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(Almost) Practical Tree Codes
Anatoly Khina, Wael Halbawi and Babak Hassibi

Abstract

We consider the problem of stabilizing an unstable plant driven by bounded noise over an unreliable

digital communication link, a scenario at the heart of networked control. To stabilize such a plant, one

needs real-time encoding and decoding with an error probability profile that decays exponentially with the

decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions

of tree codes and anytime capacity, and provided the theoretical framework for studying such problems.

Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions

of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes

were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take

one more step towards practicality, by showing that these codes can be efficiently decoded using sequential

decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We

further design these codes to be universal over the class of all binary-input memoryless output-symmetric

channels with a given capacity. We supplement our theoretical results with numerical simulations that

demonstrate the effectiveness of the decoder in a control system setting.

Index Terms

Tree codes, anytime-reliable codes, linear codes, convolutional codes, sequential decoding, networked

control, universal codes, compound channel.
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Fig. 1. Basic traditional and networked control systems.

I. INTRODUCTION

Control theory deals with stabilizing and regulating the behavior of a dynamical system (“plant”) via

real-time causal feedback. Traditional control theory was mainly concerned and used in well-crafted closed

engineering systems, which are characterized by the measurement and control modules being co-located

(see Fig. 1a). The theory and practice for this setup are now well established; see, e.g., [1]–[3].

Nevertheless, in the current technological era of ubiquitous wireless connectivity, the demand for

control over wireless media is ever growing. This networked control setup presents more challenges due

to its distributed nature: The plant output and the controller are no longer co-located and are separated

by an unreliable link (see Fig. 1b).

To stabilize an unstable plant using the unreliable feedback link, an error-correcting code needs to be

employed over the latter. In one-way communications — the cornerstone of information theory — all

the source data are assumed to be known in advance (non-causally) and are recovered only when the

reception ends. In contrast, in coding for control, the source data are known only causally, as the new

data at each time instant are dependent upon the dynamical random process. Moreover, the controller

cannot wait until a large block is received; it needs to constantly produce estimates of the state of the

system, such that the fidelity of earlier data improves as time advances. Both of these goals are achieved

via causal coding, which receives the data sequentially in a causal fashion and encodes it in a way such

that the error probability of recovering the source data at a fixed time instant improves constantly with

the reception of more code symbols.

Sahai and Mitter [4] provided necessary and sufficient conditions for the required communication

reliability over the unreliable feedback link to the controller. To that end, they defined the notion of

anytime capacity as the appropriate figure of merit for this setting, which is essentially the maximal

possible rate of a causal code that at any time t recovers a source bit at time (t−d) with error probability



3

that decays exponentially with d, for all d. They further recognized that such codes have a natural tree

code structure, which is reminiscent of the codes developed by Schulman [5] for the related problem of

interactive communication.

Unfortunately, the result by Schulman (and consequently also the ones by Sahai and Mitter) only

proves the existence of tree codes with the desired properties and does not guarantee that a random tree

code would be good with high probability. The main difficulty comes from the fact that proving that the

random ensemble achieves the desired exponential decay does not guarantee that the same code achieves

this for every time instant and every delay.

Sukhavasi and Hassibi [6] circumvented this problem by introducing linear time-invariant (LTI) tree

codes. The time-invariance property means that the behavior of the code at every time instant is the

same, which suggests, in turn, that the performance guarantees for a random (time-invariant) ensemble

are easily translated to similar guarantees for a specific code chosen at random, with high probability.

However, this result assumes maximum likelihood (ML) decoding, which is impractical except over

binary erasure channels (in which case it amounts to solving linear equations which requires only

polynomial computational complexity). Consequently efforts in developing practical anytime reliable

codes over other channels have been made, building primarily on the spatially-coupled and convolutional

low-density parity-check (LDPC) code constructions [7]–[9].

Sequential decoding was proposed by Wozencraft [10] and subsequently improved by others as a

means to recover random tree codes with reduced complexity with some compromise in performance.

Specifically, for the expected complexity to be finite, the maximal communication rate should be lower

than the cutoff rate [11]. For a thorough account of sequential decoding, see [12, Ch. 10], [13, Sec. 6.9],

[14, Ch. 6], [15, Ch. 6], [16, Ch. 6.4]. This technique was subsequently adopted by Sahai and Palaiya-

nur [17] for the purpose of decoding (time-varying) tree codes for networked control. Unfortunately, this

result relies on an exponential bound on the error probability by Jelinek [18, Th. 2] that is valid for the

binary symmetric channel (BSC) (and other cases of interest) only when the expected complexity of the

sequential decoder goes to infinity.

In this work we revisit the construction of anytime reliable codes through the lens of convolutional

codes. This allows us to leverage the existing exponential error bounds for truncated convolutional codes

under ML decoding — for both general (non-linear and time-variant) random [14, Sec. 5.6], [15, Sec. 4.8]

and random LTI ensembles [19], [20, Chs. 4 and 5] — and rederive the existing results for anytime reliable

codes under ML decoding.

We further propose the use of sequential decoding for the recovery of LTI tree codes. To that end,

similarly to Sahai and Palaiyanur [17], we extend a (different) result developed by Jelinek [12, Th. 10.2]
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Fig. 2. MBIOS channel with reconstructions of all past information bits.

for general (non-linear and time-variant) random codes to LTI tree codes.

By appealing to the extremal properties of error exponents [21], [22], and the universality properties

of the uniform prior [23], [24], we design an anytime reliable code that is good for the whole class

of memoryless binary-input output-symmetric (MBIOS) channels with a given capacity — a scenario

previously considered by Draper and Sahai [25] for the more stringent variant where, in addition to the

encoder, the decoder is also oblivious of the true channel realization.

The rest of the paper is organized as follows. We set and motivate the problem in Section II. We then

provide the necessary information theoretic notions and relevant results for capacity and error exponents

in Section III. Convolutional codes and their performance under ML decoding and sequential decoding

are discussed in Section IV, and are subsequently used in Sections V and VI to construct (universal)

anytime reliable tree codes under these decoding procedures. We provide numerical evidence for the

effectiveness of the proposed method in Section VII and conclude the paper in Section VIII.

II. PROBLEM SETUP AND MOTIVATION

We are interested in stabilizing an unstable plant driven by bounded noise over a noisy communication

link. In particular, an observer of the plant measures at every time instant t a noisy version yt ∈ R

(with bounded noise) of the state of the plant xt ∈ Rm (depicted in Fig. 1b; see also Section VII and

Fig. 8). The observer then quantizes yt into k bits: bt ∈ Zk2 , and encodes — using a causal code ((or

tree code) — all quantized measurements {bi}ti=1 to produce n bits: ct ∈ Zn2 ; that is, the encoder uses a

code rate of R = k/n. This packet ct is transmitted over a noisy communication link to the controller,

which receives zt ∈ Zn, where Z is the channel output alphabet. The controller then decodes {zi}ti=1

to produce the estimates {b̂i|t}ti=1, where b̂i|t denotes the estimate of bi when decoded at time t. These

estimates are mapped back to measurement estimates {ŷi|t}ti=1 which, in turn, are used to construct an

estimate x̂t|t of the current plant state of the plant. Finally, the controller computes a control signal ut

based on x̂t|t and applies it to the plant.

The need for causally sending measurements of the state in real time motivates the use of causal

codes in this problem. Generally speaking, a causal code maps, at each time instant t, the current and
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all previous quantized measurements to a packet of n bits ct,

ct = ft
(
{bi}ti=1

)
, (1)

where ft : {0, 1}kt → {0, 1}n is a known encoding function agreed upon by the encoder and the

decoder prior to transmission. Since the coded packets depend on the entire history, they can be viewed

conveniently as a tree, as illustrated in Fig. 3.

When restricted to linear codes, each function ft can be characterized by a set of matrices {Gt,1, . . . ,Gt,t},
where Gt,i ∈ Zn×k2 . The sequence of quantized measurements at time t, {bi}ti=1, is encoded as,

ct = Gt,1b1 + Gt,2b2 + · · ·+ Gt,tbt , (2)

or equivalently in matrix form:

c = Gn;Rb,

with

Gn,R =



G1,1 0 0 · · · · · · · · ·
G2,1 G2,2 0 · · · · · · · · ·

...
...

. . . . . . · · · · · ·
Gt,1 Gt,2 · · · Gt,t 0 · · ·

...
...

...
...

. . . . . .


, (3a)

b =



b1

b2

...

bt
...


, c =



c1

c2

...

ct
...


. (3b)

The decoder computes a function gt
(
{zi}ti=1

)
to produce {bi|t}ti=1. One is then assigned the task of

choosing a sequence of functions {gt|t = 1, . . . ,∞} (or of matrices {Gt,i | i = 1, . . . , t ; t = 1, . . . ,∞}
in the linear case) that provides anytime reliability. We recall this definition as stated in [6].

Definition II.1 (Anytime reliability). Define the probability of the first error event at time t and delay d

as

Pe(t, d) , P
(
bt−d 6= b̂t−d|t, ∀δ > d, bt−δ = b̂t−δ|t

)
, (4)
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Fig. 3. Binary tree-code illustration with k = 1. c and c′ are codewords that correspond to information words that are identical

during the first two steps and differ in the first step.

where the probability is over the randomness of the information bits {bt} and the channel noise. Suppose

we are assigned a budget of n channel uses per time step of the evolution of the plant. Then, an encoder–

decoder pair is called (R, β) anytime reliable if there exist A ∈ R and d0 ∈ N, such that

Pe(t, d) ≤ A2−βnd, ∀t, d ≥ d0, (5)

where β is called the anytime exponent.

Remark II.1. The requirement of d ≥ d0 in (5) can always be dropped, by replacing A by a larger

constant. Conversely, A can be replaced with 1 by reducing β by ε > 0, however small, and taking a

large enough d0. Nonetheless, we use both A and d0 in the definition for convenience.

According to the definition, anytime reliability has to hold for every decoding instant t and every delay

d. Sukhavasi and Hassibi proposed in [6] a code construction based on Toeplitz block-lower triangular

parity-check matrices, that provides an error exponent for all t and d. The Toeplitz property, in turn,

avoids the need to compute a double union bound. We shall explicitly show this later in Section V, where

we introduce the LTI ensemble.

We shall concentrate on MBIOS channels, defined formally as follows.

Definition II.2 (MBIOS channel). a binary-input channel is a system with binary input alphabet {0, 1},
output alphabet Z and two probability transition functions: w(z|0) for input c = 0 and w(z|1) for input

c = 1. It is said to be memoryless if the probability distribution of the output depends only on the input at

that time and is conditionally independent of previous and future channel inputs and outputs. It is further

said to be output-symmetric if there exists an involution π : Z → Z , i.e., a permutation that satisfies
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π−1 = π, such that

w(π(z)|0) = w(z|1)

for all z ∈ Z .

III. PRELIMINARIES: INFORMATION THEORETIC NOTIONS

Throughout this work, we shall concentrate on the class of MBIOS channels. We shall assume that

the channel output alphabet Z has finite size, although the results hold for well-behaved channels with

infinite (possibly uncountable) alphabet size, like the binary additive white Gaussian noise (BAWGN)

channel [21].

A. Capacities

Definition III.1 (Achievable rate). A rate R is said to be achievable over a channel w if there exists

a sequence of mappings (“codes”) in n from dnRe information bits (“information word”) to n coded

bits (“codeword”) that are sent over the channel, such that the average bit error probability (BER) of

recovering the information bits from the resulting n channel output can be made arbitrarily small for a

large enough n.

Definition III.2 (Capacity). The capacity C of a channel w is defined as the supremum over all achievable

rates over this channel.

Theorem III.1 (MBIOS channel capacity; see [13], [26]). The capacity C of an MBIOS channel w is

given by

C =
∑
z∈Z

∑
c∈{0,1}

1

2
w(z|c) log

w(z|c)
1
2w(z|0) + 1

2w(z|1)
.

Remark III.1. The common Shannon-theoretic definitions of the achievable rate and capacity with respect

to a vanishing block error probability coincide with the BER-based definitions used in this work; this

easily follows from the source–channel separation theorem [27, Sec. 10.4] with a Hamming distortion

measure.

Example III.1 (BSC). The BSC with crossover probability ε, depicted in Fig. 4a, is defined as

w(z|c) =

1− ε c = z ∈ {0, 1}

ε c 6= z; c, z ∈ {0, 1}
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Fig. 4. Three important MBIOS channels: (a) BSC. (b) BEC. (c) BAWGN channel.

Its capacity is equal to

C = 1−Hb (ε) ,

where Hb (ε) , −ε log(ε)− (1− ε) log(1− ε) is the binary entropy function.

Example III.2 (BEC). The binary-erasure channel (BEC) with erasure probability ε, depicted in Fig. 4b,

is defined as

w(z|c) =

1− ε c = z ∈ {0, 1}

ε z = e
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Its capacity is equal to

C = 1− ε.

Example III.3 (BAWGN channel). The BAWGN channel with signal-to-noise ratio (SNR) SNR, depicted

in Fig. 4c, is defined as

w(z|c) = N
(
(−1)c, 1/SNR

)
=

1√
τ/SNR

exp

{
−(z − (−1)c)2

2/SNR

}
,

for c ∈ {0, 1}, where exp{x} = ex denotes the natural exponential function and τ = 2π is the circle

constant. That is,

Z = (−1)C + U, (6)

where U is a zero mean Gaussian noise of variance 1/SNR and C ∈ {0, 1}.
By Theorem III.1, the capacity of this channel is equal to

C = h (Z)− 1

2
log (τe/SNR) ,

where Z is the resulting output in (6) for q(0) = q(1) = 1/2 and h (Z) denotes its differential entropy:

h (Z) , −
∫ ∞
−∞

p(z) log p(z)dz,

p(z) =
1

2
[w(z|0) + w(z|1)] .

We next consider the problem of constructing codes that are simultaneously good for all MBIOS

channels with a given capacity. We formally define such classes of channels using the notion of compound

channels [28]–[31] (see also [32]).

Definition III.3 (Compound channel). A compound channel comprises a class W of possible channels.

The exact channel transition distribution w ∈ W is known to the receiver but not to the the transmitter

who only knows the class W .1

The class of interest in this paper is that of all MBIOS channels with a given capacity C, denoted

by MBIOS (C). The following theorem, whose proof can be found in [28]–[32], states that there is no

1Sometimes a channel is said to be compound if the exact channel realization w ∈ W is known to neither sides. The capacity

in both of these scenarios remains the same. For a further discussion of the difference between these two scenarios see [31,

Ch. 4], [32].
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tension between the different channels in MBIOS (C), i.e., there exist codes that achieve capacity for all

MBIOS channels with a given capacity, simultaneously.

Theorem III.2 (MBIOS channel worst-cast capacity). The worst-case capacity of the compound channel

MBIOS (C) is equal to C.

B. Error Exponents

Definition III.4 (Error exponent). A channel w is said to have an error exponent E if there exists a series

of codes {Cn} in the blocklength n of rate R, such that their error probability sequence Pe satisfies

E ≤ lim inf
n→∞

− logPe
n

.

Remark III.2. We use here a more restrictive definition with a lim inf instead of the more common

definition that uses a lim sup. This restriction is useful for the derivation of anytime reliable codes.

Furthermore, the next theorem holds for both of these definitions.

Theorem III.3 (Random coding error exponents [33, Ch. 9], [13, Sec. 5.6], [12, Ch. 7]). Let w be an

MBIOS channel, and consider an ensemble of 2dnRe codewords of length n each, such that the letters of

all the codewords are i.i.d. and uniform. Then, for every information word 1 ≤ m ≤ 2dnRe the average

(over the ensemble) decoding error probability under optimal (ML) decoding is bounded from above by

E [Pe,m] ≤ 2nEG(R), (7)

where

EG(R) , max
0≤ρ≤1

[E0(ρ)− ρR] , (8a)

with

E0(ρ) , − log

{∑
z∈Z

[
1

2
w

1

1+ρ (z|0) +
1

2
w

1

1+ρ (z|1)

]1+ρ
}

(8b)

The error exponent can be attained by linear codes.

Theorem III.4 (Linear random coding error exponents [13, Sec. 6.2]). Let w be an MBIOS channel, and

consider an ensemble of 2dnRe codewords of length n each, that is generated as follows. For a specific

codebook in the ensemble, the information word b is mapped to a codeword c via a linear map:

c = Gb,

where G ∈ Zn×dnRe2 is a fixed (for a specific codebook) code generating matrix whose entries (across

different codebooks in the ensemble) are i.i.d. and uniform. Then, for information word m ∈
[
1, 2dnRe

]
,
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the average (over the ensemble) decoding error probability under ML decoding is bounded from above

as in (7) with an error exponent of (8).

Corollary III.1 (Good code generation). The decoding error probability Pe of a specific code from the

random code ensemble of length n and rate R, generated w.r.t. probability distribution q, satisfies

Pr
(
Pe ≥ 2n[EG(ρ,q)−ε]

)
≤ 2−εn.

Proof. The proof is immediate by the Markov inequality and the upper bound on the expected value of

the error probability (7).

Remark III.3. Theorems III.3 and III.4 prove that any rate below the capacity is achievable as a conse-

quence, since EG(R) is strictly positive for all R < C.

Two useful notions in the context of error exponents are those of the critical rate and the cutoff rate,

the significance of which will become apparent in the analysis of sequential decoding in Section IV-B.

Definition III.5 (Critical rate). Let w be an MBIOS channel with E0(ρ) as defined in (8b). Then, the

critical rate Rcrit is defined as

Rcrit , E′0(1) =
dE0(ρ)

dρ

∣∣∣∣
ρ=1

.

Definition III.6 (Cutoff rate). Let w be an MBIOS channel with E0(ρ) as defined in (8b). Then, the

cutoff rate R0 is defined as

R0 , E0(1).

The critical rate is the rate above which the optimal value of ρ that maximizes EG(R) in (8) is strictly

lower than 1. The cutoff rate, on the other hand, is the intersection with the R axis (“x axis”) of the

continuation of the error-exponent straight line (which is attained below the critical rate).

Example III.4 (BSC). The error exponent of the BSC with crossover probability ε (recall Example III.1),

depicted in Fig. 5, is equal to

EG(R) = max
0≤ρ≤1

[E0(ρ)− ρR] ,

E0(ρ) = ρ− (1 + ρ) log
{
ε

1

1+ρ + (1− ε)
1

1+ρ

}
;

see [34], [13, Sec. 5.6] for further details.
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Fig. 5. Error exponents and cutoff rates for C = 0.5 of the BSC, the BAWGN channel and the BEC.

Example III.5 (BEC). The error exponent of the BEC with erasure probability ε (recall Example III.1),

depicted in Fig. 5, is equal to

EG(R) = max
0≤ρ≤1

[E0(ρ)− ρR] ,

E0(ρ) = − log
{
ε+ 2−ρ(1− ε)

}
;

see [34] for further details.

Example III.6 (BAWGN channel). The error exponent of the BAWGN channel with a given SNR

(recall Example III.3), depicted in Fig. 5, is given by

EG(R) = max
0≤ρ≤1

[E0(ρ)− ρR] ,

E0(ρ) = − log

(∫ ∞
−∞

[
1

2
w

1

1+ρ (z|0) +
1

2
w

1

1+ρ (z|1)

]1+ρ

dz

)
The following theorem, illustrated also in Fig. 5, states that the error exponents of the BSC and the

BEC with a given capacity C, are the worst and the best, respectively, out of the whole class of MBIOS

channels with the same capacity C; we denote these channels by BSC(C) and BEC(C), respectively.

Theorem III.5 (Extremality of error exponents [21], [22]). Let w be any MBIOS channel with capacity

C and Ew0 (ρ) defined as in (8b). Denote by EBSC
0 (ρ) the E0 of (8b), of BSC(C), and by EBEC

0 (ρ) the

E0 of (8b), of BEC(C). Then, the following relations hold
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(a) t = 1 (b) t = 2

(c) t = d (d) General t

Fig. 6. Tree code generation via a shift register.

EBSC
0 (ρ) ≤ Ew0 (ρ) ≤ EBEC

0 (ρ) (9)

for all ρ ∈ [0, 1], and consequently also

RBSC
0 ≤ Rw

0 ≤ RBEC
0 ,

EBSC
G (R) ≤ EwG(R) ≤ EBEC

G (R), ∀R ∈ [0,C].

for all R ∈ [0,C].

IV. REVIEW OF CONVOLUTIONAL CODES

In this section we review known results for several random ensembles of convolutional codes and

connect such codes to tree codes, in Section IV-A. The codes within each ensemble can be either linear or

not; linear ensembles can further be either time-varying or time invariant. We further discuss sequential

decoding algorithms and their performance in Section IV-B which will be applied in the sequel for tree

codes.
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A. Bounds on the Error Probability under ML Decoding

We now recall exponential bounds for convolutional codes under certain decoding regimes.

A compact representation (and implementation) of a convolutional code is via a shift register, as

depicted in Fig. 6: The delay-line (shift register) length is denoted by d, whereas its width k is the

number of information bits entering the shift register at each stage (we consider the newest k information

bits as being part of the the delay-line, for convenience). Thus, the total memory size is equal to dk bits.

At each stage, n code bits are generated by evaluating n functionals over the dk memory bits (including

the new k information bits). We refer to these n bits as a single branch. Therefore, the rate of the code is

equal to R = k/n bits per channel use. In general, these functionals may be either linear or not, resulting

in linear or non-linear convolutional codes, respectively, and stay fixed or vary across time, resulting in

time-invariant or time-varying convolutional codes.

We observe that this representation is in fact equivalent to that of (1) with the encoding function

ft : {0, 1}dk → {0, 1}n at time t being a function of only the last d packets, i.e.,

ct = ft
(
{bi}ti=t−d+1

)
, (10)

with ft : {0, 1}dk → {0, 1}n.

In this work we shall concentrate on linear functionals, resulting in linear convolutional codes. Linear

convolutional codes are given as in (2)–(3), with

Gi,j = 0, i ≥ j + d, (11)

namely,

Gn;R =

 ...

0

0

Gd,1

...

G2,1

G1,1

...

0

Gd+1,2

Gd,2

...

G2,2

0

...

· · ·

· · ·

· · ·

. . .

0

0

...

Gd+2,d

Gd+1,d

Gd,d

. . .

· · ·

· · ·

...

. . .

. . .

0

...

· · ·

· · ·

...

. . .

. . .

· · ·

· · ·

· · ·

· · ·


. (12)

For LTI convolutional codes, we further have

Gi,j = Gi+1,j+1 = · · · = Gj+d−1,j+d−1 , Gi−j+1 , (13)
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that is,

Gn;R =

 ...

0

0

Gd

...

G2

G1

...

0

Gd

Gd−1

...

G1

0

...

· · ·

· · ·

· · ·

. . .

0

0

...

G3

G2

G1

. . .

· · ·

· · ·

...

. . .

. . .

0

...

· · ·

· · ·

...

. . .

. . .

· · ·

· · ·

· · ·

· · ·


. (14)

As is suggested in Section III, using linear codes incurs no loss in performance provided that the optimal

prior is uniform — which is the case for MBIOS (C), and is more attractive in practice.

We shall further denote the total length of the convolutional code frame upon truncation by N .

Typically, the total length of the convolutional code frame is chosen to be much larger than d, i.e.,

N � d. We shall see in Section V, that in the context of tree codes, a decoding delay of d time steps

of the evolution of the plant into the past corresponds to a convolutional code with delay-line length d.

Since each time step corresponds to n uses of the communication link, the relevant regime for the current

work is N = nd.

We next define the three convolutional code ensembles that will be used in this work.

Definition IV.1 (General convolutional code ensemble). A general (non-linear) convolutional code en-

semble of rate R = k/n, that maps k information bits into n bits at every step, has a delay-line length

of d, where the functions ft in (10) are generated uniformly at random and independently of each other.

Definition IV.2 (LTV convolutional code ensemble). An LTV convolutional code ensemble of rate R =

k/n, and delay-line length d, that maps kd information bits into n bits at every step, where the entries

in all {Gi,j} of Gn,R of (12) are i.i.d. and uniform.

Definition IV.3 (LTI convolutional code ensemble). An LTI convolutional code ensemble of rate R = k/n

and delay-line length d, that maps kd information bits into n bits at every step, where the entries in all

{Gi} of Gn;R of (14) are i.i.d. and uniform.

Theorem IV.1 ( [14, Sec. 5.6], [15, Sec. 4.8]). Let w be an MBIOS channel, and consider the LTV

convolutional code ensemble of Definition IV.2 with rate R and delay-line length d. Then, the probability

of the first error event (5) at any time t and delay that is equal to the delay-line length d of the code,
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under optimal (ML) decoding, is bounded from above by

P̄e(t, d) ≤ 2−EG(R)nd, (15)

with EG(R) of (8).

Remark IV.1. In the common work regime of N � d, the optimal achievable error exponent was proved

by Yudkin and by Viterbi to be much better than EG(R) [14, Ch. 5]. Unfortunately, this result does not

hold for the case of N = nd which is the relevant regime for this work.

Interestingly, whereas LTV codes are known to achieve better error exponents than LTI ones when

N � d, this gain vanishes when N = nd, as is suggested by the following theorem.

Theorem IV.2 ( [19, Eq. (14)], [20, Chs. 4 and 5]). Let w be an MBIOS channel, and consider the LTI

convolutional code ensemble of Definition IV.2 with rate R and delay-line length d. Then, the probability

of the first error event (5) at any time t and delay that is equal to the delay-line length d of the code,

under optimal (ML) decoding, is bounded as in (15).

Thus, (15) remains valid for LTI codes.

Remark IV.2. Somewhat surprisingly, allowing larger delays for decoding does not improve the bound

on the probability of the first error event (15) in the case of LTI codes, using the existing techniques;

see [19], [20, Chs. 4 and 5] for details.

Unfortunately, the computational complexity of ML decoding grows exponentially with the delay-line

length d, prohibiting its use in practice for large values of d. We therefore next review a suboptimal

decoding procedure, the complexity of which does not grow rapidly with d but still achieves exponential

decay in d of the probability of the first error event.

B. Sequential Decoding

The Viterbi algorithm [14, Sec. 4.2] offers an efficient implementation of (frame-wise) ML decoding2

for fixed d and growing N . Unfortunately, the complexity of this algorithm grows exponentially with N

when the two are coupled, i.e., N = nd.3 Prior to the adaptation of the Viterbi algorithm as the preferred

decoding algorithm of convolutional codes, sequential decoding had served as the de facto standard. A

2For bitwise ML decoding, the BCJR algorithm [35] needs to be used.
3This is true with the exception of the binary erasure channel, for which ML decoding amounts to solving a system of

equations, the complexity of which is polynomial.
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wide class of algorithms fall under the umbrella of “sequential decoding”. Common to all is the fact

that they explore only a subset of the (likely) codeword paths, such that their complexity does not grow

(much) with the delay-line length d, and are therefore applicable for the decoding of tree codes.4

In this work, we shall concentrate on the two popular variants of this algorithm — the Stack and the

Fano (which is characterized by a quantization parameter ∆) algorithms.

We next summarize the relevant properties of these decoding algorithms when using the generalized

Fano metric (see, e.g., [12, Ch. 10]) to compare possible codeword paths:

M(c1, . . . , cN ) =

N∑
t=1

M(ct), (16a)

M(ct) , log
w(zt|ct)
p(zt)

− nB, (16b)

where B is referred to as the metric bias and penalizes longer paths when the metrics of different-length

paths are compared.

Example IV.1. Consider the BSC of Example III.1. Let c1:j and z1:j denote the codeword and received

word up to the jth time-step, respectively. Let δ be the Hamming distance between c1:j and z1:j . Then,

the metric associated with the pair c1:j and z1:j is given by

M(c1:j) = δ [log(ε) + 1−B] + (nj − δ) [log(1− ε) + 1−B] .

In contrast to ML decoding, where all possible paths (of length N ) are explored to determine the

path with the total maximal metric,5 using the stack sequential decoding algorithm, a list of partially

explored paths is stored in a priority queue, where at each step the path with the highest metric is further

explored and replaced with its immediate descendants and their metrics. The Stack Algorithm is outlined

in Algorithm 1 and implemented in [36], [37]. The Fano algorithm achieves the same without storing

all these potential paths, at the price of a constant increase in the error probability and computational

complexity; for a detailed description of both algorithms and variants thereof, see [12, Ch. 10], [13,

Sec. 6.9], [14, Ch. 6], [15, Ch. 6].

The choice B = R is known to minimize the expected computational complexity, and is therefore

the most popular choice in practice. Moreover, for rates below the cutoff rate R < R0, the expected

number of metric evaluations (16b) is finite and does not depend on d, for any B ≤ R0 [13, Sec. 6.9],

[12, Ch. 10]. Thus, the only increase in expected complexity of this algorithm with d comes from an

4Interestingly, the idea of tree codes was conceived and used already in the early works on sequential decoding [10]. These

codes were used primarily for the classical communication problem, and not for interactive communication or control.
5Note that optimizing (16a) in this case is equivalent to ML decoding.
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increase in the complexity of evaluating the metric of a single symbol (16b). Since the latter increases

(at most) linearly with d, the total complexity of the algorithm grows polynomially in d. Furthermore,

for rates above the cutoff rate, R > R0, the expected complexity is known to grow rapidly with N for

any metric [11], implying that the algorithm is applicable only for rates below the cutoff rate.6

Algorithm 1 Stack Algorithm
Q← MaxPriorityQueue() . Maintain a list explored nodes by decreasing metric

metric← 0

Q.push(root, metric)

while Q.top().level < d− 1 do . Continue until a leaf is reached

current node, current metric← Q.pop() . Explore path with largest metric

for child ∈ current node.children do

t← child.level

child metric← current metric + COMPUTEMETRIC(child, zt) . Compute child’s

metric using (16b)

Q.push(child, child metric)
return Q.top().codeword . Reconstruct the input sequence by backtracking

Most results concerning the error probability under sequential decoding consider an infinite code stream

(over a trellis graph) and evaluate the probability of an erroneous path to diverge from the correct path

and re-merge with the correct path, which can only happen for N > nd. Such analyses are not adequate

for our case of interest, in which N = nd. The following theorem provides a bound for our case.

Theorem IV.3 ([12, Ch. 10]). Let w be an MBIOS channel, and consider the random general (non-linear)

convolutional code ensemble of Definition IV.1 with rate R and delay-line length d. Then, the probability

of the first error event (II.1) at any time t and delay that is equal to the delay-line length d of the code,

using the Fano or stack sequential decoders and the Fano metric with bias B, is bounded from above

by:

P̄e(t, d) ≤ A 2−EJ(B,R)nd, (17a)

EJ(B,R) , max
0≤ρ≤1

ρ

1 + ρ

{
E0(ρ) +B − (1 + ρ)R

}
, (17b)

6This holds for any convolutional code for rates above the cutoff rate, R > R0.
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Fig. 7. Error exponents EG(R), EJ(B = R0, R) and EJ(B = R,R) for a BSC with crossover probability p = 0.1.

where A is finite for B < R0 and is bounded from above by7

A ≤ e
ρ

1+ρ
∆ 1− e−t[E0(ρ)−ρB]

1− e−[E0(ρ)−ρB]
≤ e

ρ

1+ρ
∆

1− e−[E0(ρ)−ρB]
<∞, (18)

for a quantization parameter ∆ in the Fano algorithm; for the stack algorithm, (18) holds with ∆ = 0.

Since EJ(B,R) is a monotonically increasing function of B, choosing B = R0 maximizes the

exponential decay of P̄e(d) in d.8 Interestingly, for this choice of bias, we have EJ(B = R0, R) = EG(R)

whenever EG(R) is achieved by ρ = 1 in (8), i.e., for rates below the critical rate Rcrit (recall Defini-

tion III.5). For other values of ρ, EJ(B = R0, R) is strictly smaller than EG(R) (see Fig. 7).

For the choice of bias that optimizes complexity, B = R, on the other hand, an error exponent which

equals to at least half the exponent under ML decoding (15) is achieved whenever EG(R) is achieved

by ρ = 1: EJ(B = R,R) ≥ EG(R)/2 (see Fig. 7).

We now turn to bounding the number of branch computations per node of the code under sequential

decoding.

Definition IV.4. Denote by Wt the number of branch computations of node t performed by a sequential

decoding algorithm.

7Note that E0(ρ)/ρ is a monotonically decreasing function of ρ, therefore B < R0 = E0(1) guarantees that E0(ρ)−ρB > 0.
8For finite values of d a lower choice of B may be better, since the constant A might be smaller in this case.
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We note that Wt is a random variable (which depends on the received vector and the underlying code

used). Since Wt is equal to just one more than the number of branch computations in the incorrect

sub-tree of that node, it has the same distribution for any t, for random general convolutional codes,

random LTV convolutional codes and LTI random convolutional codes.

The next result provides a lower bound on the complexity.

Theorem IV.4 ( [38]; see also [14, Sec. 6.4]). Let w be an MBIOS channel. Then, the probability that

Wt is greater than m ∈ N for any convolutional code, where no decoding error occurs under sequential

decoding, is bounded from below by

Pr (Wt ≥ m) ≥ (1− o(m))m−ρ,

where o(m)→ 0 for m→∞, and R = E0(ρ)/ρ for any ρ > 0.9

This bound was proved to be tight by Savage [39] for random general convolutional codes.

Theorem IV.5. Let w be an MBIOS channel. Then, the probability that Wt is greater than m ∈ N for a

random general convolutional code with infinite delay-line length, under sequential decoding, is bounded

from above by

Pr (Wt ≥ m) ≤ Am−ρ,

where A is finite for B,R < R0, R < B+R0

2ρ , ρ ∈ (0, 1], and R0 is the cutoff rate (recall Definition III.6).

This result is widely believed to be true for random LTV and LTI convolutional codes, although no for-

mal proof exists to date. Nonetheless, the following weaker result was established for LTV convolutional

codes [14, Sec. 6.2] and for LTI convolutional codes [13, Sec. 6.9].

Theorem IV.6. Let w be an MBIOS channel. Then, the probability that Wt is greater than m ∈ N for

a random LTV convolutional code and a random LTI convolutional code with infinite delay-line lengths,

under sequential decoding, is bounded from above by

Pr (Wt ≥ m) ≤ A

m
,

where A is finite for B,R < R0, R < B+R0

2ρ , ρ ∈ (0, 1], and R0 is the cutoff rate.

An immediate consequence of Theorems IV.5 and IV.6 is that the expected complexity per branch

E[Wt] is bounded for R < R0. Moreover, a converse result by Arıkan [11] states that the expected

complexity is unbounded for rates exceeding the cutoff rate.

9Recall that E0(ρ)/ρ is a decreasing function of ρ and therefore ρ > 1 implies that R < R0.
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V. LINEAR TIME INVARIANT ANYTIME RELIABLE CODES

As we alluded to in Section IV, tree codes are no more than convolutional codes with an infinite

delay-line length. This simple observation, allows us to utilize all the results of Section IV to tree codes.

We start by recalling the construction of LTI anytime reliable (tree) codes, proposed first in [6]. The

generating matrix of an LTI tree code satisfies (14) with d→∞; that is, it is of the form

Gn,R =



G1 0 0 · · · · · ·
G2 G1 0 · · · · · ·

...
...

. . . . . . · · ·
Gt Gt−1 · · · G1 0
...

...
...

...
. . .


. (19)

Similarly to the LTI convolutional code ensemble of Definition IV.3, we define the following ensemble,

which can again be viewed as its infinite delay-line length limit.

Definition V.1 (LTI tree code ensemble). An LTI tree ensemble of rate R = k/n, that maps kt information

bits into n bits at time step t, where the entries in all {Gi} of Gn;R of (19) are i.i.d. and uniform.

Remark V.1. In contrast to the ensemble considered by Sukhavasi and Hassibi [6], we do not require the

first generating matrix G1 to be a full-rank matrix in our analysis.

For the purpose of this paper, we view an (n,R) LTI tree code as a convolutional code with infinite

delay-line length, and (per stage) k information bits and n code bits. As a result of this interpretation,

the results of Section IV apply directly to this Toeplitz ensemble.

Sukhavasi and Hassibi [6] proved that the LTI ensemble is anytime reliable, as defined in (5), with

high probability. We next prove this result using Theorem IV.2.

Theorem V.1 (Anytime-reliable LTI tree codes). Let w be an MBIOS channel with error exponent

EG(R) (8). Let ε > 0 and d0 ∈ N. Then, the probability that a particular code from the random LTI tree

code ensemble of Definition V.1 has an anytime exponent (5) of EG(R) − ε, for all t ∈ N and d > d0,

under optimal (ML) decoding, is bounded from below by

Pr

( ∞⋂
t=1

t⋂
d=d0

{
Pe(t, d) ≤ 2−[EG(R)−ε]nd

})
≥ 1− 2−εnd0

1− 2−εn

Thus, for any ε > 0, however small, this probability can be made arbitrarily close to 1 by taking d0

to be large enough.
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Proof. By using the Markov inequality along with the result of Theorem IV.2, the probability that a

particular code from the ensemble has an exponent that is strictly smaller than EG(R)− ε at time t and

delay d is bounded from above by

Pr
(
Pe(t, d) ≥ 2−(EG(R)−ε)nd

)
≤ 2−εnd. (20)

For a code to be anytime reliable it needs to satisfy (5) for every t and d0 ≤ d ≤ t.
To that end, we note that the time-invariance property suggests that for a fixed d, the event{

Pe(t, d) ≥ 2−(EG(R)−ε)nd
}

is identical for all t. Thus, by applying the union bound and (20) to
∞⋃
t=1

t⋃
d=d0

{
Pe(t, d) ≥ 2−(EG(R)−ε)nd

}
(21)

gives rise to

Pr

( ∞⋃
t=1

t⋃
d=d0

{
Pe(t, d) ≥ 2−(EG(R)−ε)nd

})
= Pr

( ∞⋃
d=d0

{
Pe(t, d) ≥ 2−(EG(R)−ε)nd

})
(22a)

≤
∞∑
d=d0

2−εnd (22b)

=
2−εnd0

1− 2−εn
. (22c)

As a result, a large enough d0 guarantees that a specific code selected at random from the LTI tree code

ensemble achieves (5) with exponent β = EG(R)−ε, for all t and d0 ≤ d ≤ t, with high probability.

Remark V.2 (LTV codes). This proof technique fails for LTV tree codes: For a code to be anytime reliable

it needs to satisfy (5) for every t and d0 ≤ d ≤ t. Unfortunately, applying the union bound and (20) to

(21) gives a trivial upper bound, for LTV codes. The advantage of using LTI codes is that for a fixed d,

the event
{
Pe(t, d) ≥ 2−(EG(R)−ε)nd} is identical for all t which reduces the union bound to a summation

with respect to only d (22a) instead of a double summation over d and t.

The following extends this result to MBIOS (C), and is similar to the technique proposed in [40]

for the construction of LDPC code ensembles that universally achieve capacity under belief propagation

decoding.

Corollary V.1 (Universal anytime-reliable LTI tree codes). Let W be any (finite) subset of MBIOS (C)

and denote by EBSC
G (R) the random error exponent (8) of BSC(C). Let ε > 0 and d0 ∈ N. Then, the

probability that a particular code from the random LTI tree code ensemble of Definition V.1 has an
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anytime exponent (5) of EBSC
G (R) − ε, for all t ∈ N and d > d0, and for all channels w ∈ W , under

optimal (ML) decoding, is bounded from above by

Pr

( ⋂
w∈W

∞⋂
t=1

t⋂
d=d0

{
Pwe (t, d) ≤ 2−[EBSC

G (R)−ε]nd
})
≥ 1− 2−εnd0 |W|

1− 2−εn
,

where Pwe (t, d) denotes Pe(t, d) of (4) with respect to the channel w.

Thus, for any ε > 0, however small, this probability can be made arbitrarily close to 1 by taking d0

to be large enough.

This corollary can also be extended to include (countably and uncountably) infinite sets of channels

in a similar fashion to the analysis carried by Kuderkar et al. [41].

VI. SEQUENTIAL DECODING OF LINEAR TIME-INVARIANT ANYTIME RELIABLE CODES

In this section we show that the upper bound on the probability of the first error event (17) under

sequential decoding for the random general (non-linear) convolutional code ensemble of Theorem IV.3,

holds true also for LTI convolutional codes which, for N = nd, identifies with the LTI tree codes of (19).

To prove this, we adopt the proof technique of Theorem III.4 in [13, Sec. 6.2].

Theorem VI.1. Let w be an MBIOS channel, and consider the random LTI convolutional code ensemble

of Definition IV.1 with rate R and delay-line length d. Then, the probability of the first error event (5)

at any time t and delay that is equal to the delay-line length d of the code, using the Fano or stack

sequential decoders and the Fano metric with bias B, is bounded from above by (17).

Proof. A thorough inspection of the proof of Theorem IV.3, as it appears in [12, Ch. 10], reveals that

the following two requirements for this bound to be valid are needed:

1) Pairwise independence. Every two paths are independent starting from the first branch that corre-

sponds to source branches that disagree.

2) Individual codeword distribution. The entries of each codeword are i.i.d. and uniform.

We next prove that these two requirements are met for the affine linear ensemble, which can be regarded,

in turn, as a special case of [12, Th. 10.7]. The codes in this ensemble are as in Definition V.1 up to an

additive translation:

c = Gn;Rb + v,
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v =



v1

v2

...

vt
...


,

where vt ∈ Zn2 ; the entries in all {Gi} of Gn;R (19) and v are i.i.d. and uniform.

Now, assume that two source words b and b̃ are identical for i < t and differ in at least one bit in

branch t, i.e., bi = b̃i for i < t and bt 6= b̃t. Then, the causal structure of Gn;R guarantees that also

ci = c̃i for i < t. Moreover, bt 6= b̃t along with the random construction of Gn;R suggest that the

two code paths starting from branch t,
[
cTt cTt+1 · · ·

]T
and

[
c̃Tt c̃Tt+1 · · ·

]T
are independent. This

establishes the first requirement.

To establish the second requirement we note that the addition of a random uniform translation vector v

guarantees that the entries of each codeword are i.i.d. and uniform. This establishes the second requirement

and hence also the validity of the proof of [12, Ch. 10].

Finally note that, since the channel is MBIOS, the same error probability is achieved for any translation

vector v, including the all-zero vector; this concludes the proof.

This theorem implies also the following results which parallel their ML decoding counterparts in

Theorem V.1 and Corollary V.1, with essentially the same proofs.

Theorem VI.2 (Anytime-reliable LTI tree codes). Let w be an MBIOS channel with error exponent

EJ(R) (17b) under sequential decoding. Let ε > 0 and d0 ∈ N. Then, the probability that a particular

code from the random LTI tree code ensemble of Definition V.1 has an anytime exponent (5) of EJ(R)−ε,
for all t ∈ N and d > d0, under sequential decoding, is bounded from below by

Pr

( ∞⋂
t=1

t⋂
d=d0

{
Pe(t, d) ≤ A2−[EJ(R)−ε]nd

})
≥ 1− 2−εnd0

1− 2−εn

where A is bounded from above as in (18).

Thus, for any ε > 0, however small, this probability can be made arbitrarily close to 1 by taking d0

to be large enough.

The following is an immediate consequence of the definition of EJ (17b) and the extremality prop-

erty (9) of E0.
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Corollary VI.1 (sequential-decoding exponent extremalities). Let w be any MBIOS channel with capacity

C and EwJ (ρ) defined as in (17b). Denote by EBSC
J (ρ) the EJ of (17b), of BSC(C), and by EBEC

J (ρ)

the EJ of (17b), of BEC(C). Then, the following relations hold

EBSC
J (R) ≤ EwJ (R) ≤ EBEC

J (R),

for all R ∈ [0,C].

Applying Corollary VI.1 to Theorem VI.2 gives rise to the following universality result.

Corollary VI.2 (Universal anytime-reliable LTI tree codes). Let W be any (finite) subset of MBIOS (C)

and denote by EBSC
J (R) the random error exponent (17b) of BSC(C). Let ε > 0 and d0 ∈ N. Then,

the probability that a particular code from the random LTI tree code ensemble of Definition V.1 has an

anytime exponent (5) of EBSC
J (R) − ε, for all t ∈ N and d > d0, and for all channels w ∈ W , under

sequential decoding, is bounded from above by

Pr

( ⋂
w∈W

∞⋂
t=1

t⋂
d=d0

{
Pwe (t, d) ≤ ABSC2−[EBSC

G (R)−ε]nd
})
≥ 1− 2−εnd0 |W|

1− 2−εn
,

where Pwe (t, d) denotes Pe(t, d) of (4) with respect to the channel w, and ABSC is bounded as A in (18)

with E0 of BSC(C).

Thus, for any ε > 0, however small, this probability can be made arbitrarily close to 1 by taking d0

to be large enough.

VII. NUMERICAL RESULTS

A. Simulation of a Control System

To demonstrate the effectiveness of the sequential decoder in stabilizing an unstable plant driven by

bounded noise, depicted in Fig. 8, we simulate a cart–stick balancer controlled by an actuator that obtains

noisy measurements of the angle (partial state) of the cart. We consider three channel scenarios: a BSC,

an AWGN channel and a BEC, and use the same anytime-reliable LTI tree code for all of them. All

channels are of capacity C = 0.85. The example is the same one from [6] which is originally from [42].

The plant dynamics evolve as,

xt+1 = Axt + But + wt

yt = Cxt + vt,

where ut is the control input signal that depends only on the estimate of the current state, i.e., ut =

−Kx̂t|t. The system noise wt is a vector of i.i.d. Gaussian random variables with mean µ = 0 and
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xt+1 = Axt + wt + But

wt

C +

vt

Controller w(z|c) Observer

xt yt

ctzt

ut

Fig. 8. Linear control system with a noisy-channel feedback.

variance σ2 = 0.01, truncated to [−0.025, 0.025]. The measurement noise vt is also a truncated Gaussian

random variable of the same parameters. We assume that the system is in observer canonical form:

A =


3.3010 1 0

−3.2750 0 1

0.9801 0 0

 , (23a)

B =


−0.0300

−0.0072

0.0376

 , (23b)

C =
[
1 0 0

]
, (23c)

K =
[
55.6920 32.3333 19.0476

]
. (23d)

The state xt, before the transformation to observer canonical form, is composed of the stick’s angle,

the stick’s angular velocity and the cart’s velocity. The system is unstable with the largest eigenvalue of

A being 1.75. The LTI tree code used is designed for the BSC with capacity C = 0.85, which has a

cutoff rate R0 = 0.6325. We fix a budget of n = 25 channel uses. Using [6, Theorem 8.1], the minimum

required number of quantization bits is kmin = 3 and the minimum required exponent is βmin = 0.1641.

For the three scenarios, we use a code of rate R = 1/5, with k = 5 bits for a lattice quantizer with

bin width δ = 0.07. From (17a), a sequential decoder with bias B = R will guarantee an error exponent

of β = 0.2163 > βmin. As is evident from the curves in Fig. 9, the stick on the cart does not deviate by
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more than a few degrees in all three scenarios.

B. Stability versus Coding Rate Trade-off

One might wonder whether a lower code rate results in improved stability (lower cost due to channel

coding) of the dynamical system in question. We note that for a fixed budget of n channel uses, a lower

code rate translates to a coarser quantizer and consequently a larger cost due to quantization. As a result,

this might suggest a tension between the quantization level being used and the performance of the tree

code. To exhibit this behavior, we evolve the same dynamical system presented in Section VII-A using

three different quantization levels. The dynamical system is evolved for a total of T = 100 time steps,

each corresponding to n = 20 channel uses, where the channel is a BSC with crossover probability 0.01.

A common metric used to quantify the performance of the closed-loop stability of a dynamical system

is the linear quadratic regulator (LQR) cost for a finite time horizon T given by

JT , E

[
1

T

T∑
t=1

(
Qt ‖xt‖2 +Rt ‖ut‖2

)]
, (24)

where the expectation is with respect to the randomness of the plant and the channel. The LQR weights

{Qt} and {Rt} penalize the state deviation and actuation effort, respectively. For our example, we used

Qt ≡ Rt ≡ 1/2. We average the results over 100 codes per quantization level and 40 experiments per

code.

The data is tabulated as follows.

k LQR Cost

4 206.0

5 86.4

10 873.0

For the setup considered, the minimum number of quantization bits is kmin = 3. Nonetheless, we can

see how one extra quantization level (going from 4 bits to 5) results in a significant decrease in the

stabilization effort.

Remark VII.1. In principle, one would randomly sample an LTI generator matrix where each subblock

Gi ∈ Zn×k2 . Nonetheless, from an implementation efficiency point of view, there is no loss in the anytime

exponent if we pick G′i ∈ Zn
′×k′

2 , where n = n′gcd(n, k) and k = k′gcd(n, k), and then encode the

information sub-blocks of size k′ using {G′i}.
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Fig. 9. Stability of the Cart–Stick Balancer is demonstrated using a sequentially decoded LTI tree code with k = 5 and n = 20

that was generated at random and designed for the plant described by (23) when the measurements are transmitted across a

BSC with capacity C = 0.85. This code is also used over the AWGN and the BEC with the same capacity. The plots are a

result of averaging 50 experiments of random {wt,vt} for the same code.
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VIII. DISCUSSION

A. Random Complexity

We showed that sequential decoding algorithms have several desired features: error exponential decay,

memory that grows linearly (in contrast to the exponential growth under ML decoding) and expected

complexity per branch that grows linearly (similarly to the encoding process of LTI tree codes). However,

the complexity distribution is heavy tailed (recall Theorems IV.4, IV.5 and IV.6). This means that there is

a substantial probability that the computational complexity will be very large, which will cause, in turn,

a failure in stabilizing the system. Specifically, by allowing only a finite backtracking length to the past,

the computational complexity can be bounded at the expense of introducing an error due to failure.

From a practical point of view, the control specifications of the problem determine a probability of

error threshold under which a branch ct is considered to be reliable. This can be used to set a limit

on the delay-line length of the tree code, which in turn converts it to a convolutional code with a finite

delay-line length.

B. Expurgated Error Exponents

Tighter bounds can be derived below the cutoff rate via expurgation. Moreover, random linear block

codes are known to achieve the expurgated bound for block codes (with no need in expurgation) [43].

Indeed, using this technique, better bounds under ML decoding were derived in [14, Sec. 5.3] for LTV

convolutional codes and in [6] — for LTI tree codes (see also [15, Ch. 4]); similar improvement is

plausible for sequential decoding.

We further note that the extremality properties of Theorem III.5 carry on to the expurgated error

exponent, i.e., the BEC and the BSC have the best and worst expurgated error exponents, respectively,

out of the whole class of MBIOS (C) [21], [22].

C. Asymmetric Channels

Interestingly, the loss due to using a uniform prior instead of the capacity achieving one for memoryless

binary-input asymmetric channels is no more than 0.011 bits and no more than 5.8% [23], [24], and is

the largest for the Z-channel, for any fixed capacity [23].

Furthermore, for a given symmetric capacity [26] — the highest achievable rate with the additional

constraint that the channel-input letters are used with equal probability — the extremality properties

of Theorem III.5 extend to the wider class of all memoryless binary-input channels with a given symmetric

capacity [22].
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These results may further allow to extend the results of this paper beyond the realm of symmetric

channels and are left for future research.

D. Separated and Joint Source–Channel Coding Schemes

The separation between the source-compression and the channel-coding tasks is very attractive, both

conceptually and in practice, and is known to be optimal for point-to-point (one-way) communication

when large encoding and decoding delays are allowed [44, Ch. 3.9].

Tree codes allow to extend the source–channel coding separation paradigm to control in conjunction

with suitable compression (see [45], [46] and references therein).

Unfortunately, the optimality guarantees for source–channel coding separation do not hold for the case

of short (not to mention zero) delays, which are essential due to the real-time nature of control.

Furthermore, in order to guarantee bounded larger moments, higher anytime exponents (5) are re-

quired [4]. Consequently, only a finite number of moments can be made bounded using tree codes.

Both of these issues can be circumvented by the use of joint source–channel mappings, which may

offer a boost in both stability and computational complexity, as was recently demonstrated in [47] for the

simple case of a scalar control system and a Gaussian communication channel. Exploring this direction

further remains an interesting direction for future research.
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