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» How fast the plant dynamic is = Control sampling rate Source—Channel Separation and Analog Codes

» Bandwidth available = Communication signaling rate
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» Communication rate can be much higher in practice
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» Suboptimal for control! :
Controller - : Observer » N Gaussian channel uses per one control sample How to generate a good code?
» Better alternative: Analog maps (no going through bits) _
Rate match (N = 1): One channel use per one control sample| » Tree codes proved to exist [Schulman IT'96]
» Linear analog transmission is optimal: a; = 1, > Non-constructive proof
Performance Comparison > Equality up to power adjustment (=known constant) » P.(t,d) - First-error prob. d steps back, at time ¢
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» Higher-order moments: Separation-based schemes faill
» Analog maps can stabilize all moments and guarantee a.s. stability! > Different parametrization (pre-map) further helps: s — |5

» Better curves can be devised
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