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Abstract—We consider the problem of tracking the state of
Gauss–Markov processes over rate-limited erasure-prone links.
We concentrate first on the scenario in which several independent
processes are seen by a single observer. The observer maps the
processes into finite-rate packets that are sent over the erasure-
prone links to a state estimator, and are acknowledged upon
packet arrivals. The aim of the state estimator is to track the
processes with zero delay and with minimum mean square error
(MMSE). We show that, in the limit of many processes, greedy
quantization with respect to the squared error distortion is
optimal. That is, there is no tension between optimizing the
MMSE of the process in the current time instant and that
of future times. For the case of packet erasures with delayed
acknowledgments, we connect the problem to that of compression
with side information that is known at the observer and may be
known at the state estimator—where the most recent packets
serve as side information that may have been erased, and
demonstrate that the loss due to a delay by one time unit is
rather small. For the scenario where only one process is tracked
by the observer–state estimator system, we further show that
variable-length coding techniques are within a small gap of the
many-process outer bound. We demonstrate the usefulness of
the proposed approach for the simple setting of discrete-time
scalar linear quadratic Gaussian control with a limited data-rate
feedback that is susceptible to packet erasures.

Index Terms—State estimation, networked control systems,
packet loss, rate–distortion, source coding.
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TRACKING the state of a system from noisy and possibly
partially observable measurements is of prime importance

in many estimation scenarios, and serves as an important
building block in many control setups.

The recent rapid growth in wireless connectivity and its
ad hoc distributed nature, while offering a plethora of new
and exciting possibilities, introduces new design challenges
for control over such media. These challenges include, among
others, the need to track processes with minimal error over
digital links of limited data rate which could be prone to
(packet) erasures, and joint processing and reconstruction of
distributed processes.

An important scenario, often encountered in practice, de-
picted in Fig. 1, is that of a multi-track system that tracks
several processes over a single shared communication link.
In this scenario, at each time instant, several processes are
observed by a single observer. The observer, in turn, collects
the measured states of these processes into a single vector
state or frame, and maps them into finite-rate packets. These
packets, in turn, are sent to the state-estimator over a channel
which is prone to packet erasures. The state estimator tracks
the latest states of the different processes, by constructing
minimum mean square error (MMSE) estimates thereof using
the available packets received thus far.

Since these settings incorporate communication compo-
nents, we appeal to relevant tools and results from information
theory. The information-theoretic framework for the multi-
track setting with a large number of independent processes
(large frames) and without packet erasures, was provided by
Viswanathan and Berger [1] via the notion of sequential coding
for the case of two time steps, and for more steps—in [2]–
[5]. In these works, the optimal tradeoff between given (per-
process) rates and MMSEs (referred to as distortions) were
determined when the number of processes is large, in the form
of an optimization problem.

A similar framework in the context of control was studied
by Tatikonda [6]–[8], and Borkar et al. [7], who noticed
the intimate connection to the early works of Gorbunov and
Pinsker [9], [10]. Subsequent noteworthy efforts in the context
of tracking include [11], [12] and references therein.

For the special case of Gauss–Markov processes, an explicit
expression for the achievable sum-rate for given distortions
was derived in [2], [3] via the paradigms of predictive coding
and differential pulse-code modulation (DPCM) [13]–[17] (see
also [18, Ch. 6] and the references therein), and extended for
the case of three time-steps of jointly Gaussian (not necessarily
Markov) processes—in [19].
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Fig. 1. Multi-track of Gauss–Markov processes over a finite-rate channel.

In practice, packet-based protocols are prone to erasures
and possible delays. The multi-track scenario in the presence
of packet erasures was treated under various erasure models.
The case where only the first packet is prone to an erasure
was considered in [20]. A more general approach that trades
between the performance given all previously sent packets and
the performance given only the last packet was proposed in
[21]. For random independent identically distributed (i.i.d.)
packet erasures, a hybrid between pulse-code modulation
(PCM) and DPCM, termed leaky DPCM was proposed in [22]
and analyzed for the case of very low erasure probability in
[23]. The scenario in which the erasures occur in bursts was
considered in [24], [25].

These works correspond to UDP-based networks [26], in
which no acknowledgment (ACK) upon packet arrival is avail-
able. That is, the observer does not know whether transmitted
packets successfully arrived to the state estimator or not.

In contrast, in TCP-based networks, packet arrivals are
acknowledged via a communication feedback link, in order
to robustify the transmission of the overlying data [26]. Sta-
bilizing control systems under this scenario has been studied
in various works, [27]–[29], to name a few.

In this paper, we first consider the multi-track scenario
of Gauss–Markov processes, which is defined formally in
Sec. II. We determine the optimal tradeoff between rates and
distortions when the number of processes (frame length) is
large, in Sec. III. Specifically, we show, in Sec. III, that greedy
quantization that optimizes the distortion at each time is also
optimal for minimizing the distortion of future time instants.
This insight allows us to extend the result to the case where
the rate rt available for the transmission of the packet at time
t is determined just prior to its transmission, in Sec. IV.

The packet-erasure channel with instantaneous ACKs can
be viewed as a special case of the above noiseless channel
with random rate allocation, with rt = 0 corresponding to a
packet-erasure event [30]. The optimal tradeoff between rates
and distortions for the multi-track scenario of Gauss–Markov
processes in the presence of packet erasures and instantaneous
ACKs thereby follows as a consequence, as is shown in Sec. V
for both single- and multi-packet per state frame scenarios.

We further tackle, in Sec. VI, the more challenging delayed
ACK setting, in which the observer does not know whether
the most recently transmitted packets have arrived or not. By
viewing these recent packets as side information (SI) that is
available at the observer, and possibly at the state estimator,
and leveraging the results of Kaspi [31] along with their

specialization for the Gaussian case by Perron et al. [32],1

we adapt our transmission scheme of Sec. III to the case
of delayed ACKs. We provide a detailed description of the
proposed scheme for the case where ACKs are delayed by
one time unit and demonstrate that the loss compared to the
case of instantaneous ACKs is small.

In Sec. VII, we go on and consider the case of tracking
a single process—single-track, and a variable-length coding
(VLC) scenario [35], [36, Ch. 5], in which the packet size is
not fixed and is instead constrained to be below a desired rate
on average. We consider a scheme that sequentially applies
entropy-coded dithered quantization (ECDQ) [37]–[39], [40,
Ch. 5], redolent of the scheme in [41], and show that it attains
an MMSE–rate tradeoff that is close to the large-frame outer
bound of Sec. III.

By supplementing the state-tracking task with appropriate
control actions in Sec. VIII, we demonstrate the applicability
of the derived results in Secs. III and V to the scenario of linear
quadratic Gaussian (LQG) networked control, where a scalar
linear plant driven by an i.i.d. Gaussian process is stabilized
by a controller that is not co-located with the observer and
is separated from it, instead, by a packet-erasure (and more
generally, a random-rate budget) channel. We derive inner
and outer bounds on the optimal LQG cost that extend those
in [42], [43] to packet-erasure channels. We conclude the paper
with Sec. IX, by discussing the cases of large delays, other
types of VLC compression, and single-track with fixed-length
coding (FLC) compression.

A. Notation

Throughout the paper, ‖·‖ denotes the Euclidean norm.
N is the set of natural numbers. Random variables are de-
noted by lower-case possibly accented letters with temporal
subscripts (at, ˆ̃at), and random vectors (frames) of length
N ∈ N by boldface lower-case letters (a, ˆ̃at). We denote
temporal sequences by at , (a1, . . . ,at), where at ,
Transpose

{(
at;1 at;2 · · · at;N

)}
, and [T ] , {1, . . . , T}

is the interval from 1 to T ∈ N. All other notations represent
deterministic scalars.

II. PROBLEM STATEMENT

The transmission spans the time interval [T ] of horizon T .
We next describe the state dynamics, and the operations

carried by the observer and the state estimator, which com-
municate over a finite-rate channel (see Fig. 1).

State dynamics. Consider N ∈ N independent Gauss–
Markov processes {st;1}, {st;2}, . . . , {st;N} with identical
statistics. This can be compactly represented in a vector form
as (we assume s0 = 0 for convenience):2

st = αtst−1 + wt, t ∈ [T ] , (1)

1The scenario considered in [31], [32] can be also viewed as special case
of the results of Heegard and Berger [33], where the SI is not available at the
observer, by adjusting the distortion measure and “augmenting” the state [34].
Interestingly, knowing the SI at the observer allows one to improve the optimal
performance of this scenario in the Gaussian case; see Rem. 11.

2The proposed treatment can be generalized to a matrix αt, but is much
more involved and therefore remains outside the scope of this work.
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where st is the vector state or frame at time t, {αt} are known
process coefficients, the entries of wt comprise N jointly-
independent driving noises, the temporal entries of which are
i.i.d. Gaussian of zero mean and variance Wt.

Denote the average power of each state at time t by
St , E

[
s2
t;n

]
, n ∈ [N ]. Then, (1) implies the following

recursive relation (with S0 = 0):

St = α2
tSt−1 +Wt, t ∈ [T ] . (2)

Observer. Sees the states {st;1, . . . , st;N} of all the N
process at time t, collects them into the frame st and applies
a causal function Et to the observed frame sequence st, to
generate the packet ft ∈

[
2NRt

]
:

ft = Et
(
st
)
, (3)

where Rt is the per-process rate available for transmission
over the channel at time t.

Channel. At time t, a packet ft ∈
[
2NRt

]
is sent over a

noiseless channel of (per-process) finite rate Rt.
State estimator. Applies a causal function Dt to the se-

quence of received packets f t, to construct an estimate ŝt
of st, at time t:

ŝt = Dt

(
f t
)
. (4)

Distortion. The average quadratic distortion (or MMSE) at
time t is defined as

Dt ,
1

N
E
[
‖st − ŝt‖2

]
. (5)

In the important special case of fixed parameters,

αt ≡ α,
Wt ≡W,

t ∈ [T ], (6)

the average process power, assuming |α| < 1, converges to

S∞ =
W

1− α2
.

In that case, by taking the rate-budget to be fixed too,

Rt ≡ R, t ∈ [T ], (7)

define the steady-state distortion (assuming the limit exists):

D∞ , lim
T→∞

Dt . (8)

Definition 1 (Distortion–rate region). The distortion–rate re-
gion is the closure of all achievable distortion tuples DT ,
(D1, . . . , DT ) for a rate tuple RT , (R1, . . . , RT ), for any
N , however large; its inverse is the rate–distortion region.

Definition 2 (Average-stage rate and distortion). The average-
stage rate and distortion are defined as

R̄T ,
1

T

T∑
t=1

Rt , D̄T ,
1

T

T∑
t=1

Dt , (9)

respectively. We further denote the steady-state average-stage
rate and distortion by

R̄∞ = lim sup
T→∞

R̄T , D̄∞ = lim sup
T→∞

D̄T . (10)

III. DISTORTION–RATE REGION OF GAUSS–MARKOV
PROCESS MULTI-TRACKING

The optimal achievable distortions for given rates, under the
model of Sec. II, are provided in the following theorem.

Theorem 1 (Distortion–rate region). The distortion–rate re-
gion of Gauss–Markov process multi-track for a rate tuple RT

is given by all distortion tuples DT that satisfy Dt ≥ D∗t with

D∗t =
(
α2
tD
∗
t−1 +Wt

)
2−2Rt , t ∈ [T ] , (11a)

D∗0 = 0. (11b)

Remark 1. The impossibility of Th. 1 has been established
in [8, Lem. 4.3]. We provide an alternative simple proof in
Sec. III-B that allows us to treat random rates in the sequel.

Remark 2. The setting of Th. 1 is referred to as “causal
encoder–causal decoder” in [2]. We note that [2] provides
an explicit result only for the sum-rate of the Gauss–Markov
model [3]. Torbatian and Yang [19] extend the sum-rate result
to the case of three-step general jointly Gaussian processes
(which do not necessarily constitute a Markov chain). Our
work, on the other hand, fully characterizes the rate–distortion
region for the case of Gauss–Markov processes.

Remark 3. The results and proof (provided in the sequel) of
Th. 1 imply that optimal greedy quantization at every step—
which is achieved via Gaussian backward [36, Ch. 10.3] or
forward [36, pp. 338–339] channels—becomes optimal when
N is large. Moreover, it achieves the optimum for all t ∈ [T ]
simultaneously, meaning that there is no tension between
minimizing the current distortion and future distortions.

To prove Th. 1, we first construct the optimal greedy scheme
and determine its performance in Sec. III-A. We then show that
it is in fact optimal when N goes to infinity, in Sec. III-B.

A. Achievability

We construct an inner bound using the optimal greedy
scheme, which amounts to the classical causal DPCM scheme.
In this scheme, all the quantizers are assumed to be MMSE
quantizers, whose quantized values are well known to be
uncorrelated with the resulting quantization errors.

Scheme 1 (DPCM).
Observer. At time t:
• Generates the prediction error

s̃t , st − αtŝt−1 , (12)

where ŝt−1, defined in (4), is the previous frame recon-
struction at the state estimator, and ŝ0 = 0; a linear
recursive relation for ŝt is provided in the sequel in (13).3

• Generates ˆ̃st, the quantized reconstruction of the predic-
tion error s̃t, by quantizing s̃t using the MMSE quantizer
of rate Rt and frame length N .

• Sends ft ∈ [2NRt ], the corresponding packet to ˆ̃st over
the channel.

State estimator. At time t:

3ŝt−1 = E
[
st−1

∣∣f t−1
]

and αtŝt−1 = E
[
st
∣∣f t−1

]
are the MMSE

estimators of st−1 and st, respectively, given all outputs until time t− 1.
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• Receives ft.
• Recovers the reconstruction ˆ̃st of the prediction error s̃t.
• Generates an estimate ŝt of st:

ŝt = αtŝt−1 + ˆ̃st . (13)

Performance analysis. First note that the error between
st and ŝt, et , st − ŝt, is equal to et = s̃t − ˆ̃st by
(12), (13). Thus, the distortion (5) is also the distortion in
reconstructing s̃t.

This, along with (1) and (12) means that s̃t = αtet−1 +wt.
Since wt is independent of et−1, the average power of the

entries of s̃t is equal to

S̃t = α2
tDt−1 +Wt .

Using the property that the rate–distortion function under
mean square error distortion of a process with a given average
variance is upper bounded by that of an i.i.d. Gaussian process
with the same variance (see, e.g., [36, pp. 338–339]), we obtain
Dt ≤

(
α2
tDt−1 +Wt

)
2−2Rt , and hence (11) is achievable

within an arbitrarily small ε > 0, for a sufficiently large N .

B. Impossibility (Converse)

We now prove that, for any frame length N ∈ N,

Dt ≥ 2−2RtEf̌t−1

[
N
(
st|f t−1 = f̌ t−1

)]
(14a)

≥ D∗t , t ∈ [T ] , (14b)

by induction, where the sequence {D∗t } is defined in (11),

N (st) ,
1

2πe2
2
N

h(st), N
(
st

∣∣∣fk = f̌k
)
,

1

2πe2
2
N

h
(
st

∣∣∣fk=f̌k
)

denote the entropy power (EP) and conditional EP of st given
fk = f̌k, the expectation Ef̌t−1 [·] is w.r.t. f̌ t−1, and the
random vector f̌ t is distributed the same as f t.

Basic step (t = 1). Since s0 = 0, and the vector w1 consists
of i.i.d. Gaussian entries of variance W1, (14b) is satisfied
with equality. To prove (14a), we use the fact that the optimal
achievable distortion D1 for a Gaussian process (s1 = w1)
with i.i.d. entries of power W1 and rate R1 is dictated by its
rate–distortion function [36, Ch. 10.3.2]: D1 ≥W12−2R1 .

Inductive step. Let k ≥ 2 and suppose (14) is true for
t = k − 1. We shall now prove that it holds also for t = k.

Dk =
1

N
E
[
E
[
‖sk − ŝk‖2

∣∣∣fk−1
]]

(15a)

=
1

N
Ef̌k−1

[
E
[
‖sk − ŝk‖2

∣∣∣fk−1 = f̌k−1
]]

(15b)

≥ Ef̌k−1

[
N
(
sk
∣∣fk−1 = f̌k−1

)
2−2Rk

]
(15c)

= Ef̌k−1

[
N
(
αksk−1 + wk|fk−1 = f̌k−1

)]
2−2Rk (15d)

≥
{
Ef̌k−2

[
Ef̌k−1

[
N
(
αksk−1|fk−1 = f̌k−1

)∣∣f̌k−2
]]

+ N (wk)
}

2−2Rk (15e)

≥
{
α2
kEf̌k−2

[
N
(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)]
+Wk

}
2−2Rk (15f)

≥
{
α2
kEf̌k−2

[
N
(
sk−1|fk−2 = f̌k−2

)]
2−2Rk−1

+Wk

}
2−2Rk (15g)

≥ 2−2Rk
(
α2
kD
∗
k−1 +Wk

)
(15h)

= D∗k, (15i)

where (15a) follows from (5) and the law of total expectation;
(15b) holds since fk−1 and f̌k−1 have the same distribution;
(15c) follows by bounding from below the inner expectation
(conditional distortion) by the rate–distortion function and the
Shannon lower bound [36, Ch. 10]—this also proves (14a);
(15d) is due to (1); (15e) follows from the EP inequality [36,
Ch. 17]; (15f) holds since wk is Gaussian, the scaling property
of differential entropies and Jensen’s inequality:

Ef̌k−1

[
2

2
N

h
(
sk−1

∣∣∣fk−1=f̌k−1
)∣∣∣∣f̌k−2

]
≥2

2
N

h
(
sk−1

∣∣∣fk−2=f̌k−2, fk−1

)
;

(15g) follows from the following standard set of inequalities:

NRk−1 ≥ H
(
fk−1

∣∣fk−2 = f̌k−2
)

≥ I
(
sk−1; fk−1

∣∣fk−2 = f̌k−2
)

= h
(
sk−1

∣∣fk−2 = f̌k−2
)
− h

(
sk−1

∣∣fk−2 = f̌k−2, fk−1

)
;

(15h) is by the induction hypothesis; and (15i) holds by the
definition of {D∗t } (11)—which also proves (14b).

Assertion 1 (Outer bound for non-Gaussian noise). Consider
the setting of Sec. II with independent non-Gaussian noise
entries {wt;n|t ∈ [T ], n ∈ [N ]}. Then, the average achievable
distortion Dt at time t ∈ [T ] is bounded from below by Dt ≥
D∗t , with D∗0 = 0 and D∗t given by the recursion

D∗t =
(
α2D∗t−1 + N (wt)

)
2−2Rt .

Proof: The proof is identical to that of the lower bound
for the Gaussian case with Wt replaced by N (wt).4

C. Fixed-Parameter Gauss–Markov Processes

For the case of fixed parameters (6) and fixed rate (7), the
steady-state average distortion is given as follows.

Corollary 1 (Steady state performance with fixed-rate budget).
Assume a fixed-parameter (6) fixed-rate budget (7) setting. If
α22−2R < 1,5 then the steady-state distortion is given by

D∗∞ , lim
t→∞

D∗t =
W2−2R

1− α22−2R
,

and is otherwise unbounded.

Proof: The proof is immediate by noting that (11) con-
stitutes a linear time-invariant (LTI) system and therefore is
globally exponentially stable if the (only) pole of its transfer
function lies strictly inside the unit circle, i.e., α22−2R < 1,
and is unstable otherwise [44, Ch. 6].
Remark 4. As is evident from the proof, the result of Cor. 1
remains true for any initial value D∗0 .
Remark 5. The impossibility part of Cor. 1 can be traced back
to the work of Gorbunov and Pinsker [10].

Interestingly, the optimal steady-state distortion achievable
with a fixed-rate budget (7) is in fact optimal even if we
loosen this restriction to a total rate-budget constraint as was

4Recall that in the Gaussian setting N (wt) ≡Wt.
5This is trivial for |α| < 1.
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previously observed, e.g., in [41]. This is a simple corollary of
Th. 1 and is formally proved next. The same conclusion holds
if the frame entries are correlated Gaussians, as was recently
proved by Tanaka [45].

Corollary 2 (Steady state performance with total-rate budget).
The average-stage steady-state distortion (10) D̄∞, under a
total rate-budget constraint (10) R̄∞ ≤ R, is bounded from
below by D̄∞ ≥ D∗∞. Consequently, the fixed (a.k.a. uniform)
rate allocation Rt ≡ R is optimal in the limit of T →∞.

Proof: Without loss of generality, for a given tuple RT ,
it suffices to consider distortion tuples DT that belong to
the boundary of the rate–distortion region, namely, distortion
tuples satisfying (11) with equality:

Rt =
1

2
log
(
α2Dt−1 +W

)
− 1

2
logDt . (16)

For the equivalent problem of minimizing the total rate bud-
get (9) under an average-stage distortion constraint D̄T ≤ D,
the total rate budget can be bounded from below as

R̄T ≡
1

T

T∑
t=1

Rt (17a)

=
1

T

T∑
t=1

[
1

2
log
(
α2Dt−1 +W

)
− 1

2
logDt

]
(17b)

=

T∑
t=1

1

2T
log

(
α2 +

W

Dt

)
− 1

2T
log

(
1 +

α2DT

W

)
(17c)

≥ 1

2
log

(
α2 +

W

D̄T

)
− 1

2T
log

(
1 +

α2TD̄T

W

)
(17d)

≥ 1

2
log

(
α2 +

W

D

)
− 1

2T
log

(
1 +

α2TD

W

)
, (17e)

where we use (9) in (17a), (17b) holds by substituting (16),
(17d) follows from Jensen’s inequality and D1 ≤ TD̄T , and
(17e) holds due to the constraint D̄T ≤ D.

Evaluating (17) in the limit T →∞ concludes the proof.

IV. RANDOM-RATE BUDGETS

In practice, the available transmission rate may vary across
time depending on the quality of service offered by the
infrastructure, as well as, due to other applications sharing the
same infrastructure. We therefore generalize next the results
of Sec. III to random rates {rt} that are independent of each
other and of {wt}. The rate rt is revealed to the observer just
before the transmission at time t.

Theorem 2 (Distortion–rate region). The distortion–rate re-
gion of Gauss–Markov multi-track with independent rates rT

is given by all distortion tuples DT that satisfy Dt ≥ D∗t with

D∗t =
(
α2
tD
∗
t−1 +Wt

)
E
[
2−2rt

]
, t ∈ [T ] , (18a)

D∗0 = 0. (18b)

Proof: Achievability. Since the achievability scheme in
Th. 1 does not use the knowledge of future transmission rates
to encode or decode the packet at time t, we have

hdt ,
1

N
E
[
‖st − ŝt‖2

∣∣∣rT ] (19a)

=
1

N
E
[
‖st − ŝt‖2

∣∣∣rt] (19b)

≤ (α2
tdt−1 +Wt)2

−2rt + ε, (19c)

for any ε > 0, however small, and large enough N .
By taking an expectation of (19c) with respect to rt and

using the independence of rt−1 and rt, we obtain (18).
Impossibility. Revealing the rates to the observer and the

state estimator prior to the start of transmission can only
improve the distortion. Thus, the distortions {dt} conditioned
on {rt} (19a) are bounded from below as in Th. 1; by taking
the expectation w.r.t. {rt}, we attain the desired result.

Remark 6. By applying Jensen’s inequality to (18a):
E
[
2−2rt

]
≥ 2−2E[rt], we see that using packets of a fixed

rate of E [rt] performs better than using random rates rt.

For the special case of fixed-parameters (6) and i.i.d. rates
{rt}, the steady-state distortion is given as follows.

Corollary 3 (Steady state). Assume a fixed-parameter setting
(6) with i.i.d. rates {rt}. If α2B < 1,6 where B , E

[
2−2r1

]
,

then the steady-state distortion is given by

D∗∞ , lim
t→∞

D∗t =
BW

1− α2B
, (20)

and is otherwise unbounded.

Proof: The proof is identical to that of Cor. 1 with 2−R

replaced by B.

V. PACKET ERASURES WITH INSTANTANEOUS ACKS

A. One Packet Per Frame

An important scenario encompassed by the model of Sec. IV
is that of packet erasures [30]. Since a packet erasure at time t
can be viewed as rt = 0, and assuming that the observer sends
packets of fixed rate R and is cognizant of any packet erasures
instantaneously, the packet erasure channel can be cast as the
random rate channel of Sec. IV with

rt = btR (21a)

=

{
R, bt = 1

0, bt = 0
(21b)

where {bt} are the packet-erasure events, such that bt = 1
corresponds to a successful arrival of the packet ft at time t,
and bt = 0 means it was erased. We further denote by

gt , btft (22)

the received output where gt = 0 corresponds to an erasure,
and otherwise gt = ft. We assume that {bt} are i.i.d. according
to a Bernoulli distribution Ber(β) with β ∈ [0, 1].

Remark 7. We shall concentrate on the case of packets of
fixed rate R to simplify the subsequent discussion. This way,
the only randomness in rate comes from the packet-erasure
effect. Nevertheless, all the results that follow can be easily
extended to random/varying rate allocations to which the effect
of packet erasures {bt} is added in the same manner as in (21).

6Again, this is trivial for |α| < 1.
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Corollary 4 (Distortion–rate region). The distortion–rate re-
gion of Gauss–Markov multi-track with i.i.d. Ber(β) packet
erasures and instantaneous ACKs is given as in Th. 2 with

B , E
[
2−2r1

]
= 1− β

(
1− 2−2R

)
. (23)

Corollary 5 (Steady state). The steady-state distortion is given
as in Cor. 3 with B as in (23).

Remark 8. In contrast to the scenario without packet erasures,
the uniform rate allocation can be improved by allowing a
dynamic rate allocation that depends on the pattern of packet
erasures bt−1. This setup can be thought of as the source-
coding dual of the fast fading channel coding problem where
the fading coefficient is known at both the transmitter and the
receiver prior to transmission, and the transmitter optimizes the
transmission rate via waterfilling across time [46, Ch. 5.4].

B. Multiple Packets Per Frame
In Sec. V-A we assumed that one packet (ft) was sent per

each frame (st). Instead, one may choose to transmit multiple
packets of lower rate per one frame. If we assume that each
packet arrival is instantly acknowledged, then the resulting
scenario falls again in the random-rate budget framework of
Sec. IV. Interestingly, it turns out that the optimal number of
packets per frame depends on the PDF of the rate, i.e., increas-
ing the number of packets can either improve or deteriorate
the performance.

Specifically, assume that the observer uses K packets of
equal rate R/K (and hence a total rate of R) to successively
refine [47, Ch. 13.5] a single state frame st. Then, the rate
probability distribution amounts to

rt =
bt
K
R,

with bt denoting the number of successful packet arrivals at
time t, corresponding to state frame st. Assuming that the
erasure events of all packets are i.i.d. with probability 1− β
implies that {bt} are i.i.d. according to a Binomial distribution
Bin (K,β).

Interestingly, the optimal number of packets K depends
on the (total) rate R and successful packet-arrival probability
β, since by allocating more lower-rate packets, one trades
a lower probability of receiving the maximal available rate
at the state estimator with a higher probability of receiving
intermediate rates. The optimal K is determined by the number
that minimizes E [2−rt ], as is demonstrated in Fig. 2.

We note that in the absence of ACKs of intermediate pack-
ets, the successive refinement encoding considered here cannot
be used. One could use repetition coding to trade multiplexing
gain with diversity [46] or multiple description coding [48],
when ACKs are sent only after all the intermediate packets are
transmitted. We do not discuss such extensions in this paper
due to a lack of space.
Remark 9. We only considered uniform rate allocations for all
the packets. Clearly, one can generalize the same approach to
non-uniform packet rates.
Remark 10. In practice one might expect longer packets to
be prone to higher erasure probability. This can be taken into
account when deciding on the K that minimizes E

[
2−2rt

]
.

Fig. 2. Evaluation of D∗∞ for K = 1, 2 and 3 packets, all possible values
of β ∈ [0, 1], R = 1, α = 0.7 and W = 1.

VI. PACKET ERASURES WITH DELAYED ACKS

We now tackle the case of i.i.d. packet erasures with ACKs
that are delayed by one time unit, i.e., the case where at time
t, the observer does not know whether the last packet arrived
or not (namely, it does not know bt−1), but knows the erasure
pattern of all preceding packets (knows bt−2). The observer (3)
and state estimator (4) mappings can be written as [recall the
definition of gt , btft in (22)]:

ft = Et
(
st, gt−2

)
, ŝt = Dt

(
gt
)
.

To construct a transmission scheme for this case, we recall
the following result by Perron et al. [32, Th. 2], which is
a specialization to the jointly Gaussian case of the result by
Kaspi [31, Th. 1], who established the rate–distortion region
of lossy compression with two-sided SI where the SI may or
may not be available at the state estimator.7,8

Theorem 3 ([32, Th. 2]). Let s be an i.i.d. zero-mean Gaussian
process of power S, which is jointly Gaussian with SI y that
is available at the observer and satisfies s = y + z, where
z is an i.i.d. Gaussian noise of power Z that is independent
of y. Denote by ŝ+ and ŝ− the reconstructions of s with and
without the SI y, and by D+ and D−—their mean squared
error distortion requirements, respectively. Then, the smallest
rate required to achieve these distortions is given by

RKaspi(S,Z,D−, D+)

=



0, D− ≥ S and D+ ≥ Z
1
2 log

(
S
D−

)
, D− < S and D+‖S ≥ D−‖Z

1
2 log

(
Z
D+

)
, D+ < Z and D− ≥ D+ + S − Z

1
2 log

(
S

D−−∆2

)
,

{
D− < S and D+‖S < D−‖Z
and D− < D+ + S − Z

7We use a backward channel to represent the SI s = y + z, as opposed
to the forward channel y = s + z used in [32], [33].

8Kaspi’s result [31, Th. 1] can also be viewed as a special case of [33]
with some adjustments; see [34].
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where a‖b , ab
a+b denotes the harmonic mean of a and b, and

∆ ,

√
(S − Z)(S −D−)D+ −

√
(Z −D+)(D− −D+)S√

Z (S −D+)
.

Remark 11. Surprisingly, as observed by Perron et al. [32],
if the SI signal y is not available at the observer—a setting
considered in [31, Th. 2], [33]—the required rate can be
strictly higher than that in Th. 3. This is in stark contrast
to the case where the SI is not available at the observer,
and the case where the SI is always available at the state
estimator studied by Wyner and Ziv [49], [50]. Knowing the
SI at the observer allows to (anti-)correlate the noise z with
the quantization error—an operation that is not possible when
the SI is not available at the observer, as the two noises must
be independent in that case. This leads to some improvement,
though a modest one, as implied by the dual channel-coding
results [51, Prop. 1], [52].

In our case, at time t, the previous packet ft−1 serves as the
SI. Note that this SI is always available to the observer; the
state estimator may or may not have access to it, depending on
whether the previous packet arrived or not. Since the ACK is
delayed, during the transmission of the current packet ft, the
observer does not know whether the previous packet was lost.

The tradeoff between D+ and D− for a given rate R will be
determined by the probability of a successful packet arrival β.

Scheme 2 (Kaspi-based).
Observer. At time t:

• Generates the prediction error s̃t , st − αtαt−1ŝt−2.
• Generates ft by quantizing the prediction error s̃t as in

Th. 3, where ft−1 is available as SI at the observer and
possibly at the state estimator (depending on bt−1) using
the optimal quantizer of rate R and frame length N that
minimizes the distortion averaged over bt−1:

DWeighted
t = βD+

t + (1− β)D−t ; (24)

more precisely, since the observer does not know
(bt−1, bt) at time t:

– Denote the reconstruction of s̃t at the state estimator
from ft and gt−2—namely given that bt = 1, bt−1 =
0—by Q−t (s̃t), and the corresponding distortion by
D−t .

– Denote the reconstruction from (ft−1, ft) and
gt−2—namely given that bt = bt−1 = 1—by
Q+
t (s̃t), and the corresponding distortion by D+

t .
– Denote the reconstruction from ft and gt−1—namely

given that bt = 1—by Qt(s̃t), and the corresponding
distortion, averaged over bt−1, by DWeighted

t .
Then, the observer sees αtQt−1(s̃t−1) as possible SI
available at the state estimator to minimize DWeighted

t

as in (24).
• Sends ft over the channel.

State estimator. At time t:

• Receives gt.
• Generates a reconstruction ˆ̃st of the prediction error s̃t:

ˆ̃st =


Q+
t (s̃t), bt = 1, bt−1 = 1

Q−t (s̃t), bt = 1, bt−1 = 0

0, bt = 0

(25)

• Generates an estimate ŝt of st: ŝt = αtŝt−1 + ˆ̃st.

This scheme is the optimal greedy scheme whose perfor-
mance is stated next, in the limit of large N .

Theorem 4. The following distortions DT can be approached
arbitrarily closely in the limit N →∞ for t ∈ [2, T ]:

Dt =


D+
t , bt = 1, bt−1 = 1

D−t , bt = 1, bt−1 = 0

α2
tDt−1 +W, bt = 0

D1 = D+
1 = D−1 = Wt2

−b12R + ε,

where D+
t and D−t are the distortions that minimize (24), such

that the rate of Th. 3 satisfies

RKaspi(αtD
−
t−1 +W,αtD

+
t−1 +W,D−t , D

+
t ) = R.

Proof: The proof is again the same as that of Ths. 1 and
2, with ˆ̃st generated as in (25).

Remark 12. Here, in contrast to the case of instantaneous
ACKs, evaluating the distortions {Dt} in explicit form (recall
Cor. 4) is more challenging. We do it numerically, instead.

Somewhat surprisingly, the loss in performance of the
Kaspi-based scheme due to the ACK delay is rather small com-
pared to the scenario in Sec. V where the ACKs are available
instantaneously, for all values of β.9 This is demonstrated in
Fig. 3, where the perfomances of these schemes are compared
along with the performances of the following three simple
schemes for αt ≡ 0.7,W ≡ 1, β = 0.5, R = 2:
• No prediction: A scheme that uses no prediction at all,

as if the state frames were independent. This scheme
achieves a distortion of Dt = βSt2

−2R + (1 − β)St,
where St is the power of the entries of st as given in (2).

• Assumes worst case (WC): Since at time t the observer
does not know bt−1, a “safe” way would be to work as
if bt−1 = 0. This achieves a distortion of

Dt =
[
α4Dt−2 + (1 + α2)W

] [
β2−2R + (1− β)2

]
+ β(1− β)(α2Dt−1 +W ), t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

• Assumes best case (BC): The optimistic counterpart of
the previous scheme is that which always works as if
bt−1 = 1. This scheme achieves a distortion of

Dt = β
[
α2Dt−1|t−22−2R +W

) [
β2−2R + (1− β)

]
+ (1− β)

[
α2Dt−1|t−2 +W

]
, t = 2, . . . , T ,

Dt−1|t−2 , α2Dt−2 +W, t = 2, . . . , T ,

D0 = 0, D1 = W2−2R.

9For β values close to 0 or 1, the loss becomes even smaller as in these
cases using the scheme of Sec. V that assumes that the previous packet arrived
or was erased, respectively, becomes optimal.
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VII. VARIABLE-LENGTH CODING

In contrast to previous sections where at time instant t
exactly NRt bits were available for the compression of the N -
length vector st, in this section, we consider the less restrictive
case, commonly referred to as VLC, where the (transmit) rate
is constrained to R only on average across time [35], [36,
Ch. 5]. We assume again a packet-erasure case, where, as in
Sec. V-A, the packet at time t is erased with probability 1−β,
and successfully arrives with probability β. The packet-erasure
events {bt} take values in {0, 1} where 0 corresponds to an
erasure and 1—to a successful arrival; we assume that these
events are i.i.d. We further concentrate on the scalar case,
N = 1. The rate constraint can be therefore written as:

E [rt|bt = 1] ≤ R,
E [rt|bt = 0] = 0,

t ∈ [T ], (26)

where, in contrast to previous sections, in this section, rt can
depend on the exact value of st.
Remark 13. Similarly to the treatment in Sec. V-B, the
treatment in this section can be extended to the case of multiple
packets per state frame.

We first note that the lower bound of Th. 2 remains valid
for the VLC case, since Shannon’s classical rate–distortion
theorem [53]–[55] extends to the case of VLC (see, e.g., [56]).
We next prove that this lower bound can be closely met by
incorporating ECDQ [37]–[39], [40, Ch. 5], which is described
as follows.

Scheme 3 (ECDQ).
Offline. The observer and the state estimator generate a

common random dither z that is uniformly distributed over
[−∆/2,∆/2).

Observer.
• Uses a uniform-grid (one-dimensional lattice) quantizer

with quantization step ∆ to quantize γs+z: Q∆(γs+ z),
where γ is a pre-determined scalar.

• Applies entropy coding to the output of the quantizer.
• Sends the output of the entropy coder.
State estimator.
• Receives the coded bits.
• Reconstructs the output of the quantizer: Q∆(γs+ z).
• Generates the state estimate by subtracting z from the

quantizer’s output and multiplies the result by γ:

ŝ = γ [Q∆(γs+ z)− z] .

Theorem 5 (ECDQ performance [39], [40, Ch. 5]). The
average rate R needed by the ECDQ scheme (for N = 1)
to achieve a distortion D for a state s with variance S and γ
set to γ =

√
1−D/S is bounded from above by

R ≤ 1

2
log

S

D
+

1

2
log

2πe
12

, (27)

where the first element in (27) is the Gaussian rate–distortion
function and the second element is the “shaping loss”.

Equivalently, the average distortion D of ECDQ under an
average rate constraint R (26) is bounded from above by

D ≤ 2πe
12

S2−2R. (28)

Fig. 3. Distortions Dt as a function of the time t of the various schemes
presented in this section, along with that of the instantaneous-ACK scheme
of Sec. V, for α = 0.7, W = 1, β = 0.5 and R = 2.

Remark 14 (One-to-one source coding). The entropy coding
employed here is assumed to be one-to-one, that is, we do
not require the resulting code to be prefix free. For a more
thorough discussion of one-to-one versus prefix-free coding
and the rationale behind using each, see Sec. IX-C.
Remark 15 (ECDQ for N > 1). For N > 1, one may
replace the uniform scalar quantizer with a lattice-based one;
the resulting distortion in this case is bounded from above by

R ≤ 1

2
log

S

D
+

1

2
log (2πeGN ) ,

where GN is the normalized second moment of the lattice [40,
Ch. 3.2]. For the special case of a scalar lattice, G1 = 1/12.
It is known, by the isoperimetric inequality [40, Ch. 7], that
GN > 1

2πe for any lattice of any dimensions N . Moreover,
it is known that a sequence of lattices of growing dimensions
N can be devised that attains this lower-bound in the limit of
N →∞. See [40] for a thorough account of lattices and their
application to ECDQ.

We next incorporate ECDQ in the DPCM scheme of
Sec. III-A: we apply ECDQ (with i.i.d. dither zt across time)
to s̃t, to generate ˆ̃st at the observer and recover it at the state
estimator; the rest of the scheme remains exactly the same. We
note that a similar scheme in the context of networked control
(albeit without packet erasures) was previously proposed and
analyzed in [41]. The performance of Sch. 3 is stated next.

Theorem 6 (ECDQ-based DPCM scheme performance). The
ECDQ-based DPCM scheme (for N = 1) under an average
rate constraint R (26) achieves a distortion Dt at time t that
satisfies the recursion:

Dt ≤
2πe
12

B
(
α2
tDt−1 +Wt

)
, (29)

with D0 = 0 and B as in (23).

Th. 6 suggests that the gap in performance of scalar systems
compared to their N -dimensional counterparts is bounded by
a multiplicative factor of 2πe/12 in each recursive step (29).
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Proof: The proof is identical to that in Sec. III-A and
of Th. 2, with Dt ≤ (α2

tDt−1 + W )B replaced with Dt ≤
2πe
12 (α2

tDt−1 +W )B, due to the shaping loss of ECDQ.

Remark 16 (ECDQ-based DPCM scheme for N > 1). Follow-
ing Rem. 15, for the case of N > 1 the resulting distortion
when applying ECDQ for N > 1 with an N -dimensional
lattice is bounded from above by

Dt ≤ 2πeGNB
(
α2
tDt−1 +Wt

)
,

where again D0 = 0, GN is the normalized second moment
of the lattice and B is given in (23).

In the limit of large T , we attain the following steady-state
distortion.

Corollary 6 (ECDQ-based DPCM scheme in steady-state). If
2πe
12 α

2B < 1, then the steady-state distortion of the ECDQ-
based DPCM scheme (for N = 1) under an average rate
constraint R (26) is bounded from above by

D∞ ≤
2πe
12 WB

1− 2πe
12 α

2B
, (30)

where B is given in (23).

Remark 17 (Stabilizability). The stabilizability condition
2πe
12 α

2B < 1 is distant from that of the case of large frames
by the shaping loss 2πe

12 . This can be alleviated by applying
downsampling, i.e., sending κR bits (on average) every κ ∈ N
samples and remaining silent during the rest; the resulting
stabilizability condition in this case becomes k

√
2πe
12 α

2B < 1.

VIII. APPLICATION TO NETWORKED CONTROL

An important application of state tracking is to networked
control, namely, to the scenario where, in contrast to traditional
control, the observer is not co-located with the controller,
and communicates with it instead via a noiseless (“packeted”)
channel. Hence, the controller assumes the additional role of
a state estimator.

We concentrate on the following simple setting, also de-
picted in Fig. 4. The channel is the noiseless random-rate
budget channel of Sec. IV.

We consider a stochastic system with linear scalar plant
evolution which is the same as in (1) (with s0 = 0):

st = αst−1 + wt + ut−1,

where the coefficient α (which is usually assumed to be fixed
across time in control applications) can be greater than 1 in
its absolute value, corresponding to an unstable open-loop
process, with the additional term ut−1 serving as the control
action that is generated by the controller from all past packets
f t−1, and is used to stabilize the system.

We consider the random-rate budget scenario of Sec. IV.
The goal of the system is to minimize the average-stage

LQG cost upon reaching the horizon T :

J̄T ,
1

T
E

[
T−1∑
t=1

(
Qts

2
t + Rtu

2
t

)
+ QT s

2
T

]
, (31)

st = αst−1 + wt + ut−1

ObserverController

wt st

Rt
bits

ut

Fig. 4. Linear control system with a finite-rate feedback.

where {Qt} and {Rt} are known non-negative scalars, respec-
tively, that penalize the cost for state deviations and control
actuations, respectively.

In order to derive bounds on the LQG cost for this setting,
we use a result by Fischer [57] and by Tatikonda et al. [8] that
extends the celebrated control-theoretic separation principle to
networked control systems.

Lemma 1 ([8], [57]). The optimal controller is given by

ut = −Ktŝt,

where ŝt , E [st|f t], Kt is the optimal linear quadratic
regulator (LQR) control gain

Kt =
Lt+1

Rt + Lt+1
α,

and Lt satisfies the dynamic backward Riccati recursion [58]:

Lt = Qt + αRtKt,

with LT+1 = 0.10 Moreover, this controller achieves a cost of

J̄T =
1

T

T∑
t=1

{
WLt + αKtLt+1E

[
(st − ŝt)2

]}
,

where we use the convention RT = 0 and fT = 0 for the
definition of ŝT , as no transmission or control action are
performed at time T .

A. Lower Bound

By substituting the result of Th. 2 into Lem. 1, we attain
the following lower bound for the achievable LQG cost, which
extends the result of [43] to the case of random-rate budgets
(packet-erasure scenario included).

Theorem 7 (LQG cost lower bound). The optimal LQG
cost (31) with rate tuple RT is bounded from below by

J̄T ≥
1

T

T∑
t=1

{WLt + αKtLt+1D
∗
t } ,

where Kt and Lt are given in Lem. 1, and D∗t is given in (18).

Proof: The proof is immediate by noting that, similarly to
the Performance Analysis of Sec. III-A, at time t, given f t, all
the past control actions ut−1—being a deterministic function
of f t−1—can be absorbed into ŝt.

10In case RT = 0, define KT = 0.
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B. Variable-Length Coding

Similarly to the proof of Th. 7,by combining the results of
Th. 6 and Lem. 1 we attain the following upper bound for
the achievable LQG cost, in the VLC scenario; following the
exposition in Sec. VII, we concentrate here on the packet-
erasure channel.

Theorem 8 (VLC LQG cost upper bound). The LQG cost (31)
for the VLC scenarios under an average-rate constraint R
(26), is bounded from above by

J̄T ≤
1

T

T∑
t=1

{WLt + αKtLt+1Dt} ,

where Kt and Lt are given in Lem. 1, and Dt is bounded
from above as in (30).

Proof: Again, the proof is immediate by noting that,
similar to the impossibility proof of Sec. III-B, at time t, given
f t, all the past control actions ut−1—being a deterministic
function of f t−1—are fully determined.

C. Steady State

We consider here the fixed-parameter fixed-rate case:

Qt ≡ Q, (32a)
Rt ≡ R, (32b)
Rt ≡ R, (32c)

and similarly to the steady-state distortion (8) and average-
stage steady-state distortion (10), we wish to determine the
optimal steady-state average-stage cost

J̄∞ , lim sup
T→∞

J̄T .

Corollary 7 (LQG cost lower bound). The steady-state LQG
cost for the fixed-parameter fixed-rate case (32) is bounded
from below by

J̄∞ ≥WL∞ + αK∞L∞D
∗
∞ , (33)

where D∗∞ is given in (20),

K∞ =
L∞

R + L∞
α, (34)

and L∞ is the positive solution of

L2
∞ −

[(
α2 − 1

)
R + Q

]
L∞ − QR = 0. (35)

Remark 18. As noted in Sec. VII, the result of Cor. 7 holds
true for VLC and hence also for the more restrictive FLC.
Remark 19 (Comparison to separation-based bounds). In [43],
it is shown that the optimal steady-state LQG cost must
satisfy (33) with the distortion D∗∞ dictated by the
source–channel separation between the causal rate–distortion
RC(D∞) [6], [9] and the directed capacity (maximal directed
information) [59]. Since in our case the directed capacity
is upper bounded by the regular capacity of the channel,
C = E [r1], and the causal rate–distortion function (which
is in itself a lower bound) is given by [6], [10]

RC(D∗∞) =
1

2
log

(
α2 +

W

D∗∞

)
,

the source–channel separation-based bound RC(D∗∞) ≤ C
reduces to the expression in (20) with B , E

[
2−2r1

]
replaced

with BSep , 2−2E[r1]. By applying Jensen’s inequality we see
that B < BSep for any non-deterministic rate budget distirub-
tion. Thus, the joint source and channel treatment offered in
this work strengthens the separation-based adaptation of the
results in [43]. The difference becomes especially pronounced
in the packet-erasure and instantaneous ACKs scenario of
Sec. V-A with an infinite transmission rate R [recall (21)]—
a setting extensively studied in the past two decades [26],
[60], [61]. In this case, BSep, and consequently also the lower
bound on D∗∞, reduces to the trivial zero bound, whereas
B = 1− β > 0 unless β = 1.

Corollary 8 (VLC LQG cost upper bound). The steady-state
LQG cost for the packet-erasure fixed-parameter case (32a),
(32b) under an average rate constraint R (26) is bounded from
above by

J̄∞ ≤WL∞ + αK∞L∞D∞ ,

where D∞, K∞, L∞ are given in (30), (34), (35), respectively.

IX. DISCUSSION

A. ACKs with Larger Delays

To extend the scheme of Sec. VI for the case of delayed
ACKs by one time instant, to larger delays, a generalization
of Th. 3 is needed. Unfortunately, the optimal rate–distortion
region for more than two SI options (e.g., with or without cor-
related SI y) remains an open problem and is only known for
the (“degraded”) case when the state and the possible SIs form
a Markov chain. Nonetheless, achievable regions for multiple
SI options have been proposed in [33], which can be used for
the construction of schemes that accommodate larger delays.

B. Scalar Fixed-length Coding

In this paper, we derived lower bounds and proved that they
are tight in the limit of large values of N . In the case of scalar
FLC quantization, both design and analysis of good schemes
are more involved and remain beyond the scope of this paper.
For a treatment of the case of logarithmically-concave noise
distributions (Gaussian included), see [62].

C. Prefix-Free Versus One-Shot Lossless Compression

The VLC ECDQ-based schemes throughout this work em-
ployed one-to-one lossless coding. This is a reasonable as-
sumption since, in packeted communications, the descriptions
of subsequent symbols may be assumed to be parsed by
the underlying protocol, which allows, in turn, to part with
the prefix-free constraint and attain better performance [63].
Specifically, the one-bit loss with respect to the entropy of
the process of prefix-free coding is circumvented by one-to-
one coding [64]. Nonetheless, the results of this paper can be
easily adjusted to the prefix-free coding case by adding an
extra bit on the right hand side of (27)—the maximal loss of
prefix-free entropy coding above the entropy, and replacing
the factor 2πe/12 in (28)–(30) by 2πe/3.
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D. Packet-Erasure Modeling

In this work, we modeled the packet erasures by an i.i.d.
process. Nonetheless, the derived results can be extended far
beyond this setting, as is evident from the proof of Th. 2.

In the VLC setting, the erasure probability is likely to be
higher for longer packets, and calls for further investigation.

E. Non-Gaussian

Following Assert. 1, the lower bounds in this work can be
extended to the case of a non-Gaussian driving process wt in
a straightforward fashion, with the variance of the elements
of wt in (18) replaced by its entropy power (recall that the
two are equal in the Gaussian case), resulting in lower bounds
reminiscent of those in [43].
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