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Abstract—The problem of sending a secret message over
the Gaussian multiple-input multiple-output (MIMO) wiretap
channel is studied. While the capacity of this channel is known, it
is not clear how to construct optimal coding schemes that achieve
this capacity. In this work, we use linear operations along with
successive interference cancellation to attain effective parallel
single-antenna wiretap channels. By using independent scalar
Gaussian wiretap codebooks over the resulting parallel channels,
the capacity of the MIMO wiretap channel is achieved. The
derivation of the schemes is based upon joint triangularization of
the channel matrices. We find that the same technique can be used
to re-derive capacity expressions for the MIMO wiretap channel
in a way that is simple and closely connected to a transmission
scheme. This technique allows to extend the previously proven
strong security for scalar Gaussian channels to the MIMO case.
We further consider the problem of transmitting confidential
messages over a two-user broadcast MIMO channel. For that
problem, we find that derivation of both the capacity and a
transmission scheme is a direct corollary of the proposed analysis
for the MIMO wiretap channel.

Index Terms—Wiretap channel, MIMO channel, confidential
broadcast, successive interference cancellation, dirty-paper cod-
ing, matrix decomposition.

I. INTRODUCTION

The wiretap channel, introduced by Wyner [1], is composed

of a sender (“Alice”) who wishes to convey data to a legitimate

user (“Bob”), such that the eavesdropper (“Eve”) cannot

recover (almost) any information of these data. The capacity of

this channel [1], [2] equals to a mutual-information difference,

and was extended to the Gaussian case in [3]. Let the channels

from Alice to Bob and Eve be given by

yB = hBx+ zB,

yE = hEx+ zE ,

where hB and hE are complex scalar gains, zB and zE
are mutually-independent circularly-symmetric Gaussian zero

mean unit variance noises and the transmission is subject to

a unit power constraint. Then, the capacity is achieved by a

Gaussian input:

CS(hB, hE) = I (x; yB)− I (x; yE) (1a)

=
[

log
(

1 + |hB|2
)

− log
(

1 + |hE |2
)]

+
, (1b)

where [a]+ , max{0, a} is the positive-part operation.

The vector extension of this result, the multiple-input

multiple-output (MIMO) Gaussian wiretap channel or the
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multiple-input multiple-output multiple-eavesdropper (MI-

MOME) channel [4]–[6], is given by

yB = HBx+ zB , (2a)

yE = HEx+ zE , (2b)

where x, yB and yE are complex-valued vectors with dimen-

sions of the number of antennas in the terminals of Alice,

Bob and Eve, denoted by NA, NB, and NE , respectively. The

channel matrices HB and HE have the corresponding dimen-

sions. The additive noise vectors zB and zE are mutually

independent, i.i.d., circularly-symmetric Gaussian with zero

mean unit element variance.

The secrecy capacity of this scenario for the case where the

input is subject to an average covariance constraint1

K , E
[

xx†
]

� K̄, (3)

and the case where the input is subject to a total (over all

antennas) power constraint P :

trace(K) ≤ P,

was established in [6] and [4]–[6], respectively. Under a

covariance constraint, this capacity is given by the difference

of mutual informations to Bob and Eve, optimized over

all Gaussian channel inputs that satisfy the respective input

constraint:

CS(HB,HE , K̄) = max
K�K̄

IS(HB,HE ,K) , (4)

where

IS(HB,HC ,K) , I(HB ,K)− I(HE ,K), (5)

and

I(H,K) , log
∣

∣I + HKH†
∣

∣ (6)

is the Gaussian vector mutual information (MI), and |A|
denotes the determinant of A. Later, Bustin et al. [7] provided

an explicit solution to the maximization problem under the

covariance constraint (4). A closed-form solution for the

wiretap capacity under a total power constraint is yet to be

found, although a numerical algorithm that approaches the

global optimum was recently proposed [8]. We note that the

capacity under a total power constraint can be written as

the union of achievable regions under a covariance constraint

(see [9, Lemma 1]):

CS(HB,HE , P ) = max
K̄: trace{K̄}=P

CS(HB,HE , K̄) . (7)

Hence, we shall concentrate on the covariance constrained

setting in this paper.

1A � 0 denotes that A is a positive semidefinite matrix. A � B means
that (A− B) � 0.
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The confidential broadcast channel offers a natural extension

to the wiretap channel setting. In the confidential broadcast

setting, Alice wishes to convey different data to two users

(“Bob” and “Charlie”), such that (almost) no information can

be recovered by one user about the data intended for the other

user. That is, for the data that are intended for Bob, Charlie acts

as the eavesdropper (“Eve” in the wiretap setting), whereas for

the data intended for Charlie, Bob takes the role of Eve.

The capacity region of the Gaussian MIMO confidential

broadcast channel, a scenario considered first in [10], was

determined by Liu et al. [11] to be rectangular under the

covariance constraint (3). Namely, it is given by all rate pairs

(RB, RC) satisfying

RB ≤ CS

(

HB,HC , K̄
)

, (8a)

RC ≤ CS

(

HC ,HB, K̄
)

, (8b)

where HC is the channel matrix to Charlie replacing HE

in (2b), and CS(HB,HC , K̄) is the capacity of the MIMO

wiretap channel defined in (4). The converse is immediate,

as both users achieve their maximal possible secrecy rates

simultaneously; it is the direct part that is quite striking.

Although capacity is well understood, it is less clear how to

construct codes for wiretap and confidential broadcast chan-

nels. For the scalar Gaussian case, various approaches have

been suggested, see, e.g., [12]–[18] and references therein.

However, assuming that we have such a code for the scalar

case, it is not clear how to construct a capacity-achieving

scheme for the MIMO setting.

In this work we present an approach that reduces these

MIMO secrecy problems to scalar Gaussian ones by means

of matrix decompositions, specifically joint unitary triangu-

larizations [19]. The decompositions yield a layered coding

scheme, where the secrecy capacity is approached by means

of a scalar wiretap code in each layer and successive inter-

ference cancellation (SIC) at the receiver. The contribution

of such an approach to the MIMO wiretap channel can be

compared to that of singular-value decomposition (SVD) based

schemes [20], or Vertical Bell-Laboratories Space–Time (V-

BLAST) and decision feedback equalization (GDFE) schemes

[21]–[24], to MIMO communication without secrecy con-

straints.

Beyond the architectural merit, our approach yields two

more fruits. First, it enables us to revisit the capacity results

for the MIMO wiretap and confidential MIMO broadcast

channels. In that respect, we establish the optimal covariance

matrix for the MIMO wiretap channel as well as an expression

for the secrecy capacity in terms of the generalized singular

values of suitably defined matrices. This re-derives a result by

Bustin et al. [7], which was based on elaborate information-

theoretic considerations, using a direct linear-algebraic ap-

proach. Turning to the confidential broadcast channel, we are

able to re-derive (8) almost as a corollary of the analysis

applied to the MIMO wiretap channel, also explaining the role

of dirty-paper coding in this setup.

Second, reducing the MIMO problem to a scalar one allows

us to leverage recent advances in the secrecy analysis of

the scalar Gaussian wiretap channel: whereas we concentrate

in this paper on constructing weak secrecy schemes, namely

schemes for which

I (xn;yn
B) ≤ nǫ, (9)

we show that in fact a special matrix triangularization allows

to achieve strong secrecy guarantees for the MIMO wiretap

channel, i.e.,

I (xn;yn
B) ≤ ǫ, (10)

where both (9) and (10) hold for any ǫ > 0 and large enough

blocklength n.

An outline of this paper is as follows. We start by reviewing

the relevant unitary matrix decompositions in Section II.

These decompositions are used to re-derive the MIMO wiretap

capacity expressions in Section III. We further recall how these

decompositions allow to construct capacity-achieving schemes

for the MIMO channel without secrecy in Section IV. We

extend this framework to work for the MIMO wiretap setting

in Section V. Layered dirty-paper coding (DPC) [25] variants

of this scheme are discussed in Section VI and are also shown

to be capacity achieving. Finally, these schemes are utilized,

along with the results of Section III, to construct a simple proof

of the capacity region of the confidential MIMO broadcast

setting as well as providing a layered-DPC scheme that attains

it in Section VII.

II. UNITARY MATRIX TRIANGULARIZATION

In this section we briefly review some important matrix de-

compositions which will be used in the sequel. In Section II-A

we recall the generalized triangular decomposition (GTD),

and some of its important special cases which include the

SVD, QR decomposition, and geometric mean decomposition

(GMD).2 Joint unitary triangularizations of two matrices are

discussed in Section II-B.

Throughout this paper, we shall only need to decompose

full-rank matrices with equal or more rows than columns.

A. Single Matrix Triangularization

The following definitions are used in this section.

Definition 1 (Multiplicative majorization; see [27]). Let x

and y be two N -dimensional vectors of positive elements.

Denote by x̃ and ỹ the vectors composed of the entries of x

and y, respectively, ordered non-increasingly. We say that x

majorizes y (x � y) if they have equal products:

N
∏

j=1

xj =
N
∏

j=1

yj ,

and their (ordered) elements satisfy, for any 1 ≤ ℓ < N ,

ℓ
∏

j=1

x̃j ≥
ℓ
∏

j=1

ỹj .

Definition 2 (Singular values; see [28]). Let A be a full-rank

matrix of dimensions M × N , where M ≥ N . Then, the

2See [26] for a geometrical interpretation of these decompositions.
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singular values (SVs) of A are the positive solutions σ of the

equation
∣

∣A†A− σ2I
∣

∣ = 0.

Let the SV vector σ(A) be composed of all SVs (including

their algebraic multiplicity), ordered non-increasingly.

The following is a straightforward extension of the defini-

tion of triangular matrices to non-square ones.

Definition 3 (Generalized Upper-Triangular Matrix). An

M ×N matrix is said to be generalized upper triangular if

Ti,j = 0 , ∀i > j ; i = 1, . . . ,M ; j = 1, . . . , N.

We use these definitions to characterize the set of all

possible diagonals achievable via unitary triangularization, as

follows.

Theorem 1 (Generalized Triangular Decomposition). Let A

be a full-rank matrix of dimensions M ×N , where M ≥ N ,

and t be an N -dimensional vector of positive elements. A GTD

of the matrix A is given by

A = UTV†, (11)

where U and V are unitary matrices of dimensions M×M and

N ×N , respectively, and T is a generalized upper-triangular

matrix with a prescribed set of diagonal values t, i.e.,

Tii = ti , i = 1, . . . , N ,

Tij = 0 , ∀i > j .

Such a decomposition exists if and only if the vector t is

majorized by σ(A):

σ(A) � t .

In other words, the singular values are an extremal case for

the diagonal of all possible unitary triangularizations.

The necessity of the majorization condition was proven by

Weyl [29]. Horn further showed that for any r that is majorized

by σ, there exists an upper triangular matrix with diagonal r

and SV vector σ [30]. The sufficiency of the majorization

condition as it appears in Theorem 1 was proved in [31]–[33],

where also explicit constructions of the decomposition were

introduced.

We now recall three important special cases of the GTD.

1) SVD (See, e.g., [28]): Here the resulting matrix T in

(11) is a diagonal matrix, and its diagonal elements are equal

to the singular values of the decomposed matrix A.

2) QR Decomposition (See, e.g., [28]): In this decompo-

sition, the matrix V in (11) equals to the identity matrix and

hence does not depend on the matrix A. This decomposition

can be constructed by performing Gram–Schmidt orthonor-

malization on the (ordered) columns of the matrix A.

3) GMD (See [31], [34], [35]): The diagonal elements of

T in this decomposition are all equal to the geometric mean

of its singular values σ(A), which is real and positive. Note

that this decomposition always exists if A is full rank (since

the vector of the SVs of A necessarily majorizes the vector

of the diagonal elements of T), but is not unique.

B. Joint Matrix Triangularization

The existence condition for a joint unitary triangularization

of two matrices is similar to that of the GTD in Theorem 1,

where the singular values are replaced by the generalized

singular values (GSVs), and the diagonal of T is replaced by

the ratio of the diagonals of the resulting generalized triangular

matrices. These quantities are defined below.

Definition 4 (Generalized singular values [28], [36]). For any

(ordered) matrix pair (A1,A2), the GSVs are the non-negative

solutions µ of the equation
∣

∣

∣
A

†
1A1 − µ2A

†
2A2

∣

∣

∣
= 0.

Let the GSV vector µ(A1,A2) be composed of all GSVs (in-

cluding their algebraic multiplicity), ordered non-increasingly.

A characterization of the possible joint unitary triangular-

izations of two matrices with prescribed diagonal ratios is

provided in the following theorem.

Theorem 2 (Joint unitary triangularization [19]). Let A1 and

A2 be two full-rank matrices of dimensions M1 × N and

M2 × N , respectively, where M1,M2 ≥ N , and t be an

N -dimensional vector of positive elements. A joint unitary

triangularization of the matrices A1 and A2 is given by

A1 = U1T1V†, (12a)

A2 = U2T2V†, (12b)

where U1, U2 and V are unitary matrices of dimensions

M1 ×M1, M2×M2 and N×N , respectively, and T1 and T2

are generalized upper-triangular matrices (recall Definition 3)

with a prescribed set of diagonal ratios t, i.e.,

T1;ii

T2;ii
= ti , i = 1, . . . , N ,

Tk;i,j = 0 , k = 1, 2 , ∀i > j .

Such a joint decomposition exists if and only if the vector t is

majorized by the GSV vector µ(A1,A2):

µ(A1,A2) � t . (13)

In other words, the GSVs are an extremal case for the

diagonal ratios of all possible joint unitary triangularizations.

The joint unitary decomposition that corresponds to these

extremal values is the GSVD.

Following the exposition in [37], [38], we next review the

two forms of the GSVD — diagonal and triangular. The

diagonal representation of the GSVD is better known. For a

matrix pair (A1,A2) it is given by [28], [36]:

A1 = U1D1X
†, (14a)

A2 = U2D2X
†, (14b)

where U1 and U2 are unitary, X is invertible, and D1 and D2

are generalized diagonal matrices (viz., Dk;i,j = 0 for i 6= j,

where Dk;i,j is the (i, j) entry of Dk) with positive diagonal

values satisfying:

D
†
1D1 +D

†
2D2 = I, (15)
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the ratios of which are equal to the GSVs:

D1;ii

D2;ii
= µi (A1,A2) , i = 1, . . . , N,

and are assumed, w.l.o.g., to be ordered non-increasingly.

To obtain the triangular form of the GSVD, apply a QL

decomposition3 to X, to attain:

A1 = U1D1TV†

, U1T1V†, (16a)

A2 = U2D2TV†

, U2T2V†, (16b)

where T is upper triangular and V is unitary. By denoting

T1 , D1T and T2 , D2T, we attain the triangular form of

the GSVD, which is, in turn, a special case of (12).

III. THE MIMO WIRETAP CAPACITY REVISITED

In this section we re-derive the explicit capacity expression

of Bustin et al. [7] for the MIMO wiretap channel under

a covariance constraint (3) in terms of the GSVD. While

we do not establish a new capacity result, our approach of

simultaneous unitary triangularization will lead to a simplified

representation of the optimal covariance matrix as well as

layered coding schemes, as will be discussed in the subsequent

sections.

The following augmented matrix structure, which serves

as the MIMO channel analogue of the minimum mean

square error (MMSE) variant of decision feedback equalization

for linear time-invariant systems [39], will be instrumental

throughout this work.

Definition 5 (Effective MMSE channel matrix). Let H be a

channel matrix of dimensions NB × NA and let K be the

NA × NA input covariance matrix used over this channel.

Then, the corresponding effective MMSE channel matrix is

the (NA +NB)×NA matrix

G (H,K) ,

(

HK1/2

I

)

, (17)

where I is the identity matrix of dimension NA and K1/2 is

any matrix B satisfying BB† = K.4

This definition naturally lends itself to an MMSE (capacity-

achieving) variant of the V-BLAST/GDFE scheme [24], as will

be described in Section IV. See also [40], [19], [26] for further

explanations.

Construct the effective MMSE matrices GB = G(HB,K)
and GE = G(HE ,K), where K is subject to the constraining

matrix K̄ (3): K � K̄.

Now, apply some joint unitary triangularization (11):

GB = UBTBV
†
A , (18a)

GE = UETEV
†
A , (18b)

3This decomposition is similar to the QR decomposition, only instead of
an upper-triangular matrix, the resulting matrix is lower triangular. This can
be achieved, e.g., by applying Gram–Schmidt triangularization to the columns
of a matrix, from last to first.

4Such a B can always be constructed, e.g., using the Cholesky decompo-
sition or unitary diagonalization.

where UB , UE and VA are unitary, and TB and TE are

generalized upper triangular (recall Definition 3).

Let {bi} and {ei} denote the diagonal values of TB and

TE , respectively, where, as explained in Section II-B, these

values can be designed by varying VA. Using the fact that the

absolute value of a determinant of a unitary matrix is equal

to 1, and the fact that the determinant of a triangular matrix is

equal to the product of its diagonal values, the Gaussian MI

(6) can be expressed as:

I(HB,K) = log
∣

∣

∣
G

†
BGB

∣

∣

∣
(19a)

=
∑

log b2i , (19b)

and similarly for Eve:

I(HE ,K) = log
∣

∣

∣
G

†
EGE

∣

∣

∣

=
∑

log e2i .

Hence, their difference (5) is given by

IS(HB,HE ,K) =

NA
∑

i=1

log
b2i
e2i

. (20)

Note that the expression in (20) holds for any unitary matrix

VA in (18). Indeed, as we shall see later, this flexibility in

choosing VA can lead to different design tradeoffs in our

layered coding schemes. Nevertheless, to derive an explicit

capacity expression we specialize VA to be the right unitary

matrix of the GSVD (16), until the end of the section. The

corresponding GSVs are hence equal to

µi (HB,HE ,K) , µi (GB,GE)

=
bi
ei

,

where we use the notation µi (HB ,HE ,K) to emphasize the

dependence in K. Without loss of generality, we assume that

the GSV vector is non-increasing.

In terms of the GSVs, we can rewrite (4) as:

CS(HB,HE , K̄) = max
K�K̄

NA
∑

i=1

log µ2
i (HB ,HE ,K) .

Indeed, in these terms the MIMO wiretap capacity can be

expressed as follows.

Theorem 3 (MIMO wiretap capacity under a covariance con-

straint [7]). The secrecy capacity under a covariance matrix

constraint K̄ is given by

CS(HB,HE , K̄) =

NA
∑

i=1

[

logµ2
i

(

HB,HE , K̄
)]

+
(21a)

=

LB
∑

i=1

logµ2
i

(

HB,HE , K̄
)

. (21b)

This explicit capacity expression along with the optimal

covariance matrix K � K̄ were established by Bustin et al. [7]

using the channel enhancement technique along with vector

extensions of the mutual information–minimum mean-square

error (I–MMSE) relation. We present an alternative proof of
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this result using a direct approach: once the optimization

problem (4) is stated, it can be solved by linear algebra and

elementary calculus only. The key to our proof is the following

lemma.

Lemma 1. Let K̄ and K be two matrices satisfying

0 � K � K̄. Then for all i = 1, . . . , NA,

∣

∣logµi(HB,HE , K̄)
∣

∣ ≥ |logµi(HB,HE ,K)| .

That is, as we “decrease” the input covariance, the GSVs

move towards µi = 1. The proof, which appears in Ap-

pendix A, uses standard matrix calculus to show that the

differential of the i-th GSV, dµi, with respect to a change

in the covariance matrix dK, is given by

dµi =
(

µ2
i − 1

)

· γi(dK) ,

where γi(dK) ≥ 0 for dK � 0. Or to put it differently, dµi > 0
for µi > 1, and dµi < 0 for µi < 1.

By Lemma 1, clearly Theorem 3 gives an upper bound on

the capacity. To see that it is achievable, consider the matrix:

K = K̄
1/2

VAIBV
†
AK̄

1/2†
, (22)

where VA is the right unitary matrix of the triangular form

of the GSVD (16), IB is a diagonal matrix whose first LB

diagonal values (corresponding to GSVs that are greater than

1) are equal to 1, and the remaining LE — to 0. Trivially,

K � K̄. The choice of K effectively truncates the GSVs of K̄:

logµ2
i (HB,HC ,K) =

[

logµ2
i

(

HB ,HC , K̄
)]

+
.

This is formally proved in Appendix B.

Remark 1. The optimal covariance matrix K (22) is denoted

by K∗
x in [7], where it is given in terms of the diagonal form

of the GSVD (14):5

K = K̄
1/2

Y

[

(

Y
†
BYB

)−1

0LB×LE

0LE×LB
0LE×LE

]

Y†K̄
†/2

, (24)

where Y = X−† and X is the right invertible matrix of (14),

YB is the sub-matrix composed of the first LB columns of Y,

and 0m×n denotes the all-zero matrix of dimensions m× n.

Comparing (22) and (24), it is evident that using the triangular

form of the GSVD indeed simplifies the representation over

using the diagonal one.

Remark 2. One may wonder why, of all possible choices of

VA, the capacity is given in terms of the GSVD. An intuitive

reason is as follows. By the majorization condition (13), the

GSV vector is extremal among all possible diagonals. In

particular, for any VA,

NA
∑

i=1

[

logµ2
i

]

+
≥

NA
∑

i=1

[

log
b2i
e2i

]

+

.

Thus, the sum (21a) is larger than the sum over diagonal ratios

induced by other triangular decompositions.

5In [7] a specific choice of K1/2 was used: the matrix B that satisfies
BB = K.

Remark 3. Using (7), the capacity of the MIMO wiretap

channel under a power constraint P can be written as

CS(HB,HC , P ) = max
K:trace{K}=P

NA
∑

i=1

[

logµ2
i (HB,HC ,K)

]

+
.

Remark 4. For the optimal K (22), all the GSVs are greater

or equal to 1. To the contrary, assume that some are strictly

smaller than 1; then, we can use a matrix K with the

appropriate directions “nullified”. Such a “truncated” matrix

will satisfy the covariance constraint while improving the

achievable secrecy rate of the scheme, in contradiction to

the assumption. A fortiori, under a power constraint, the

power saved by such a truncation can be allocated to “useful”

directions.

IV. SCALAR TRANSMISSION OVER MIMO CHANNELS

In this section we briefly review the connection between ma-

trix decompositions and scalar transmission schemes, without

secrecy requirements. For a more thorough account, the reader

is referred to [19], [26], [40].

In this work we shall assume all the scalar codes to be

Gaussian, as defined next.

Definition 6 (Gaussian codebook). A Gaussian codebook

of length n, rate R and power P − ǫ, where ǫ > 0,

consists of
⌈

2nR
⌉

codewords of length n, denoted by

xn (1) , xn (2) , . . . , xn
(⌈

2nR
⌉)

. The entries of all the code-

words, {xt (i) |t = 1, . . . , n ; i = 1, . . . ,
⌈

2nR
⌉

}, are i.i.d.

with respect to a Gaussian distribution with zero mean and

variance P − ǫ.

Remark 5. In the sequel, with a slight abuse of notation, we

shall refer to such codes as Gaussian codes of power P (where

ǫ will serve as an implicit design parameter).

Consider the channel (2a). Construct the effective MMSE

matrix GB = G(HB,K) as in Definition 5, and choose some

unitary matrix VA.

Apply the GTD (11) to GB with VA as the right matrix:

GB = UBTBV
†
A. (25)

Now let x̃ be a vector of standard Gaussian variables, and set

x = K1/2VAx̃ . (26)

Denote by ŨB the NB×NA upper-left sub-matrix of UB , and

define

T̃B = Ũ
†

BHBK1/2VA. (27)

The following lemma, whose proof can be found in [24],

[40, Lemma III.3], [41, Appendix I], provides the connection

between the elements of TB and T̃B .

Lemma 2. Denote by [TB] the NA × NA upper-triangular

sub-matrix composed of the first NA rows of TB (25).6 Then,

T̃B (27) is equal to

T̃B = [TB]− [TB]
−†.

6Since TB is full rank, [TB] is full rank too, and hence also invertible.
Further, its diagonal elements are greater or equal to 1 due to the block I in
the construction of GB .
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In particular,

T̃B;i,j =

{

TB;i,j i < j

TB;i,j − 1/TB;i,j i = j
(28)

where TB;i,j and T̃B;i,j are the (i, j) entries of the matrices

TB and T̃B , respectively.

Let

ỹB = Ũ
†

ByB (29a)

= Ũ
†

BHBK1/2VAx̃+ Ũ
†

BzB (29b)

= T̃Bx̃+ z̃B . (29c)

Since ŨB is not unitary, the statistics of z̃B , Ũ
†

BzB differ

from those of zB , and its covariance matrix is given by

Kz̃B
, ŨBŨ

†

B . Now, for i = 1, . . . , NA, define [recall (28)]

y′B;i = ỹB;i −
NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ (30a)

= T̃B;i,ix̃i +

i−1
∑

ℓ=1

T̃B;i,ℓx̃ℓ + z̃B;i (30b)

, T̃B;i,ix̃i + zeff
B;i , (30c)

z̃B;i and zeff
B;i are the i-th entries of the vectors z̃B and zeff

B ,

respectively, and zeff
B;i ,

∑i−1
ℓ=1 T̃B;i,ℓx̃ℓ + z̃B;i is the resulting

total effective noise vector.

In this scalar channel from x̃i to y′B;i, resulting after the

subtraction of the previously recovered symbols {x̃ℓ|ℓ > i},

we view the remaining symbols {x̃ℓ|ℓ < i} as “interference”,

z̃B;i — as “noise”, and their sum zeff
B;i — as “effective noise”.

The resulting signal-to-interference-and-noise ratio (SINR) is

given by:

SINRB;i ,
(T̃B;i,i)

2

Kzeff
B
;i,i

,
(T̃B;i,i)

2

Kz̃B ;i,i +
i−1
∑

ℓ=1

(T̃B;i,ℓ)2
,

where Kzeff
B
;i,j and Kz̃B ;i,j denote the (i, j) entries of Kz̃B

and Kzeff
B

, respectively. The following key result achieves the

mutual information [24], [40, Lemma III.3], [41, Appendix I]

and is based on Lemma 2.7

I
(

x̃i;yB

∣

∣

∣
x̃NA

i+1

)

= I
(

x̃i; y
′
B;i

)

(31a)

= log(1 + SINRB;i) (31b)

= log
(

b2i
)

, (31c)

where {bi} are the diagonal values of TB (25) [mind the

difference from the diagonal values of T̃B (28)], which satisfy

b2i = 1 + SINRB;i (32)

7Note that, even though z̃B has dependent components, the entries of the
effective noise z

eff
B , are independent.

Encoder 1

Encoder NA

K
1/2
x

VA

x̃1

x̃NA

x1

xNA

(a) Transmitter

ˆ̃xNA

ˆ̃xNA−1

ˆ̃x2

ˆ̃x1

yNB

yNB−1

y1

ỹNA

ỹNA−1

ỹ1

y′NA

y′NA

y′1

Ũ
†

B

−
−−

−

Decoder NA

Dec. NA − 1

Decoder 1

TB;NA−1,NA

TB;1,NA

TB;1,NA−1

TB;1,2

(b) Receiver

Fig. 1: Layered-SIC scheme. ˆ̃xℓ denotes the decoded symbol

x̂ℓ at the receiver.

and

NA
∑

i=1

log
(

b2i
)

=

NA
∑

i=1

log (1 + SINRB;i)

= I(HB,K),

which equals the channel capacity for the optimal K.

The analysis above immediately gives rise to the following

scheme, depicted also in Fig. 1, which is, in turn, a variant of

the renowned V-BLAST/GDFE scheme [21]–[24].

Scheme (Layered-SIC).

Offline:

• Select an admissible NA × NA input covariance matrix

K that satisfies the input constraint.8

• Construct the effective MMSE matrix (17): GB =
G(HB,K).

• Select a unitary triangularization (11) and apply it to the

matrix GB , as in (25), to obtain the unitary matrices UB

and VA, and the generalized upper-triangular matrix TB .

• Denote the NA diagonal elements of TB by {bi}.

• Denote by ŨB the NB×NA upper-left sub-matrix of UB ,

and construct the corresponding matrix T̃B according to

(27): T̃B = Ũ
†

BHBK1/2VA.

8More generally, any number N ≥ rank{K} of scalar codebooks can be
used; see [40], [19] for details.
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Encoder 1

Encoder N

V̆A HE

HB

Ŭ
†

E

Ũ
†

B

SIC

Decoder

x̃1

x̃N

x1

x1

xN

xN

zE;1

zE;N

yE;1

yE;N

ỹE;1

ỹE;N

zB;1

zB;N

yB;1

yB;N

ỹB;1

ỹB;N

Alice

Bob

Eve
(a) Full scheme and channel

Encoder 1

Encoder N

x̃1

x̃N

z̃E;1

z̃E;N

ỹE;1

ỹE;N

d1

dN

(b) Equivalent channel to Eve. z̃E;1, . . . , z̃E;N are independent unit
power AWGNs.

Encoder 1

Encoder N

Decoder 1

Decoder N

x̃1

x̃N

z̃B;1

z̃B;N

y′B;1

y′B;N

√

b21 − 1

√

b2N − 1

(c) Equivalent channel to Bob assuming correct past decision at the SIC decoder
(which is achieved for a large enough blocklength n).

Fig. 2: Layered-SIC scheme for the MIMO wiretap channel. We assume here N = NA = NB = NE , for ease of presentation.

• Construct NA scalar Gaussian codes of length n and unit

power that are good for SNRs {b2i−1}, i.e., codes of rates

close to

{

Ri

∣

∣Ri = log
(

b2i
)

, i ∈ {1, . . . , NA}
}

. (33)

Alice: At each time instant t = 1, . . . , n:

• Forms the vector x̃ of length NA, by taking one sample

from each codebook.

• Attains the vector x by multiplying x̃ by VA and K1/2:

x = K1/2VAx̃. (34)

• Transmits x.

Bob:

• At each time instant t = 1, . . . , n, receives yB and forms

ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B .

• Decodes the n-length codewords using SIC, from last

(i = NA) to first (i = 1): Assuming correct decoding of

all codebooks i+ 1, . . . , NA, Bob forms y′B;i (30):

y′B;i = T̃B;i,ix̃i + zeff
i ,

and recovers x̃i.

By the analysis above, the scheme is optimal in the sense

that the sum of codebook rates can approach the channel

capacity.

Remark 6. The SIC procedure and the performance analysis

of the scheme implicitly assume that the yet-undecoded code-

books can be considered as AWGN, and consequently that

each codebook should be capacity achieving for an AWGN

channel. This is indeed true for Gaussian codes (recall Defi-

nition 6) but not for any single-user scalar capacity-achieving

codes as is discussed in Section VIII.

V. MULTI-STREAM SCHEMES FOR THE

MIMO WIRETAP CHANNEL

Equipped with the results presented in the previous sec-

tions, we describe how to construct multi-stream schemes that

achieve the capacity of the MIMO wiretap channel.

We first describe a scheme in which the channel to Eve

is effectively diagonalized, in Section V-A. This particular

choice facilitates the proof of both weak and strong secrecy

guarantees over this channel. We then extend this result in

Section V-B, by proving that any joint triangularization (12)

can be used to construct a multi-stream capacity-achieving

scheme.

A. Orthogonalizing Eve’s Channel

We now present a simple adaptation of the layered-SIC

scheme of Section IV to the MIMO wiretap setting, depicted
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also in Fig. 2, that achieves the secrecy capacity of the channel

using scalar wiretap codes.

To this end, we note that the layered-SIC scheme is

capacity-achieving (without secrecy constraints) for any choice

of VA in (25). In particular, we can choose this matrix to be

the unitary matrix that diagonalizes Eve’s effective channel

matrix, namely, the right matrix of the SVD of Eve, denoted

by V̆A:

HEK1/2 = ŬED̆EV̆
†

A . (35)

Applying this V̆A to HE (followed by K1/2) provides effective

parallel scalar independent channels to Eve, of SNRs {d2i },

where {di} are the diagonal values of DE , which constitute

the singular values of HEK1/2.

The following simple lemma summarizes the connection

between the SVDs of the effective channel matrix (35) and

the effective MMSE channel matrix GE(HE ,K).

Lemma 3 (Connection to effective MMSE matrix). The SVD

of the effective MMSE matrix GE = G(HE ,K) (recall

Definition 5) is given by

GE = UEDEVA, (36)

where DE is a generalized diagonal matrix (viz., DE;i,j = 0
for i 6= j); denote its diagonal elements by {ei}.

The SVD of GE (36) is connected to the SVD of HEK1/2

(35) as follows. Define di = 0 for i > NA, and note that

ei = 1 for i > NA. Define further ΛE as the generalized

diagonal matrix of dimensions NE × NA whose diagonal is

equal to
(

d1

e1
, . . . , dr

er

)

, where r = min{NA, NE}. Then,

1) V̆A = VA, i.e., GE and HEK1/2 are diagonalized by the

same right matrix.

2) 1 + d2i = e2i , i = 1, . . . , NA.

3) ŨE = ŬEΛE , where ŨE is the NE ×NA upper-left sub-

matrix of UE .

The respective decomposition of GB is as in (25), where the

diagonal values of the resulting generalized triangular matrix

TB are {bi}.

Since Eve observes parallel independent channels, using

scalar wiretap codes over these channels, that are matched to

the SNRs to Eve, {d2i }, guarantees the secrecy of the scheme.

Moreover, by using wiretap codes that work with respect to

the SNRs to Bob of (32), the secrecy capacity is achieved.

This is formally stated in the following theorem.

Theorem 4. The layered-SIC scheme of Section IV

achieves the secrecy capacity under a covariance constraint

CS (HB,HE K̄) by using:

• The optimal input covariance matrix K of (22).

• Choosing VA of the SVD of HEK1/2 (35).

• Scalar Gaussian capacity-achieving wiretap codes that

are designed for the Bob–Eve SNR-pairs
{(

b2i − 1, d2i
)}

.

Proof: The proof easily follows by noting that the result-

ing channel to Eve is diagonal, i.e., parallel scalar AWGN

channels. Hence, by using independent (wiretap) Gaussian

codes, secrecy is guaranteed over the parallel channels. By

combining the result of Section IV for SIC for MIMO channels

without secrecy, correct decoding at Bob’s end is guaranteed.

Codebook construction: NA Gaussian codebooks {Ck|k =
1, . . . , NA} of length n are generated independently, as

in Definition 6. Codebook Ck contains
⌈

2nRk

⌉

×
⌈

2nR̃k

⌉

codewords. Each codeword within Ck is assigned a unique

index pair (mk, fk), where mk ∈
{

1, . . . ,
⌈

2nRk

⌉}

and

fk ∈
{

1, . . . ,
⌈

2nR̃k

⌉}

. With a slight abuse of notation, we

shall refer to such codes as wiretap Gaussian codes of rate-

pairs
{(

Rk, R̃k

)}

.

Let ǫ > 0. Then the rates are chosen as9

Rk = log
b2k

1 + d2k
− 2ǫ = log

b2k
e2k

− 2ǫ, (37a)

R̃k = log(1 + d2k) + ǫ = log e2k + ǫ. (37b)

Encoding (Alice): Constructs NA codewords {x̃k ∈ Ck|k =
1, . . . , NA} as follows. x̃k is chosen from Ck according to the

sub-message mk intended to Bob and a fictitious sub-message

fk which is chosen uniformly at random. The transmitted

signal at every time instant, x, is then constructed as in the

layered-SIC scheme of Section IV.

Decoding (Bob): Bob performs SIC decoding as in the

layered-SIC scheme of Section IV to recover {(mk, fk)}, and

discards {fk}. Since Rk + R̃k < log b2k for every k, the

decoding error probability of Bob can be made arbitrarily

small by taking a large enough n.

Secrecy analysis (Eve): The resulting channel to Eve (35)

(depicted also in Fig. 2b) is diagonal:

ỹE = D̆Ex̃+ z̃E ,

where z̃E is AWGN with zero mean and identity covariance

matrix. That is, the effective channel to Eve comprises inde-

pendent AWGN channels. Over the resulting scalar AWGN

channels, wiretap Gaussian codes are known to attain strong

secrecy [42], where R̃k is chosen to be (slightly) above the

channel resolvability, i.e., R̃k = log(1 + d2k) + ǫ for ǫ > 0.

This is a stronger requirement, as opposed to the choice

R̃k = log(1 + d2k) − ǫ for ǫ > 0, which facilitates an easier

proof of weak secrecy guarantees for this channel (see, e.g.,

[43, Ch. 22]).

Total rate: By using (20), (37a), the total rate is equal to

R =

NA
∑

k=1

Rk

=

NA
∑

k=1

(

log
b2k
e2k

− 2ǫ

)

= IS (HB,HE ,K)− 2NAǫ.

By choosing the optimal K, and taking a large enough n, this

rate can be made arbitrarily close to the secrecy capacity CS

while guaranteeing both weak and strong secrecy.

Remark 7. In the proofs to follow, with a slight abuse of

notation, we shall state the sizes of the codebook without

9To establish weak secrecy, R̃k can be relaxed to R̃k = log e2k − ǫ. The
choice in (37b) allows to establish strong secrecy, as is further explained in
the sequel.
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explicitly using the ceiling operation ⌈·⌉, as its effect becomes

negligible for large values of n.

Remark 8. In the celebrated SVD-based scheme for MIMO

channels of Telatar [20], the SVD is applied to the physical

channel matrix H = UDV
†
A. The transmitted signal is then

formed according to (26), where the non-unitary matrix K1/2

(over the effective diagonal channel D) is diagonal, with

entries set by the water-filling solution. Thus, the SVD plays

two roles: it serves both for reducing the coding task to that of

coding over scalar channels and for constructing the optimal

input covariance matrix.

In contrast, in (35) the SVD is applied to the effective

channel matrix HEK1/2, which already includes the non-

unitary “coloring” part K1/2. Thus, it is only used for reducing

the coding task. This form is more general, in the sense that

it allows for a choice of K that is not related to a diagonal

decomposition of the channel, e.g., subject to individual power

constraints, or where the target expression is different, e.g., an

MI difference as in this work. Finally, note that the rate of

(20) can be achieved using the proposed scheme, even if K is

suboptimal (when exact calculation of the optimal K is hard).

B. General Multi-Stream Scheme

We next show that, in fact, secrecy capacity can be achieved

using the layered-SIC scheme and scalar wiretap codes for any

choice VA, and by this generalizing the result of Section V-A

to transmission that is not necessarily orthogonal over Eve’s

channel. Specifically, we show that the secrecy capacity can

be achieved using any joint triangularization of the effective

MMSE channel matrices (18) (any unitary matrix VA at

the encoder). In the general case, Eve’s resulting matrix is

triangular and hence denoted by TE , as in (18b). The diagonal

values of TE are denoted by {ei}. The resulting family of

schemes includes two important special cases, discussed in

Section V-C, in addition to the one introduced in Section V-A.

Theorem 5. The layered-SIC scheme of Section IV

achieves the secrecy capacity under a covariance constraint

CS (HB,HE K) by using:

• The optimal input covariance matrix K of (22).

• Any joint unitary triangularization (18).

• Scalar Gaussian capacity-achieving wiretap codes

that are designed for the Bob–Eve SNR-pairs
{(

b2i − 1, e2i − 1
)}

, where {bi} and {ei} are defined as

in Section III.

We use the following result, proved in Appendix C, for

the proof of this theorem, which extends beyond the Gaussian

wiretap setting, for both the discrete and the continuous cases.

Proposition 1. Let p(yB|x) and p(yE |x) be the transition

distributions for the legitimate user (“Bob”) and the eaves-

dropper (“Eve”), respectively, of a memoryless wiretap chan-

nel, where x is the transmitted signal, and yB and yE are the

channel outputs to Bob and Eve, respectively. Let a superposi-

tion coding scheme be defined by codes {x̃i : i = 1, . . . , NA}
and a scalar function ϕ such that

x = ϕ (x̃1, . . . , x̃NA
) . (38)

Then, for ǫ > 0, however small, and for any joint distribution

p(x̃1, . . . , x̃NA
), there exists a scheme which achieves weak

secrecy, with the k-th codebook conveying a rate:

Rk = I(x̃k; yB|x̃NA

k+1)− I(x̃k; yE |x̃NA

k+1)− ǫ. (39)

Remark 9. The secrecy-proof of this result uses a “genie-

aided” argument: in the mutual information of the k-th code-

word recovered by Eve, we provide all previous codewords

{x̃ℓ| ℓ = k + 1, . . . , NA} as “genie”, even though Eve

cannot recover these messages. Bob, on the other hand, uses

successive decoding to recover the messages. Thus, the allo-

cation of rates {Rk} in (39) guarantees that all the messages

(m1, ..mNA
) remain jointly secured from the eavesdropper’s

channel output sequence.

Proof of Theorem 5: We specialize the general su-

perposition coding framework of Proposition 1 to the linear

encoder structure and independent Gaussian distributions of

(x̃1, . . . , x̃NA
). Use

x = ϕ (x̃1, . . . , x̃NA
)

= K1/2VAx̃ ,

in (38), where the vector x̃ is composed of one symbol from

each codebook: x̃ = (x̃1, . . . , x̃k)
T .10

Each codebook is a scalar Gaussian wiretap codebook of

average unit power. The achievable secrecy rate of codebook

k = 1, . . . , NA is given by (39):

Rk = I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

− I
(

x̃k; yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ (40a)

= I
(

x̃k; y
′
B;k

)

− I
(

x̃k; y
′
E;k

)

− ǫ (40b)

= log
(

b2k
)

− log
(

e2k
)

− ǫ (40c)

= log
b2k
e2k

− ǫ , (40d)

where (40c) and (40b) are due to (31a) and (31c), respectively.

Thus, using the result of (20), we can achieve

R =
N
∑

k=1

Rk

=

N
∑

k=1

[

log
b2k
e2k

]

+

− ǫ

= IS (HB,HE ,K) ,

and for the optimal covariance matrix K the scheme ap-

proaches the secrecy capacity.

C. Important Special Cases

We now present “special” choices of VA which provide

various advantages.

1) Orthogonalizing Eve’s channel: The scheme of Sec-

tion V-A is a special case of proposed scheme in this sub-

section, since, as explained in Lemma 3, the unitary matrix

VA of the SVD of HEK1/2 is identical to that of the SVD of

GE (18b).

10Here, in contrast to Appendix C, boldface letters represent spatial vectors
and time indices are suppressed.
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2) Orthogonalizing Bob’s channel — Avoiding SIC: Per-

forming SIC adds complexity to the decoder, as well as

introduces potential error propagation. We can avoid this by

performing SVD with respect to Bob’s channel, as opposed to

Eve’s channel, as done in Section V-A. That is, choose VA

such that

GB = UBDBV
†
A,

where DB is diagonal. As happens with Eve in Section V-A,

Bob obtains a diagonal equivalent channel, where each sub-

stream can be decoded independently.

3) Avoiding individual bit-loading: When using (non-

secret) communication schemes based on SVD or QR, as in

the layered-SIC scheme, the effective sub-channel gains {bi}
are different in general. This requires, in turn, a bit-loading

mechanism and the design of codes of different rates matching

these gains. By using the GMD, described in Section II-A,

instead, a constant diagonal is achieved, which translates

into equal SNRs for all parallel channels. This suggests, in

turn, that bit-loading can be avoided altogether and that the

codewords sent over the resulting sub-channels can be drawn

from the same codebook.

A similar result can be achieved for the wiretap setting.

To this end we require the usage of a modular scheme that

transforms good AWGN codes of a rate close to log(b2)
for Bob into wiretap codes of rates close to {log(b2/e2i )}.

This way, after applying the GMD to GB , the same AWGN

codebook can be used over all sub-channels, where for each

sub-channel a different transformation into a wiretap code is

used, that depends on its effective SNR to Eve (e2i−1). Indeed,

such a modular approach exists; see Section VIII.

Remark 10. It is possible to use the same wiretap code without

assuming the modular wiretap code construction, by using a

joint matrix decomposition that achieves constant diagonals for

both triangular matrices simultaneously. A construction that

essentially achieves this property was proposed in [26].

VI. DIRTY-PAPER CODING BASED SCHEMES

In this section we construct the DPC counterparts of the

layered-SIC scheme for Gaussian MIMO channels with and

without secrecy constraints. In these variants the successive

decoding process of the scalar codes is replaced with a

successive encoding one; consequently, all (scalar) codebooks

can be recovered in parallel and independently of each other.

The latter makes these variants useful for more complex

settings, such as the confidential MIMO broadcast setting

treated in Section VII. We start by presenting the DPC-based

schemes without secrecy constraints, in Section VI-A. We

then construct a variant for the MIMO wiretap setting, in

Section VI-B, which again achieves the secrecy capacity of

the channel.

A. Without Secrecy Constraints

We now briefly review the DPC variant of the layered-SIC

scheme, which is based in turn on [44], [45] (see also [40]).

Scheme (Layered-DPC).

Offline:

• Select an admissible NA × NA input covariance matrix

K that satisfies the input constraint.

• Construct the effective MMSE matrix (17): GB =
G(HB,K).

• Select a unitary triangularization (11) and apply it to the

matrix GB , as in (25), to obtain the unitary matrices UB

and VA, and the generalized upper-triangular matrix TB .

• Denote the NA diagonal elements of TB by {bi}.

• Denote by ŨB the NB×NA upper-left sub-matrix of UB ,

and construct the corresponding matrix T̃B according to

(27): T̃B = Ũ
†

BHBK1/2VA.

• Construct NA scalar dirty-paper codes [25] of length n —

codes generated via random binning with respect to i.i.d.

Gaussian distributions. Codebook i (1 ≤ i ≤ NA) is

constructed for a channel with AWGN of unit power,

SNR (b2i − 1), interference [recall (28)]

NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ (41)

which is available as side information at the transmitter,

and rate Ri close to log(b2i ) [recall (33)].

Alice: At each time instant t = 1, . . . , n:

• Generates x̃i from last (i = NA) to first (i = 1), where

x̃i is generated according to the message to be conveyed

and the interference (41).

• Forms x̃ with entries {x̃i}.

• Attains the vector x by multiplying x̃ by VA and K1/2

as in (34).

• Transmits x.

Bob:

• At each time instant t = 1, . . . , n, receives yB and forms

ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B.

• Decodes the codebooks using dirty-paper decoders, where

x̃i is decoded from ỹB;i.

By using good dirty-paper codes, capacity is achieved; see,

e.g., [40].

We further note that codeword x̃i is recovered from ỹB;i

regardless of whether the other codewords {x̃j |j 6= i} were

recovered or not.

B. MIMO Wiretap Channel

By replacing the dirty-paper scalar codes in the layered-

DPC scheme of VI-A with scalar dirty-paper wiretap codes

[46], [47], a scheme that approaches the MIMO wiretap

secrecy capacity can be constructed.

Theorem 6. The layered-DPC scheme of Section VI-A

achieves the secrecy capacity under a covariance constraint

CS (HB,HE K̄) by using:

• The optimal input covariance matrix K of (22).
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• Any joint unitary triangularization (18).

• Scalar Gaussian dirty-paper wiretap codes, where the i-th
codebook (i = 1, . . . , NA) is designed for

– Bob’s SNR of (b2i − 1) and interference signal
∑NA

ℓ=i+1 TB;i,ℓx̃ℓ.

– Eve’s SNR of (e2i − 1).

– Rate close to Ri = log(b2i /e
2
i ).

We next prove the existence of such codes and consequently

also the result of Theorem 6.

Proof: The proof follows by a standard extension of the

proof of Theorem 5 to the dirty-paper case [25], [46], [47].

Codebook construction: For each k = 1, . . . , NA, we gen-

erate a codebook Ck of 2n(Rk+R̃k) sub-codebooks, where n is

length of the codewords. Each such sub-codebook is assigned

a unique index pair (mk, fk), where mk ∈ {1, 2, . . . , 2nRk}
and fk ∈ {1, 2, . . . , 2nR̃k}, and contains 2n[R

U

k
−(Rk+R̃k)]

codewords. Each codeword within codebook k is generated

independently in an i.i.d. manner with respect to a Gaussian

distribution p(uk) with parameters dictated by

uk = T̃B;k,kx̃k + αk

NA
∑

ℓ=k+1

T̃B;k,ℓx̃ℓ , (42a)

αk ,
b2k − 1

b2k
, (42b)

for zero mean unit power i.i.d. Gaussian random variables

{x̃k|k = 1, . . . , NA}.

Note that since in this case the interference (available as

side information to Alice) in sub-channel k is composed of

messages {xℓ|ℓ = 1, . . . , NA}, the information carried by the

sets {x̃ℓ|ℓ = 1, . . . , NA} and {uℓ|ℓ = 1, . . . , NA} is the same.

Let ǫ > 0. Then the rates are chosen as

Rk , I (uk;yB)− I
(

uk;yE , u
NA

k+1

)

− ǫ

=
[

I (uk;yB)− I
(

uk; u
NA

k+1

)]

− I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ

= I
(

x̃k;yB

∣

∣

∣
x̃
NA

k+1

)

− I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ

= log
b2k
e2k

− ǫ, (43a)

R̃k , I
(

uk;yE

∣

∣

∣
u
NA

k+1

)

− ǫ = I
(

x̃k;yE

∣

∣

∣
x̃
NA

k+1

)

− ǫ

= log e2k − ǫ, (43b)

RU
k , I (uk;yB)− ǫ

= log

(

b2k +

NA
∑

ℓ=k+1

|TB;k,ℓ|2
)

− ǫ . (43c)

Encoding (Alice): Encoding is carried in a successive

manner, from last (k = NA) to first (k = 1). Within codebook

k, the index of the sub-codebook to be used is determined

by the secret message mk and a fictitious message fk drawn

uniformly over their respective ranges. The codeword uk,

within sub-codebook (mk, fk) that is selected, is the one that

is jointly typical with the side information
∑NA

ℓ=k+1 T̃B;k,ℓx̃ℓ.

If no such codeword uk exists, then the first codeword is

selected.

Decoding (Bob): Bob recovers (mk, fk) using standard

dirty-paper decoding as in Section VI-A, and discards fk. The

error probability can be made arbitrarily small by taking a

large enough n.

Secrecy analysis (Eve): As in the proof of Proposition 1,

we provide {uℓ|ℓ = k+1, . . . , NA} as a genie for the secrecy

analysis of uk. By recalling that {x̃ℓ|ℓ = k + 1, . . . , NA} and

{uℓ|ℓ = k + 1, . . . , NA} carry the same information, and the

linear relation in the definition of uk (42a), the secrecy analysis

reduces to the analysis in the proof of Proposition 1, as appears

in Appendix C, specialized to the Gaussian case.

VII. CONFIDENTIAL BROADCAST AS A CONSEQUENCE

In this section we consider the two-user MIMO confidential

broadcast scenario. Namely, “Eve” is replaced with “Charlie”

in (2b), and the corresponding noise, output and channel

matrix are denoted by zC , yC and HC , respectively.

We next show that, under the covariance matrix constraint,

the rectangular capacity region (8), that was established in

[11], can be attained as a natural extension of the capacity

derivation for the MIMO wiretap channel and the layered DPC

scheme proposed in Sections III and VI, respectively.

A. Capacity Region

We saw in Section III that in order to achieve the secrecy

capacity where Charlie takes the role of Eve, the GSVD

needs to be applied to (GB,GC) and only the sub-channels

corresponding to GSVs that are greater than 1 (corresponding

to sub-channels with greater SNR to Bob than to Charlie) need

to be used, and the rest — nullified.

However, we note that, if we were interested in confidential

communication with Charlie rather than with Bob, we would

get the same solution with the roles of HB and HC reversed.

This, in turn, means inversion of the GSVs:

logµi(HC ,HB, K̄) = − logµi(HB ,HC , K̄).

In these terms, we can write the rectangular capacity-region

of the confidential broadcast channel (8), established first in

[11], as follows.

Theorem 7. The capacity region of the confidential MIMO

broadcast channel under an input covariance constraint K̄ is

given by all rates (RB, RC) satisfying:

RB ≤
NA
∑

i=1

[

logµ2
i

(

HB ,HC , K̄
)]

+
, (44a)

RC ≤
NA
∑

i=1

[

− logµ2
i

(

HB,HC , K̄
)]

+
. (44b)

Remark 11. Similarly to the MIMO wiretap channel, the

capacity region under a power constraint P is just the union

of all (rectangular) regions under a covariance constraint with

small enough trace.

The converse part of this result is trivial by Theorem 3,

since both users attain their individual secrecy capacities. For

the direct part, it is tempting to think that since different

GSVs are nullified for Bob and for Charlie, Alice can achieve
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their optimal rates simultaneously by communicating over

orthogonal “subspaces”. However, since the matrices TB and

TC are not diagonal, these “subspaces” are not orthogonal,

and some more care is needed.

To this end, in the next section we put into force the layered-

DPC scheme of Section VI, which allows to recover the

sub-message transmitted over each sub-channel independently,

without the recovery of other sub-messages (in contrast to the

layered-SIC scheme). This property is required by at least one

of the users — Bob or Charlie — as each of them recovers only

a subset of all the transmitted sub-messages. The derivation

of the scheme thus provides a constructive proof for the direct

part of Theorem 7, which is an alternative to the proof in [11].

B. Capacity Achieving Schemes

In view of Theorem 2 and the schemes developed for the

MIMO wiretap channel, the result of Section III has a rather

intuitive interpretation: VA of the GSVD is the precoding

matrix that designs the ratios between {bi} and {ci} to be

as large as possible ({ci} replacing {ei}), which corresponds

to maximizing the achievable secrecy rate to Bob. In order

to achieve Bob’s secrecy capacity, only the sub-channels for

which the secrecy rate is positive (bi > ci) need to be utilized.

Allocating the remaining sub-channels to Charlie, on the other

hand, attains Charlie’s optimal covariance matrix.

Combining the two gives rise to the following scheme,

which is a straightforward adaptation of the layered-DPC

scheme of Section VI for the wiretap channel.

Scheme (Confidential broadcast via layered-DPC).

Offline:

• Construct the effective MMSE matrix (17): ḠB ,

G(HB, K̄) and ḠC , G(HC , K̄), where K̄ is the

constraining matrix.

• Apply the triangular form of the GSVD (16) to

(ḠB, ḠC) as in (25), to obtain the unitary matrices

UB , UC and VA, and the generalized upper-triangular

matrices TB and TC .

• Denote the diagonal elements of TB and of TC by {bi}
and {ci}, respectively.

• Denote further the (first) number of indices for which

bi > ci by LB . The remaining LC = NA − LB indices

satisfy ci ≥ bi.
• Denote by ŨB the upper-left NB×LB sub-matrix of UB ,

and by ŨC — the upper-right NC × LC sub-matrix of

UC .

• Construct T̃B and T̃C as in (27):

T̃B = Ũ
†

BHBK1/2VA ,

T̃C = Ũ
†

CHCK1/2VA .

• Construct NA good scalar dirty-paper wiretap codes of

unit power and length n, denoted by {x̃i|i = 1, . . . , NA}
(with the time index omitted to simplify notation), gen-

erated via random binning with respect to i.i.d. Gaussian

distributions, as follows.

– The first LB codes are intended for Bob: Codebook

x̃i (1 ≤ i ≤ LB) of a rate close to Ri = log
(

b2i /c
2
i

)

is constructed for an AWGN channel to Bob of SNR

b2i − 1, and interference:

NA
∑

ℓ=i+1

TB;i,ℓx̃ℓ ,

and for an AWGN channel to Charlie of SNR c2i −1.

– The remaining LC codes are intended for Charlie:

Codebook x̃i (LB + 1 ≤ i ≤ NA) of a rate close

to Ri = log
(

c2i /b
2
i

)

is constructed for an AWGN

channel to Charlie of SNR c2i − 1 and interference:

NA
∑

ℓ=i+1

TC;i,ℓx̃ℓ ,

and for an AWGN channel to Bob of SNR b2i − 1.

Alice: At each time instant t = 1, . . . , n:

• Generates x̃i from last (i = NA) to first (i = 1), where

x̃i is generated according to the message to be conveyed

and the signals {x̃ℓ|ℓ = i+ 1, . . . , NA}.

• Forms x̃ with entries {x̃i}.

• Attains the vector x by multiplying x̃ by VA and K1/2

as in (34).

• Transmits x.

Bob:

• At each time instant t = 1, . . . , n, receives yB and forms

ỹB according to (29):

ỹB = Ũ
†

ByB

= T̃Bx̃+ z̃B.

• Decodes codebooks i = 1, . . . , LB using dirty-paper

decoders, where x̃i is decoded from ỹB;i.

Charlie:

• At each time instant forms

ỹC = Ũ
†

CyC

= T̃C x̃+ z̃C .

• Decodes codebooks i = LB + 1, . . . , NA using dirty-

paper decoders, where x̃i is decoded from ỹC;(i−LB).

The following theorem proves that this scheme allows both

users to attain their respective secrecy capacities simultane-

ously, providing a proof for Theorem 7.

Theorem 8. The layered-DPC confidential broadcast scheme

achieves the secrecy capacity region under a covariance

constraint (44) by:

• Using scalar Gaussian dirty-paper wiretap codes in-

tended for Bob, as follows, where the i-th codebook

(i = 1, . . . , LB) is designed for:

– Bob’s SNR of (b2i − 1) and interference signal
∑NA

ℓ=i+1 TB;i,ℓx̃ℓ.

– Charlie’s SNR of (c2i − 1).

– Rate close to Ri = log(b2i /c
2
i ).

• Using scalar Gaussian DPC wiretap codes intended for

Charlie, as follows, where the i-th codebook (i = LB +
1, . . . , NA) is designed for:
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– Charlie’s SNR of (c2i − 1) and interference
∑NA

ℓ=i+1 TC;i,ℓx̃ℓ.

– Bob’s SNR of (b2i − 1).

– Rate close to Ri = log(c2i /b
2
i ).

Proof sketch: We start by noting that since the capacity

region is rectangular, it suffices to show how to approach the

corner point of this region. The proof relies on the fact that

in the layered-DPC scheme for the MIMO wiretap channel

of Section VI, each sub-codebook is recovered independently,

regardless of the other sub-codebooks. Hence, the proof of the

decodability and secrecy analysis for Charlie are the same as

in the proof of Theorem 6 (with Charlie being the “legitimate”

user). In the treatment for Bob, a small variation is needed:

the interference over sub-channel i (1 ≤ i ≤ LB) is composed

of both, messages intended for Charlie, x̃NA

LB+1, and messages

intended for Bob, x̃LB

i+1. Thus, the DPC for Bob is carried with

respect to both of these interferences, and the decodability and

secrecy analysis follow as in the proof of Theorem 6.

Remark 12 (Replacing DPC with SIC). DPC was used in the

layered-DPC scheme for both users. However, in the proposed

scheme one may use SIC instead of DPC for Charlie, as

is done in the layered-SIC scheme for the MIMO wiretap

problem. Alternatively, by using lower-triangular matrices

instead of upper-triangular ones in (18) (which corresponds to

switching roles between Bob and Charlie in the construction

of the scheme), one can use SIC for Bob and DPC for Charlie.

This phenomenon was also observed by Liu et al. [11].

Unfortunately, this scheme does not allow, in general, to avoid

DPC for both of the users.

Remark 13 (Other choices of precoding matrices). In Sec-

tion V-C, different choices of VA were proposed for the

MIMO wiretap problem: diagonalizing either TB or TC ,

which corresponds to avoiding SIC by Bob or guaranteeing

strong secrecy, respectively; or, by balancing all the SNRs

of the sub-channels to Bob, which allows using the same

codebook over all sub-channels and avoiding bit-loading / rate

allocation. The analog in the case of confidential broadcast can

be achieved by applying block diagonal unitary operations, in

addition to the matrix VA that is dictated by the GSVD, where

the blocks correspond to the sub-channels that are allocated to

Bob and to Charlie, of dimensions LB × LB and LC × LC ,

respectively. However, whereas we can avoid SIC and DPC

at Bob’s end in the layered confidential broadcast scheme by

diagonalizing his channel, we cannot achieve this result for

both Charlie and Bob simultaneously, as DPC needs to be

employed for at least one of the users.

VIII. DISCUSSION: FROM RANDOM ENSEMBLES TO

SPECIFIC CODES

In this work, we have demonstrated how scalar codes can

be used for some MIMO secrecy scenarios. Throughout the

work, we have assumed that these scalar codes are taken

from a random Gaussian ensemble, suitable in an appropriate

sense (with or without secrecy constraints, with or without side

information). One may be interested in a stronger result, where

any scalar codes that are good in the appropriate sense can

be used, without worrying about the way they were created.

Further, it is desirable to construct MIMO secrecy schemes

using any standard (non-secrecy) scalar codes that are good

for communication over the (non-secrecy) AWGN channel.

To that end, one may hope to combine the approach of the

current work with procedures that construct scalar wiretap

codes from non-secrecy ones, such as [12] (which is based

upon similar techniques for discrete wiretap channels proposed

in [48], [49]). Unfortunately, as we report in [50], there are

some obstacles.

Surprisingly, the problem lies already in the use of scalar

codes for MIMO communications without secrecy constraints.

Recall the V-BLAST/GDFE schemes presented in Section IV

and depicted in Fig. 1. Such schemes are widely accepted

in the literature as capacity achieving, without proposing

any treatment or analysis for specific codes. In practice,

such schemes are used in conjunction with arbitrary scalar

codebooks, e.g., one-dimensional constellations with some

error-correction code [27]; however, the combination does not

necessarily approach capacity even if the individual codes do.

Indeed, for some specific channel matrices, the scheme might

perform very poorly. To see this, consider (30). This is a

multiple-access channel (MAC) from the inputs x̃1, . . . , x̃i to

the output y′B;i. The SIC decoder treating all inputs as noise is

equivalent to a stage of a successive-decoding procedure for

the MAC. For the MAC, in turn, not any collection of good

AWGN codes achieves capacity (see, e.g., [51]). For example,

assume that a MAC is given by

yB = x1 + x2 + z.

Now further assume that the two codebooks are nested lattices.

In that case (up to shaping), any possible point of x1 + x2 is

also a point of the higher-rate code, thus one codebook cannot

be decoded without the other. The problem is not restricted to

integer coefficient ratios but affects performance for coeffi-

cients close to any “simple” ratio; see, e.g., [52, Section III].

Returning back to the multi-stream schemes for the MIMO

wiretap setup of Section V, the decoder of Bob will also

incur the same difficulty discussed above when generalizing

to arbitrary scalar codes. Furthermore, the same issue arises

in our secrecy analyses (except when Eve’s channel is or-

thogonalized, as in Section V-A): We successively provide

Eve with previous messages as a “genie” side information.

As a result the proof hinges on Eve’s disability to perform

a successive decoding process in the presence of interference

from yet undecoded messages. Here also this interference is

taken to be Gaussian and alignment might help Eve.

To conclude, of the two ingredients needed for adjusting

any codes that are good for communication over scalar AWGN

channels to the MIMO wiretap channel, the secrecy part can

be treated by the procedure of [12]. The remaining problem is

similar to the one in SIC without secrecy constraints. Indeed,

obtaining good scalar Gaussian codes that approach capacity

under SIC (without secrecy) from arbitrary scalar Gaussian

codes remains an interesting open problem.
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APPENDIX A

PROOF OF LEMMA 1

The following proposition will be used in the proof of

Lemma 1.

Proposition 2. Let A1 and A2 be m1×n and m2×n full-rank

matrices, respectively, where m1 ≥ n and m2 ≥ n. Consider

the generalized eigenvalue (GEV) problem:

A
†
1A1y = λA†

2A2y .

Then, the generalized eigenvalues of (A†
1A1,A

†
2A2), {λi},

are the GSVs of (A1,A2), {µi}, and the generalized eigen-

vectors are the corresponding columns of

Y = X−†.

Furthermore, the differential of the GEV λ in terms of the

differentials of A
†
1A1 and of A

†
2A2 is given by

dλ =
y†
(

d(A†
1A1)− λd(A†

2A2)
)

y

y†A
†
1A1y

. (45)

Proof: The first part of the proposition easily follows from

G
†
BGBY = XD2

B ,

G
†
EGEY = XD2

E .

The proof of the differential identity (45) can be derived by

standard eigenvalue perturbation analysis; see, e.g., [53].

Consider now the diagonal variant of the GSVD of GB =
G(HB,K) and GE = G(HE ,K) (14):

GB = UBDBX
†, (46a)

GE = UEDEX
†, (46b)

and denote the squared GSV vector by λ, i.e., the vector whose

entries satisfy:

λi , µ2
i .

Note further that 0 < µi, λi < ∞, since GB and GE are of

full rank [recall (17)].

Following (20), the MI difference in terms of {λi} is equal

to

IS(HB,HE ,K) =
∑

logλi .

By applying the result of Proposition 2 to the effective

channel matrices of (46), we obtain the following lemma.

Lemma 4. The differential of the GSV λi (i = 1, . . . , NA), in

terms of the differential of the covariance matrix K, is given by

e2i dλi = (λi − 1)y†
iB−1(dK)B−†yi ,

where B = K1/2, e is the diagonal of DE , and yi is the

corresponding generalized eigenvector corresponding to λi.

Proof: Perturbing K results in the following differentials

of G
†
BGB and G

†
EGE (46) :

2d(G†
BGB) = B−1(dK)H†

BHBB + B†H
†
BHB(dK)B−†,

(47a)

2d(G†
EGE) = B−1(dK)H†

EHEB + B†H
†
EHE(dK)B−†.

(47b)

Substituting (47) in (45), gives rise to

2e2idλi = y
†
i

(

B−1(dK)(H†
BHB − λiH

†
EHE)B

+ B†(H†
BHB − λiH

†
EHE)(dK)B−†

)

yi

= y
†
i

(

B−1(dK)B−†B†(H†
BHB − λiH

†
EHE)B

+ B†(H†
BHB − λiH

†
EHE)BB−1(dK)B−†

)

yi

= 2(λi − 1)y†
iB−1(dK)B−†yi ,

as desired.

Corollary 1. If dK is positive semidefinite, then the sign of

dλi equals the sign of λi − 1.

The result of Lemma 1 follows immediately from this

corollary.

APPENDIX B

TRUNCATION OF GENERALIZED SINGULAR VALUES

Apply the triangular variant of the GSVD (16) to the

matrices GB = G(HB,K) and GE = G(HE ,K), as in (17)

and (18):

GB ,

(

HBK1/2

I

)

= UBDBTV
†
A , (48a)

GE ,

(

HEK1/2

I

)

= UEDETV
†
A . (48b)

Using any unitary matrix Q instead of I in the definition of

GB and GE , has no effect on the resulting matrices VA, T,

DB and DE :
(

HBK1/2

Q

)

= U
Q
BDBTV

†
A ,

(

HEK1/2

Q

)

= U
Q
EDETV

†
A .

Furthermore, the upper-left NB × NA and NB × NE of the

resulting left unitary matrices U
Q
B and U

Q
E , respectively, are

equal to those of UB and UE of (48).

Using the last observation with Q = V
†
A and (48) for the

matrices

GV
B ,

(

HBK1/2VA

I

)

=

(

HBK1/2

V
†
A

)

VA ,

GV
E ,

(

HEK1/2VA

I

)

=

(

HEK1/2

V
†
A

)

VA ,

gives rise to the GSVD of GV
B and GV

E :

GV
B , UV

BDBT , (49a)

GV
E , UV

EDET , (49b)

where UV
B and UV

E are unitary (and their NB ×NA and NE×
NA upper-left sub-matrices are equal to those of UB and UE ,

respectively).

That is, the GSVD of GV
B and GV

E is achieved by applying

a QR decomposition to each of them.
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The representation in (49) allows us to incorporate a trun-

cation operation:

G′
B ,

(

HBK1/2VAIB
I

)

= U′
BD

′
BT′ (50a)

G′
E ,

(

HEK1/2VAIB
I

)

= U′
ED

′
ET′ , (50b)

where U′
B and U′

E are unitary having the same first LB

columns as UV
B and UV

E , respectively; T′, D′
B and D′

E have

the same first LB columns as T, DB and DE , respectively,

whereas the remaining LE = NA − LB columns are all zero

except for the diagonal elements, which are equal to 1:

D′
B;i,j = D′

E;i,j = T ′
i,j = 1, i = j, j > LB ;

D′
B;i,j = D′

E;i,j = T ′
i,j = 0, i 6= j, j > LB .

The latter is easily seen by noting that the QR decomposition

carries out a Gram–Schmidt process over the columns of

the decomposed matrices, and hence the first LB columns

remain the same after applying IB , whereas the structure of

the remaining columns is trivial due to the nullification of the

last LE columns of HBK1/2VA.

We note that (50) is the GSVD of G′
B and G′

E up to the

normalization property (15), which has no effect on the GSVs

and can be achieved by a multiplication by an NA × NA

diagonal matrix with its first LB entries equal to 1 and the

remaining entries — to 1/
√
2.

The desired result is established by noting that K1/2 =

K̄
1/2

VAIB , and that the first LB GSVs of (G′
B,G

′
E) are equal

to the first LB GSVs of (GB ,GE) (the GSVs that are greater

than 1) and the remaining GSVs of (G′
B,G

′
E) are equal to 1.

APPENDIX C

PROOF OF PROPOSITION 1

In this appendix, with a slight abuse of notation, we denote

by boldface letters n-length sequences, with n being the block

length (in contrast to the other parts of the paper, where

boldface letters denote spatial vectors).

Proof of Proposition 1: Denote

R̃k , I(x̃k; yE |x̃NA

k+1)− ǫ. (51)

The codebooks are generated sequentially, from last (k =
NA) to first (k = 1), as follows. For k = NA, construct

the codebook CNA
of 2n(RNA

+R̃NA
) codewords, that are

generated independently with i.i.d. entries with respect to

p (x̃NA
). For k ∈ {1, . . . , NA − 1}, for each (already gen-

erated) codeword set (x̃k+1, . . . , x̃NA
) ∈ Ck+1 × · · · × CNA

,

generate a codebook of 2n(Rk+R̃k) codewords with re-

spect to
∏n

i=1 p (x̃k|x̃k+1(i), . . . , x̃NA
(i)), where x̃ℓ(i) is the

i-the letter of the codeword x̃ℓ. Within each codebook,

each codeword is assigned a unique index pair (mk, fk)

where mk ∈ {1, 2, . . . , 2nRk} and fk ∈ {1, 2, . . . , 2nR̃k}.

Each codeword is selected according to the secret mes-

sage mk and a fictitious message fk drawn uniformly

over its range. The transmitted codeword is therefore

x = ϕ (x̃1(m1, f1), . . . , x̃NA
(mNA

, fNA
)). Bob’s decoding is

based on successive decoding starting from the last message

(k = NA) and proceeding to the first (k = 1).

Since

Rk + R̃k = I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

− 2ǫ (52a)

< I
(

x̃k; yB

∣

∣

∣
x̃
NA

k+1

)

, (52b)

the decoding of each combined message (mk, fk) succeeds

with arbitrarily high probability, as n → ∞.

In order to satisfy the secrecy constraint, the following

condition must hold, for any ǫ̃ > 0 and large enough n:

1

n
H (m1, . . . ,mNA

|yE ,C) ≥
1

n
H(m1, . . . ,mNA

)− ǫ̃ ,

where C = {C1, . . . ,CNA
} denotes the overall collection of

the NA codebooks.

It suffices to show that for any ǫ′ > 0, and large enough n,

1

n
H(mk|yE ,m

NA

k+1,C) ≥
1

n
H(mk)− ǫ′

is satisfied for each k.

Note that

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

mk

∣

∣

∣
yE , x̃

NA

k+1,C
)

= H
(

mk, x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

x̃k

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

= H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

−H
(

fk

∣

∣

∣
mk,yE , x̃

NA

k+1,C
)

.

Due to (51), in our construction the eavesdropper can decode

fk with probability going to 1, given
(

mk,yE , x̃
NA

k+1,C
)

, and

hence the second term is vanishingly small. Thus, we are left

with

H
(

mk

∣

∣

∣
yE ,m

NA

k+1,C
)

≥ H
(

x̃k

∣

∣

∣
yE , x̃

NA

k+1,C
)

− nǫ′n

= H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

−H
(

x̃k−1
1

∣

∣

∣
x̃NA

k ,yE ,C
)

− nǫ′n .

Since the two equivocations are the same quantity up to an

index shift, it suffices to show that for δ1 > 0 and δ2 > 0 that

vanish with ǫ and large enough n,

k
∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)]

− δ1 (53a)

≤ 1

n
H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

(53b)

≤
k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

+ δ2 . (53c)

To establish (53b) we use the fact that the sequences x̃ℓ are

selected independently given x̃NA

ℓ+1, so that, for large enough

n, the following chain of inequalities holds

H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,yE ,C
)

(54a)

= H
(

x̃k
1

∣

∣

∣
x̃NA

k+1,C
)

− I
(

x̃k
1 ;yE

∣

∣

∣
x̃NA

k+1,C
)

(54b)

=

k
∑

ℓ=1

[

H
(

x̃ℓ

∣

∣

∣
x̃NA

ℓ+1,C
)

− I
(

x̃ℓ;yE

∣

∣

∣
x̃NA

ℓ+1,C
)]

(54c)
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=

k
∑

ℓ=1

[

nI
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− 2ǫ− I
(

x̃ℓ;yE

∣

∣

∣
x̃NA

ℓ+1,C
) ]

(54d)

≥ n

k
∑

ℓ=1

[

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

− I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

− 3ǫ
]

, (54e)

where (54d) follows from (52a), and to establish (54e) we use

the fact that the channel is memoryless along with standard

typicality arguments [54].

To establish (53c), we use [55, Lemma 1], by substituting:

•S =

k
∑

ℓ=1

(

Rℓ + R̃ℓ

)

• u = x̃
NA

k+1

• v = x̃
k
1 • z = yE

•L , (mk
1 , f

k
1 ) ∈ [1, 2nS]

The conditions for the lemma hold since

H
(

x̃
k
1

∣

∣

∣
x̃
NA

k+1, yE ,C
)

= H
(

L
∣

∣

∣
x̃
NA

k+1, yE ,C
)

,

and

S =

k
∑

ℓ=1

(

Rℓ + R̃ℓ

)

(55a)

=

[

k
∑

ℓ=1

I
(

x̃ℓ; yB

∣

∣

∣
x̃
NA

ℓ+1

)

]

− 2ǫ (55b)

>

[

k
∑

ℓ=1

I
(

x̃ℓ; yE

∣

∣

∣
x̃
NA

ℓ+1

)

]

+ δ (55c)

= I
(

x̃
k
1 ; yE

∣

∣

∣
x̃
NA

k+1

)

+ δ , (55d)

where (55c) follows from the fact that the communication rate

Rℓ of each sub-channel must be positive (and ǫ and δ are small

enough, and n is sufficiently large), else it is not used. Since

we have proved (53b) and (53c), the secrecy analysis is now

complete.

Remark 14. For the special case of mutually independent

(x̃1, . . . , x̃NA
), there is no need to generate a different

codebook Ck for each selection of preceding codewords

(x̃k+1, . . . , x̃NA
), and the same codebook can be applied

regardless of the other codewords.
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