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Networked Control Setting and Approaches

Traditional versus Networked Control
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LQG Control over Gaussian Channels

Control rate 6= Communication rate!
I How fast the plant dynamic is ⇒ Control sampling rate
I Bandwidth available ⇒ Communication signaling rate
I Communication rate can be much higher in practice
I Assume N channel uses per one control sample
Scalar LQG system

xt+1 = αxt + ut + wt

Scalar Gaussian channel

bt = at

(
xt, ut−1

)
+ nt l N

Power constraint: E [a2
t ] ≤ NP

Plant
xt+1 = αxt + wt + ut

ObserverController +

xt

nt

wt

ut

atbt

Linear Quadratic Gaussian Control over Noisy Channels

xt+1 = αxt + ut + wt, wt ∼ i.i.d. N (0,W ) , |α| > 1
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Source–Channel Separation and Analog Codes

Com. is broken into two tasks→ Bits serve as an interface:
1) Quantization: Batch of control samples → Block of bits
2) Channel coding: Block of bits → Batch of channel inputs
I Breaks down design & analysis tasks into two simpler tasks
I Optimal when block lengths (=delay!) go to infinity
I Suboptimal for control!
I Better alternative: Analog maps (no going through bits)

Performance Comparison

I α = 1.2,W1 = 1,Qt ≡ 1,Rt = 0 Iα = 3,W1 = 1,Qt ≡ 1,Rt = 0

I Higher-order moments: Separation-based schemes fail!
I Analog maps can stabilize all moments and guarantee a.s. stability!
I Better curves can be devised

Applications: Cyber-Physical Systems and the Internet of Things

Self-Driving Cars

Small Satellites

Internet of Things

Remote Surgery

Neuroscience

Control over a Bit-Pipe

Channel = Finite-rate noiseless
ILog-concave PDF↘

Lloyd-Max Alg. optimal!

If (x1 − x̂1|x1 ∈ cell i)

Iα(x1 − x̂1) + w1
Convolution of log-concave PDFs

= log-concave!

ILog-concave PDF↘
Lloyd-Max Alg. optimal!

Joint Source–Channel Analog Code Design

I N Gaussian channel uses per one control sample

Rate match (N = 1): One channel use per one control sample

I Linear analog transmission is optimal: at = xt
. Equality up to power adjustment (=known constant)

I Conclusion: No coding is needed!

Rate mismatch: N = 2 channel uses per one control sample
I Linear scheme gains nothing over N = 1 case: SNReff = 2SNR /

I Info.-theoretic asymptopia (delay →∞): 1 + SNReff = (1 + SNR)2a1(s) = 1√
2s

a2(s) = 1√
2s

a1(s) = s cos(2s)
a2(s) = s sin(2s) sign(s)

I Different parametrization (pre-map) further helps: s→ |s|β

I Achieves SNReff ∝ SNR2⇒ Better stabilizability and cost

Channel Anytime-Reliable Tree Codes

How to generate a good code?
I Tree codes proved to exist [Schulman IT’96]
. Non-constructive proof

I Pe(t, d) - First-error prob. d steps back, at time t
I Has to drop faster than a2d [Sahai-Mitter IT’06]:

Pe(t, d) < A2−(2 logα+ε)d , ∀t,∀d
I Important step towards practicality ⇒ exist w.h.p.

[Sukhavasi-Hassibi AC’16]
How to decode?

I Optimal decoding is difficult ∼ O(2N)
I Sequential decoding [Wozencraft ’57]
I Guarantees [Jelinek’s Book ’68]
I Guarantees w.h.p. [Kh.-Halbawi-Hassibi ISIT’16]

Universality [Kh.-Halbawi-Hassibi, submitted IT’17]

I Guarantees w.h.p. ⇒ Universality w.r.t. channel
a1 = f1(w1)
a2 = f2(w1, w2)...
at = ft(w1, w2, . . . , wt)...


