problem for which the capacity imatrix of proper dimensions. We cdll a generalized triangu-
known, and in the second we derive the (hitherto unknowfdr matrix, if 7; ; = 0 for i > j, i.e., it has the block structure
optimal performance. In Section Il we combine the joint 7]
triangularization with the concept of SIC, to present arroat T= ( 0 >
scheme for two-user digital multicasting that employs dine ) .
processing of scalar codebooks. In Section IV, we address there the square paff] is upper-triangular.
problem of transmission of aanalogsource over two MIMO As for the SVD, we assume non-negative diagonal elements
links, where we show that a ratios vector of all-ones excefsi€€ Remark 1), and they are all positive under the full-rank
for one element creates an equivalent channel over whiciegsumption. Note that for any unitary tnayr:gulanzanon,
hybrid digital-analog (HDA) scheme can achieve the optimal 2 9
tr)::\deoff t?etween usger( distc))rtions; thus we derive the cgitim det (ATA) = det (TTT) = (det[T])" = H(Tj’j) - G
performance whenever the channels are such that this ratios =t
vector is feasible. We conclude the paper in Section V. It turns out, that the singular values are an extremal case

We note that the decomposition may equally be app"égr t.he di{;\gonal of all possible gnitary triangularizatorf-or
to cases where two transmitters communicate with a joiptating this, we need the following.
receiver via MIMO links (a MIMO MAC channel). In this case  D€finition 4 (Multiplicative majorization (see [S]))Let =
the roles of thé/ andV matrices in (1) are interchanged. An@nd ¥ be two n-dimensional vectors of positive elements.
application of the decomposition in such a setting is a MiM&enote byz and y the vectors composed of the entries of
extension of the “physical network coding” approach to bit anq Y, respectively, _ordered non-increasingly. We say that
directional relays and appears in [10]. x majorizesy (x = y) if they have equal products:

n n
[Te=11v
II. JOINT UNITARY TRIANGULARIZATION j=1 =1

In this section we present the joint unitary triangulaiiat and their (ordered) elements satisfy for any. k < n,
of two matrices. We start by introducing a few notations and L - ko
recalling known decompositions for a single matrix. H T = Yi-
j=1 j=1

In these terms, we can give the condition of the GTD

A. Unitary Triangularization of a Single Matrix [2] for the existence of a unitary triangularization: Leit
Throughout the work, we will only need to decomposBe a matrix of proper dimensions x n and ¢ be ann-
matrices which belong to the following class. dimensional vector of positive elements. Then, there gxst

Definition 1 (Proper dimensions)An m x n matrix A js unitary triangular?zation qt4 wit.h diagonalt, i.e., A can be
said to have proper dimensions if it is full-rank and> n. ~ decomposed as in (2) with" being some generalized upper-

The singular-value decomposition (SVD, see [11]) of iangular matrix with the prescribed diagonalif and only
matrix A of proper dimensions: x n, is given by: if the latter is majorized by the singular-values vectorAf

A=UTV, @) wA) =t

where U and V' are unitary matrices, an@ is anm x n B. Joint Triangularization with Shaped Diagonal Ratio

(generalized) diagonal matrix, viZ; ; = 0 for i # j. The SVD presented in Section II-A is essentially unique.
Remark 1:Throughout the paper, we will assume in alirhus, in general, two matrices cannot be jointly diagomaliz

decompositions that all the diagonal elemeffils are real by unitary matrices. Nevertheless, joimiangularization (1)

and non-negative. This is without loss of generality, siang is possible. In this section we prove the necessary and suffi-

phase can be absorbedihandV . cient conditions for such triangularization, formally eefil as
The diagonal entries df are called the singular values (SV)follows.
of A; they equal the square-roots of the eigenvaluesiod. Definition 5 (Joint Unitary Triangularization)Let A; and

Since we assumed to be full-rank, all its SVs are strictly A, be matrices of proper dimensions with the same number
positive. We define the SV vectpt(A) as then-length vector of columns. A joint decomposition:
composed of all SVs (including their algebraic multiphgit A — DTV
ordered non-increasingly(A) is unique, i.e., there is no other L= (4)
diagonalization, up to ordering and phases of the diagonal. Ay = U ToVT,

Unitary triangularization coined generalized triangul@ s called a joint unitary triangularization it/;, U, and V
composition (GTD) [2] generalizes the SVD to triangulagre unitary, andl; and 7, are generalized upper-triangular
matrices. The class of matrices is formally defined as f(ﬂlOWmatrices of the same dimensions_ags and A, respective]y_



The existence condition for this joint decomposition turndlgorithm 1 : Joint Triangularization of Square Matrices
out to be similar to that of the GTD (see_ Section II-A), wherp ComputeB 2 A, A7
the SVs are replaced by generalized singular values, and the
diagonal of T is replaced by the ratio of the diagonals of  Apply the GTD to B (for details regarding the im
(Ty,T»). These quantities are defined below. plementation, including Matlab code, see [2]):
Definition 6 (Generalized singular values [9]For  any B = U,RU!
(ordered) matrix pair(A;, A2), the generalized singular 2
values (GSVs) are the positive solutiom®f the equation with R having a diagonal equal to (the desired diag-
onal ratio)r (71, 1>).

det { Al A1 —a?afas} 0.

. DecomposerAi according to the RQ decompog
Let the GSV vectop(A;, A;) be composed of all GSVs (in- tion:
cluding their algebraic multiplicity), ordered non-inasngly. Ut A, — 7oyt
Remark 2:For matrices of proper dimensions we have 141 =
GSVs, all positive (recall Remark 1) and finite. For non fullt UQTAQ =TV,
rank matrices we still have GSVs, even if the number of
finite solutions is smaller. We define a GSV to be infinite, i 'A
the corresponding GSV of the matrices in reversed order4s
zero. If the number of finite and infinite solutions is smaller  Apply (individual) QR decompositions td; and A»:

Igorlthm 2 : Joint Triangularization

than n, this suggests that the column rank can be reduced A; = QiR i—1.9
without changing the problem; we shall assume the problem ‘ T
is in its reduced form. « Extract[R;], the upper square x n part of R;.

Remark 3:When A; and A; are square and non-singular

o Apply Algorithm 1 t d to obtain a joint
(A1, Ap) consists of the singular values df A5 ' [9], [11]. pply Algorithm 1 to ;] and|ft;] to obtain a join

o ) . decomposition
Definition 7 (Diagonal ratios vector)iet 773 and Ty be o
generalized upper-triangular matrices of proper dimersio (R = UL VT
m1 xn andms X n, respectively, with positive diagonal entries [Ro] = UsToVT,
The diagonal ratios vectar(Ty,T3) = r([T1], [T2]) is then- o
length vector whosg-th entry is equal to the diagonal ratio where the diagonal ratio vector ¢f', 7%) is equal to
Ti,j;/T».j;, WhereT; . is the (j, k) entry of T; (i = 1,2). the desired diagonal ratio, i.e:(11, 1) = 7(11, T2).

We are now ready to prove the main result of this sectiop,
giving the condition for existence of joint unitary triafgu -
ization in terms of majorization (recall Definition 4). Santhe T, = ( T; ) ’
existence proof is constructive, it results with a decortjmrs 0
procedure; this is summarized in Algorithm 1 for the case of where the lower zero block is of dimensiohs

« Construct the matrices:

square matrices, and in Algorithm 2 — for the general case. (mi —n) x n, and
Theorem 1:Let A; and A, be matrices of proper dimen-

sions m; x n and my X n, respectively, and- be ann- U; = Q1< 0 > i

dimensional vector with positive elements. Then, therstexa 0 Jmi—n

joint unitary triangularization of A;, A,) with diagonal ratio

vectorr, i.e., the matrices can be decomposed as:
A =U T,V according to the GTD (see Section II-A), the matfixcan be
Ay — UV (5) decomposed as B — U.RD], @

where Uy, U; and V' are unitary, andl and T, are some \here(/, and U, are unitary andR is upper-triangular with

generalized upper-triangular matrices with the presdride 5 giagonal vector which equats Now, apply RQ decompo-
agonal ratio (the-th element ofr(T%,75) equalsr;), if and sjtions toU] A; (i = 1,2) to achieve

only if the latter is majorized by the GSV vector o, A5): UjAl- _ Tin 7 (®)

(A, Ag) = 7. . . L .
where T; are upper-triangular with positive diagonal entries
Proof: Achievability part. We present here a proof forandV; are unitary. By substituting (8) into (7) we have

the case when the matrices are squarng £ mo = n). The U1T1V1TV2T2*1U2T _ UlRUQT,

extension to the general proper-dimension case is relgégate

Appendix A. which is equivalent to

In the square casel; and A, must be invertible, being full- fr, 1

rank. Define the matrix3 = A; A;'. The SV vector ofB, ViVe =T RT:. ©)

w©(B), coincides with the GSV vector dfd,, As), u(A1, A2) We note that the Lh.s. of (9) is unitary, whereas its r.Iss. i

(recall Remark 3). Thus, it majorizes by assumption. Hence, an upper-triangular matrix with positive diagonal entriés



equality between such matrices can hold only if both madrice The joint unitary triangularization (and, as a special case
are equal to the identity matrix of the appropriate dimemsiothe GTD) can also be relaxed to a block form:

(n x n). Thus, we have Tina Tio Tk
VAV =TV, 0 Tioo -+ Tk
T = RiiTo, t=1,..,n. Ti = : E ’ (10)
. : : : . 0 0 Tikk
Since the diagonal oR is equal tor, this establishes the 0 0 0

desired decomposition (5). h i block of di ) h th
Converse part. Assume, in contradiction, that; and 4, I?re Tiska 1s @ block of dimensionsy, x ", SUC that
can be decomposed as in (5) such fhat;, A,) % (1, T). > k1 Mk = n (thus the last row of_ blocks COﬂSISFS of—m _
Note thaty (T}, T5) = (A, A2). Moreover,[T}] and[T5] are all-zero rows). Note that we require corresponding bloeks i
non-singular square x n matrices with GSV and diagonal-bOth matrices to be of the same dimensions, except for the
ratios vectors which are equal to those(%, %), i.e., last row of zero blocks. _
The existence condition can be stated as the following exten
p([T1], [T2]) = u(Ty,To) = p(Aq, As), sion of Theorem 1. Denote b&kl}fil the indices satisfying:

r([11],[T2]) = r(T1,T2) - Thy > Thy = 500 > Thye
Thus u([T1], [T2]) # »([T1], [T2]), which in turn implies that where r, £ "¢/|det (T1,4) / det (To;4)]. Denote by p

the upper-triangular matrib3 = [T3][T] ! has a diagonal the K-length vector composed ofr’*} (i.e., {p}r_, the
r([T1], [T>]) and an SV vectom([T1], [T»]). But according absolute values of the ratios between determinants of corre

to Weyl's condition [3]: sponding blocks), ordered in non-increasing order{of}.
B B Further denote by the K-length vector composed of the
p(Ar, A2) = (0], [T2]) = r(Ta), [T2]) = r(T1, T2), products of sizegk;} X, of the GSVs of(A;, A;) ordered
in contradiction to the assumption. m nhon-increasingly, i.e., the first entry gf is the product of

Remark 4:Note that we did not require the matricé% the largestk; GSVs, its second eptry is the product _of the
and Ty, to satisfy Weyl's condition individually, as we did not"€xt k2 GSVs, etc. Then, the desired block triangularization
strive to design specific diagonal values but rather priedri 1S POssible if and only if the products of the entriespoaind
ratios between the diagonals @% andT». Indeed, one may Of the GSV vector arekequal, z;md for ahy< k < K:2
verify that the resulting matrices in Theorem 1 satisfy Vi¢eyl le < H“l
condition individually. e

Remark 5:By the unitarity ofUy, U; andV, the products
of p andr are equal. Thus, the majorization relations mean 1ll. TRANSMISSIONSCHEME FORMULTICASTING

that the diagonal ratios are always “less spread” than the ge |, this section we derive an optimptactical communica-

eralized singular values. This is also true for the (indwl) {5 scheme for two-user multicasting over Gaussian MIMO
diagonal values off; (i = 1,2) being “less spread” than thegc channels. We start by recalling how the single-user
singular values of4;. Gaussian MIMO capacity may be achieved using multiple

Remark 6 (Relation to GSVD)fthe GSVD [9] can be cogehooks (each designed for a scalar AWGN channel) with

stated in a triangular form (5), with diagonals ratigsic over an equivalent channel, obtained by unitary triangu
r(T1,T>) = p(Ar, Az). Thus, the GSVD is a limiting case |grization (as in Section II-A).

with maximal ratios spread.
Remark 7 (Relation to GTD)Taking in the joint decom- A. SIC for MIMO Channels
position A = I yields the GTD ofA, [2]; further, the GSV 14 oyhosition below follows that of the universal matrix

yector becomes the SV vector 4f;. T_he existence Condition’_decomposition [12], which is in turn based upon the derbrati

In turn, reduces_ ,to t_he Weyl condition (see e.g. [2]). In th'_éf the MMSE version of Vertical Bell-Laboratories Space-

sense, the condition in Theorem 1 may be seen as a generahlziﬂqe coding (V-BLAST), see, e.g., [13]. Later in the paper we

Weyl condition for j_0|nt trlangularlzatl_on. take the triangularization to be one which is simultanepusl
Remark 8 (Relation to the generalized Schur decomposi for two users. This is suppressed for now. We assume

This decomposition, also called the QZ decomposition [E], o, ghout the paper perfect channel knowledge everywhere
a special case of the joint triangularization (5) with = Us. We consider a point-to-point (complex) MIMO channel:
It can be shown that the diagonal ratio vector induced by
this decomposition is unique, i.e., requiring that the anyit y=Hetz, (11)
matrices are the same on both sides prohibits shaping of thieerex is the channel input of dimensiong; x 1 subject to
diagonal ratios. an average power constraiRt® y is the channel output vector

Remark 9 (Fixed diagonal ratio)Any vector u majorizes N o - N o
the vector all of whose entries equa| its geometric mean_zThese condl_tlons are s_lmllar to the majorization condﬂloﬂDeflr_ntlon4

. . L _.up to the ordering which is done w.rt;, and not those of the entries pf

Hence, for any two matrices there exists a joint decompmusiti

) ) 8 ) 4 J A SAlternatively, one can consider an input covariance caitstis [mmT] =
with fixed diagonal ratio. We use this fact in Section IlI-B. ¢, where byC; < C> we mean tha{Cz — C1) is positive semi-definite.
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of dimensionsN,. x 1; H is the channel matrix of dimensions .
N, x N; and z is an additive circularly-symmetric Gaussianyn, —1 YN, —1 Yn, 1 TN, -1

noise vector of dimensiond, x 1. Without loss of generality, ——>|
we assume that the noise elements are mutually independent, —
identically distributed with unit variance. Ty ~

The capacity of this channel is given by ‘

YN, Zth y/ A TN,
C(H, P) = max I(H, Ca), 2 ) ™ yfpec. N, }

where the maximization is over all channel input covariig 2. sic-based receiver.
ance matricesCy > 0, subject to the power constraint

s T
N
A

|

trace (Cz) < P, and* W(_a start by applying a unitary_triangularization (as in
Section 1I-A) to an augmented matrix:
I(H,Cx) 2 logdet (I + HCxHT) . (13) r
L T
. . . ( ) =GE=UTVT, (16)
We may interpretl (H, Cx) as the maximal mutual informa- In,

tion (MI) that can be attained using an input covariance matn, nare I, is the identity matrix of dimensionsV,. Note

Cz, which is achievable by a Gaussian inptit that, by construction(= is of proper dimensions, regardless

In order to achieve a rate approaching this mutual informaf the dimensions and rank of the channel matkix That
tion, optimal codes of long block length are needed. Howev it has dimensiongN; + N,) x N, and isfull-rank. The
as pointed out in the introduction, we take an approa uare matrice’’ andV have dimensionsV, + N, and V;,
which decouples the signal-processing aspects from thbser pectively. This allows to decompose the total rate ietos

coding. We thus omit t_he time |n_dex throughout the paper; f%[ssociated with the diagonal values of the mditpas follows:
example, when referring to an input vectar we mean the

input at any time instant within the coding block. In a preati I(H,Cg) = logdet (In, + FFT) 17)
setting using encoder/decoder pairs of some given quality, = log det (]Nt 4 FTF) (18)
may easily bound the error probability of the scheme usieg th — log det (GTG) (19)
parameters of the codes. N N
When coding over a domain different than the input domain o« e N
(e.g., time or space), one may start with a virtual input @ect o z;log(T“) o z; R (20)
J= J=

&, related to the physical input by the linear transformatfon
_ Y?v5 (14) where (17) follows by the definitions (13) and (15), (18) is

r=be VT justified by Sylvester's determinant Theorem (see e.g.)[14]

We form the vectot, in turn, by taking one symbol from each(19) is a direct application of the definition (16), and in 20

of N, parallel codebooks, of equal powgyN;. The matrix we defineR; £ log (T} ;)*. Using the matrices obtained by

V is a unitary linear precoder. See Figure 1. this decomposition, the following scheme communicateksca
Recalling the GTD (see Section 1I-A), one may suggest &odebooks of rate$R; }.
chooseV’ by applying a unitary triangularization to The transmitted signal is formed using (14). At the receiver
2 HC;C/2 . (15) weusea matri¥y’, consisting of the upper-lefy,. x N, block

) ) o ) _ of U: § = Wiy. This results in an equivalent channel:
After the receiver applied/T, it is left with an equivalent

triangular channel’, over which it may decode the codebooks § = Wi (FVZ + z2) = WIFVaz + Wiz £ Tz +2. (21)
using SIC. Unfortunately, while this “conserves” the deter ) _ ) o &yt
nant of HCy H', it fails to do so when the identity matrix is NOt€ that sincél/” is not unitary, the statistics of = W'z
added as in the MI(H, Cz) (13). Thus, this is optimal in differ from those ofz. We denote the covariance matrix of the
the high SNR limit only, and an MMSE variation is needegduivalent noise by’s = WW?. Finally, SIC is performed,
in general, as next described. i.e., the codebooks are decoded from last=( N,) to first
(j = 1), where each codebook is recovered from:

4All logarithms are taken to the base 2 and all rates are medsnrbits. N

50910/2 is the principal square root of the Hermitian positive-déirmatrix r~ Xt: o
Cq, which may be found via diagonalization. Howev&ﬂ:’cl,z/2 may be Yy =Y : 3L
replaced, w.l.o.g., by any matrig satisfying: BBT = Cg. l=j+1

(22)



wherez; is the decoded symbol from theth codebook; see essentially require the same resources as if working in an
Figure 2. Assuming correct decoding of “past” symbols, i.€open loop” mode. Thus, the complexity involved is similar t
z; = 3; for all [ > j, the scalar channel for decoding of thehat required for approaching the isotropic mutual infotiora

j-th codebook is given by: of the channel, when only the receiver knows the channel. We
R -1 note that this advantage comes at the price of suffering from
y§ =1T5;2; + Z T2+ Z; - (23) error propagationbetween the codebooks. This effect has been

=1 analyzed and simulated in many works, see e.g., [16].

SinceT is not triangular, the second term in this scalar channel e conclude this section by pointing out a simple extension
(resulting from elements below the diagonal Bj acts as to a unitary transformation which inducesbéck-triangular

interference. The signal-to-interference-and-noise (&INR) matrix rather than a strictly triangular one. That s, if thatrix
is given by: R in (16) is of the block generalized upper-triangular form

(10), where the blocK.; is of dimensionsV, x N;, such

T 2
;= (TJ’JJ.)A _ , (24) thatZkK:1 N = N;. In that case, we emplok < N, codes
Czjj+ 2= (T52)? in parallel, each over an equivaleNy, x N, MIMO channel,
whereCy,; ; denotes thdi, j) entry of Cs. achieved by “block-SIC™:
The following, which is equivalent to Lemma I11.3 in [12], , oo )
shows optimality of the scheme. Y; = ZTJ'J:CI +z5, j=1... K, (26)
Proposition 1: For any channelld and input covariance =1
matrix Cz, the SINRsS; (24) of the transmission schemewhere 7}, is of dimensionsN; x N;. Seen as Gaussian
above satisfy: MIMO channels (i.e., seeing residual interference as foise
log(1+5;) =Ry, Vi=1,...,N;, (25) we achieve, as an extension to Proposition 1, a rate
where the rate®®; are given by (20). R; =logdet (T} ;(T;;)) (27)

This completes the recipe for a digital transmission scheme

. . ] . - . . over each such block channel.
which achieved (H, Cz): For a given input covariance matrix
Cx, choose the individual codebook rates to approggh},
the sum of which equals the Ml afforded by the MIMOB. Optimal Two-User Scheme
channel (13). By Proposition 1, the successive decoding proWe now derive an optimal practical communication scheme
cedure will succeed with arbitrarily low probability of err for two-user multicasting.
for these rates (asymptotically for high-dimensional it The two-user Gaussian MIMO broadcast (BC) channel has
scalar AWGN codes). Taking’z be the covariance maitrix one transmit and two receive nodes, where each receiveal sign
maximizing (12), capacity can be achieved. is related to the transmitted signal through:

The above exposition proves the optimality of the “scalar )
coding” approach — the combination of scalar AWGN code- yi = Hix + 2, i=12, (28)

books, linear processing, and SIC. This approach offers {ghere s is the channel input of dimensions, x 1 subject
duced complexity and easy-to-analyze performance when t3ean average power constraifit® y, is the channel output
channel is known at both ends (“closed loop”). Indeed, S0eC{,actor of decodei (i = 1,2) of dimensionsN\” x 1; H; is
cases of this approach have been suggested and used. ¢4 PaffL channel matrix to userof dimensionsV,” x N, and z;

ular, using the SVD results in diagonalequivalent channel i 51 aqditive circularly-symmetric Gaussian noise veabr
matrix T, establishing parallel virtual AWGN channels (n(ﬂimensionsNr(i) « 1, where again, without loss of generality,

SIC_ i.s needed), see [14,]' cher schemes, such as generaliged, s\, me that the noise elements are mutually independent,
decision feedback equalization (GDFE) and V-BLAST, see []1- entically distributed with unit variance

[15], are based on the QR decomposition. These do not r€QUI'%pis channel has received much attention over the past

I?near precoding, i.e.V - I. The UCD_[12] uses both a yecade. Unlike the single-input single-output (SISO) cHse

linear precoder and SIC, in order to achiéewith diagonal Gaussian MIMO BC channel is not degraded. Nevertheless,

elementskthat are ag equfal. debooké: desired capacity regions were established for some scenarios, such
Remark 10 (Number of codebooks): desired, one may as private-messages only, and for a common message with a

work with any number of codebooks abodg, as stated in ginqje private message, and bounds were derived for others,
[12]. To see that, add “virtual transmit antennas” with eerr see [17]-[19] and references therein.

sponding zero channel gains. The capacity remains uncUangeWe focus our attention on the multicast (common-message)
and the optimal channel input covariance matrix will n r
gl

I h ) " Th ber of codeb oblem, the capacity of which is long known to equal the
a ocate power to these "antennas”. T 1€ number of coaebo rst-case) capacity of the compound channel ( see e .}, [20
is equal to the number of antennas, including the additio

. th the compound parameter being the channel matrix index:
virtual ones.

All of these schemes have significant advantages over direct C(Hy,Hs,P) = max min I(H;,Cg), (29)
. S . Cg =12
capacity-achieving implementation for MIMO channels. Isuc

high-complexity SCh?meS’ €.g.. Usmg bit-interleaved ec_bd 6Again, alternatively, one can consider an input covariarmestraintCy £
modulation (BICM) in conjunction with sphere detectiong [zzf] < C.



where maximization is over all channel input covariancerimatof [T»]. On account of (17)-(20) we have that:
cesCqx > 0, subject to the power constraititace (Cg) < P
and the MIMO MI, I(H,Cg), was defined in (13).

We wish to use a scalar-coding approach, as applied to
the point-to-point setting in Section IlI-A. Indeed, thevate-
message MIMO BC capacity can be achieved by scalar codifbis rate can be approached using SIC at each receiver as
(in this case dirty-paper coding) techniques; see, e.@], 2 in the point-to-point case of Section IlI-A. Specifically, is
the presence of a common message, however, to our knofermed from N; codebooks of rategR;} and powerl/N;
edge, no scalar capacity-approaching coding solutions &&ch. The transmitted vector is given by the linear preapdin
known. QR-based schemes fail, since requiring the indalidu(14) and receivei performs the linear transformation (21) and
streams to be simultaneously decodable at all the receivBi€ (22) (substituting/; andT; for U andT', respectively).
implies that the ratger streamis governed by the smallestNow Proposition 1 guarantees correct decoding of all code-
of the corresponding diagonal elements (in the resulting tpooks for receiver 2. Since in receiver 1 each SINR can only
matrices), (potentially) inflicting an unbounded rate ggna be greater, it will be able to decode as well.

Adapting SVD to this scenario has an additional problem: The Remark 12 (Private messagedj; in addition to the com-
decomposition requires multiplying by a channel-dependemon message intended to both users, there are private mes-
(unitary) matrix at the transmitter, which prevents fronings sages (messages intended for individual users), sup&quosi
this decomposition for more than one channel simultangdusimay be used. That is, part of the transmit power is dedicated
As a result of these difficulties, other techniques were prte the private messages and is considered as noise for the
posed, which are suboptimal in general, see, e.g., [22], [23purpose of the common message. This approach was shown

In this section, we present an optimal successive-decoding[19] to be capacity-achieving in the presence of a single
(low-complexity) scheme for a two-user common-messagévate message, and under some conditions on the rate and
Gaussian MIMO BC channel. Specifically, the proposeebwer — also in the presence of two private messages (even
scheme is based upon SIC and gosmhlar AWGN codes, when these conditions do not hold, superposition gives éise b
in conjunction with the following special case of the decomknown performance). The scheme presented in this section

Ny Ny
I(H27 C;L-) = Zlog(Tg;j’j)Q = ZRJ .
j=1 j=1

position in Theorem 1. may be used for the common-message layer of these super-
Corollary 1: Let A; and A, be two matrices of proper position schemes as well. Interestingly, in that case weladvou
dimensionsm; x n andms x n, respectively, satisfying have interference cancellation both at the encoder (giatyer
coding of the private messages) and at the decoders (SIC of
det (AlAI) > det (AQAE) : (30) the common message).

Then there exists a joint triangularization (5) where
IV. HDA T RANSMISSION FORSOURCE MULTICASTING

Bijg 2 Toyg,  Vi=1....m. In this section we turn from the purely digital setting to a
Proof: An equivalent condition to (30) is that the produc}coInt squrce—channel coding (JSCC) prob_lem_, where we wish
of the entries ofu = p(A,, A,) is at least one. Lefi > 1 be to multicast an analog source to two destinations, wherh eac

the geometrical mean qf, and let the vector be the same destination should enjoy reconstruction quality accaydio

size asu, with all the elements equal to. By construction, the capacity offered by its channel. _

p =, thus by Theorem 1 there exists a joint triangularization 1€ transmission of a source over a BC channel is one of

with this ratio. Consequently, there exists a decompasitié€ Main applications of JSCC. In this setting, JSCC may be

such that for all element®,.; ; = jiTy.; ; > Th.; ; m Jreatly superior to transmission based upon source—channe
VIV 31,) = VAV

Remark 11 (Admissible diagonal ratiosfhe proof sug- separation. In a classical example, a white Gaussian source
gests that the diagonal ratios vector be made uniforr‘}‘]‘?eds to be transmitted over a two-user AWGN BC channel,

This is always possible, but is not the only choice (unleddth one channel use per source sample, under mean-squared
[(Hy,Cg) = I(Hs, Cg)). error (MSE) distortion. Analog transmission achieves thg-0

The results above defines a communication scheme in @gl performance for each user as if the other user did not exis

following way. For the channel$/; and H,, let Cx be a f4]' In cor?trast,f.the separatlon.-ba_sed sczetr)‘ne ((cj:onaaIeE'lhna
capacity-achieving input covariance matrix, and assunik-wi 1 Successive-refinement quantization and broadcast ehann

out loss of generality that(H,, Cg) > I(Hs, Cg). Define the coding) yields_ a tradeof_f, where if. we V\./iSh to be optimal
augmented matrice§; and G, as in (16). By Corollary 1, for thehuser Vr\?th worsedglgnal-to-norﬁe ratio (SI.NRIZ' thﬁthbo
there exists a joint triangularization (5) such that eaclydnal UST]er ave éNeRsame |s';10rt|or:1, Vc\j' e qptlr?alt)r/] or L eruse
element of[T1] is at least equal to the corresponding elememIt , .etter means that t 1€ Istortion for the other user
Is trivial (equals the source variance). See, e.g., [25,./449p
“Indeed, the GSVD allows to use a single transformation far diifferent We .fOCUS on transmitting a_-n '_'"d' circularly-symmetric
channels at one of the ends, but for each virtual parallehmiait yields a Gaussian sourceé to two destinations over a MIMO BC

different gain for each user, thus not solving the inefficiementioned above. channel (28) with one channel use per source sample. We
In fact, using GSVD may result iworseperformance than using a QR-based ’

receiver without any transformation at the transmittecsithe spread of the m_easqre the qua“ty of the reprpductloﬁ,s u.SIrllg the MSE
diagonal ratio is maximal, see Remark 6 in Section 1I-B. distortion measure. Thus, we wish to maximize the tradeoff



between the signal-to-distortion ratios (SDRs), defined as use of the BC channel. According to the aforementioned HDA

approach, the source is first quantized according to theofate
~  Var(S) . < I . i
SDR = ——————~, i=1,2. (31) the digital channel and the quantization error is then seani

Var (Si - S) analog manner over the analog channel. Thus, the distortion

is equal to that of the (analog) quantization error, and Benc

The achievable SDR regio(f, H) is defined as the optimality (optimum distortion over each channel) is agbi

closure of all pairs which can be achieved by some encodin L : -
) multaneously, as implied by the following proposition.

decoding scheme. . i . .

) - Proposition 3:In the setting above, the optimal perfor-

This general problem of describin§(H;, H2) has not T N R

. ) . . mance is given by SDR= (1 + h; P) 2",

received much attention. Nevertheless, in the specialscase ; v .
Proof: We use a vector quantizer which decomposes each

of diagonal or Toeplitz channel matrices, it reduces to the . - .
better known problem of transmission over a colored and/%"?lmpIQ O.f the Gausagn sourgeas 5 » S+ Q. The f|r.st
m, S, is the quantized source, while the second, is

bandwidth-mismatched Gaussian BC channel, for which d -L antization error. B adratic-Gaussian rate—disto
ferent schemes which outperform the separation approaeh h quantization ¢ - BY guadrafic-aussia :
been presented, see e.g. [25]-[28]. However, even for th gory, in the limit of high quantizer dimension, a quantize

cases optimality claims are not abundant. In [27], Kochmah rate Raigial may achieve:

and Zamir show asymptotic optimality for high SNR, where Var (S)

the channels have the same bandwidth as the source, and one Raigial = log <Var (Q)> ’ (32)
user enjoys a better channel than the other at all frequencie, . . _

Taherzadeh and Khandani [28] show that optimality in th\@h'Ch is equivalent to

slope sense (weaker than high-SNR asymptotic optimabty) i ~ Var(S) Raiga
possible for white channels where their bandwidths (BW) are SDReigital = Var (Q) 2 :
integer multiples of the source BW. A similar slope argument .
applies to the general MIMO case as well. Now the quantizer output representifigs sent over the digital
A simple outer bound on the achievable SDR region is givéiannel, thusS can be reconstructed exactly. Givéh) the
by the following. reconstruction error of becomes that of). That is,
Proposition 2: S(H;, H2) C S(H;, Hs), where the bound- Var (S) Var (Q)
ing regionS(H,, H,) is given by: SDR; = - = - - SDRyjigital
Var (Qi — Q) Var (Qi — Q)
SDRy, SDR,) : log(SDR,) < I(H;,Cx)} ,
CLan {( ! 2) g( RL) ( x)} £ SDRanangi SDpdigitalv

where the union is over all matriceSz > 0 such that whereQi is the reconstruction of) at receiver: using the
trace (Cg) < P, and where the MIMO mutual information SISO BC channel. Finally by [24], analog transmissioncof

I(H,Cqg) was defined in (13). achieves SDRuiogi = 1 + h? P, yielding the desired SDRs.

The proof follows that of the classical source—chann&lo scheme can achieve better performance, by considesation
converse [29], taking into account that both users share tigilar to those leading to Proposition 2. [
same channel input. We use this HDA approach to prove the following.

In Section IV-A we find sufficient conditions for achieving Theorem 2:Denote byu the GSV vector of the augmented
points on the boundary of this region. Then, in Section IV-Biatrices (16) of the channels with some input covariance
we present, for the case of two transmit antennas, a simpiatrix Cz. If
sufficient condition such that all of the regiafi(H, H>) N
can be achieved. Unlike previous work, this proves strict H“j =1ls H K
optimality, non-asymptotic in the channel SNR; it applies t i=1 =1
some cases of color and bandwidth mismatch, although notiben any pair (SDR;,SDR,), such that logSDR, <

N¢—1

(33)

the white BW-expansion case. I(H;,Cg), is achievable.
Proof: By Theorem 1, the condition (33) implies that
A. Optimality by HDA Transmission there exists a joint unitary triangularization of the augieel

We give a constructive achievability proof, which combineghannel matrices (16) with diagonallratios vector whichllis a
a hybrid digital-analog (HDA) scheme by Mittal and Phamd@"® exCcept for one element. The diagonallpfcan thus be
[26] with the joint triangularization approach; the optimus made to satisfy
achievable whenever the diagonal ratio vector can be shaped Ty ;=T 25, Vi=2,...,N;.
according to the needs of the HDA scheme. In order to under- ' '
stand the function of the HDA scheme, we need to consider tave were to send digital data over the MIMO BC channel
following related scenario. In a JSCC multicasting problsn using this particular triangularization, then by (20) weulcb
above, the BC channel is SISO, i.&; = N, = 1, in which send over thes&'; — 1 channels a rate of:
case the channel matrices reduce to scalarsHowever, in N, Ny
addition, the transmitter node may send some data to the user Ruigital L Z R; = Z log t2
(identical for both) over a digital channel of ral&gical bits per =2 =2



This does not change if we replace, in the transmissiovhereC is some Hermitian positive semi-definite matrix. Then
schemez; by a different signal of the same varian€¥N; if u(H;, Hs) is mixed, u(G1, G2) is mixed as well.

(since in the SIC process, the decoding of each codebookMNe use this lemma and Theorem 2 to prove the following.
only depends on decoding of codebooks whilgher index). Corollary 2: Let Hy, H> be channel matrices with; = 2.
Furthermore, regardless of the sigrial if the codebooks of If pu(H;, Hz) is mixed, then the bounding regia®( H,, H>)
subchannel®, ..., N, are correctly decoded then receivier of Proposition 2 is achievable.

can obtain the equivalent channel (recall (23)): Proof: For any point on the boundary &f(Hy, Hs), let
, - p be the GSV vector of the augmented matrices with the
Yin = Tiia®1 + Zia corresponding’y. By Lemma 1,u is mixed as well. Now if

the product ofu is at most one, we can apply Theorem 2. If
it is greater than one, we switch the indices betwégnand
SNRunaiogi = (T3:1,1)* — 1. H,, and then apply Theorem 2. [

) ) Unfortunately, this result cannot be generalized to the cas
At this stage we have turned the MIMO BC channel into thg; . 9. Ajthough at any dimension it remains true that the
combination of a digital channel of ratigial and @ SISO\ mper of GSVs smaller or greater than one is not changed
BC channel of signal-to-noise ratios SM&ogi (i = 1,2). On  py the augmentation, this property does not holdgdrducts
account of Proposition 3, one can achieve of GSVs as required for applying Theorem 2.

which has, by Proposition 1, a signal-to-noise ratio of

_ . In order to demonstrate this result, consider the simplest
log SDR; = log(1 + SN + R '
gSDR Ng( Rarciog dorel example of the diagonal two-input two-output cése:
= Z log(T;;5,5)? a; 0 .
=1 Hi = ( 0 Bz ) 5 1= 1, 2. (34)
= 1(H;, Ca), i=12, The bounding SDR regioS§(H;, H;) now becomes:
where the last equality is on behalf of (17)—(20). [ |
. o SDR;, SDR,) : 35
Remark 13:In fact, full triangularization is not needed. 0<L7J<1{( b ) (35)

It would have been sufficient to achieve a block-triangular ) )
structure, where the interference between the Ist— 1 SDR; < (1 + || VP) (1 +|6i]7(1 —’Y)P)}-

channels is arbitrary (conserving the determinant of tweldl |, s expressiony is the portion of the transmit power sent
in T;). However, as indicated at the end of Section II-B, o the first band

this does not allow to relax the condition (33): a block \ye point out a few special cases where points on the surface
corresponding to the lasV, — 1 channels may always be ot s region are achievable by known strategies.
replaced by a triangular block with a constant diagonal (se(i) No BW expansion: Analog transmissionlf one of the
Remark 9). Moreover, the triangular form is advantageous bands has zero capacity, .6, = > — 0, (35) reduces
from the point of view o_f complexity (see Section II-B_). {0: SDR < 1 + oy P. V\;hiCh ,is achievé\ble Fhpnsent
Theorem 2 does not imply thal(#y, ) is fully achiev- transmission [24]. If for each user a different band is
able, since the conditions on the GSVs should be verified usable, e.g.a; = B, — 0, any transmission (digital or
separately for each input covariance maiti. I-_|Qwever, in analog) which is orthogonal between users is optimal.
the sequel we show that fa¥; < 2, the condition can be ) Equal SDRs: Digital transmission. A point on the
verified directly on the channel matricég and H,. Similarly, boundary which satisfies SOR — SDR, may be
if the channel matrices are of (any) proper dimensions, then achieved by quantizing the source and then using a digital

at t_he limit of high SNR (as the ChOiO@x_ = I becomes common-message (multicasting) code for the BC channel
optimal), the GSVs of the augmented matrices approach those (as described in Section I1I-B

of (Hy, H2), thus the condition may be applied to the channel )

. g o . . . 3) One equal band: HDA transmission.If for one of the
matrices directly, verifying achievability of the wholegien bands the gains are equal, elgs| — |62| = 3, we can
at once. Lo N

use that band for digital transmission with ratgigital =
log(1+ 3?P) and then apply Proposition 3 to achieve the
B. Two Transmit Antennas bound (35).

In this section we consider the case whéfe— 2. In that Using network modulation, we can extend the HDA trans-

case, the GSV vectou(H;, H,) has two elements. We Saymission (case 3 abov_e), py transforming a diagonal channgl
that the GSV vector isnixed if one of the elements is at leastVn€re none of the gains is equal between users, to an equiv-
one, and the other is at most one. The following is proven glent triangular channel where for one of the bands the gain

Appendix B. is equal. This can be done under the condition (33), which
Lemma 1:Let H, and H, be two matrices of proper specializes to (allowing to swap roles between matrices):
dimensions, with two columns, and define the augmented la1]? > |ao]? and|By]? < |Ba)? (36)

matrices (as in (16)):
(/2
G - ( H;,C

output Gaussian inter-symbol interference channel whiek b two-step

frequency response, by applying the discrete Fourier foams

8Being diagonal, this channel may be obtained from a singeti single-
2
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of (A1, A2) and (R, Ry) are equalu(Aq, As) = p(R1, Ra),
since 4; and R; are equal up to a unitary transformation on
the left.

Since A; is full-rank andm; > n, the diagonal elements
of R; are all (strictly) positive and the entries on its lower
(m; —n) rows are all zeros. Note that the square paRs|
and[R] are non-singular, withu([R;], [Rz]) = p(R1, R2) =
L e S 1 [J,(Al,Ag). Thus [J,([Rl],[RQ]) >~ T(Tl,TQ). Invoking the
proof for the square case in Section II-B, we may decompose
[R1] and[Rs] simultaneously as:

osEETTT I oL
......
P R S K
~
s
851 ~

sk

751

SDR, [dB]

6.5

= Network modulation (optimal)

6 = = = Separation
- = "Naive" HDA o
[Ry] = Th VT
10 12 14 SDRlls[dB] 18 22 [RQ] - UQTQVT )
Fig. 3. Performance comparison far, = 1, 81 = 10, ag = B2 = 2, ~ - .
g p 1 1 2 2 where ’I’(Tl,TQ) = T(T1,T2)- Now, construct the unitary

P =1 - - ” I
or vice versa. This is an “anti-degradedness” condition: N@atricesp;, and generalized triangulan; x n matricesT}:
user can have better SNR on both bands. This condition

subsumes all the cases mentioned above. It is not known  p 2 ( Ui 0 > ’ T, £ < T; > '
whether it is a necessary condition, but at least for the case 0 Imi—n 0

where both channels are white;(= 3;), it was shown in [30]  Thus, we arrive at the desired decompositiordgfand A,

that simultaneous optimality isot possible. (5), with U; £ Q;P; and V. [
Figure 3 shows a numerical evaluation of performance for

some gain values. It can be appreciated that the optimal APPENDIX B

performance imposes almost no tradeoff between usersedinde PROOE OFLEMMA 1

the only tradeoff comes from the need to choose the sagme . L
Thus, in the limit of high SNR, both users attain their optima First note that ifC' is singular, then at least one of the

single-user performance. For comparison, we show the pglr_gments ofu(G1, G2) equals one, suggesting the latter is

) mixed. Thus, we are left with the case of a non-singular matri
formance of a separation-based scheme, where a succes

refinement source code is transmitted over a digital br(EidCfil .ﬁ.gth HZ.C - We claim t.hat“(Fl’F?) must be mixed.
his is true, since for a non-singular matiix wp(F, Fy) =

channel code, as well as that of a “naive” HDA scheme, where(H H,). It is left to show that ifu(Fy, F») is mixed, then
1,442)- 1,42 y

transmission is digital over one band and analog over tmrotl‘go is (G, Ga). To that end, define the quadratic functions:

V. CONCLUSIONS p(z) 2 det (FfFl _ xFQTFQ) ,
This work considered the problem of transmitting analog N t +
(source) and digital information over MIMO communication q(z) = det (GlGl - xG?G?) :

n_etworks._ To this end, we proposed a new deco_mposition tI'E%; Definition 6, the roots of(x) andg(x) equal the square of
trla.mgularlzes two .matrlces smultaneously, using the sahe elements ofu(F, F3) and (G, Gs), respectively. Thus
unitary transformation on one side, and different ones — gy fices to prove that if the roots g{z) are not on the same
the other. This in turn allowed to accommodate a modulatiQfye of - — 1. then so are the roots afz). By the positive
to the network and the desired application. We then Showggmi-definitiveness of; andG;, both functions are convelyt

how using one version of this decomposition it is possible ;i p(0),¢(0), p(0), g(oco) > 0. By the assumption on the
construct a practical capacity-achieving scheme for t&eFu o te Ofp’(:v) it must be thap(1) < 0. But since
multicasting (which may also be useful in different relayin ' -

problems), whereas a different version of this decompmsiti GlG1 - GiGy = F|Fy - F]
becomes useful when transmitting the same (analog) soufce | -

; . ave thatg(1) = p(1), and thusq(1) < 0. Finally, a
over two different MIMO channels. In the latter case, thi onvext | contt(i]rgu)ous fﬁ(ngtion which ig(ng)n-_negativeaa)t/: 0
technique allowed deriving new achievable regions, whi d forz — oo, and is non-positive at — 1 cannot have
proved optimal for a class of channels. both roots on th,e same side bf -
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