Network Modulation:

Transmission Technique for MIMO Networks

Anatoly Khina

Joint work with:
Uri Erez, Ayal Hitron, Idan Livni - TAU
Yuval Kochman - HUJI
Gregory W. Wornell - MIT

ACC Workshop, Feder Family Award Ceremony February $27^{\text {th }}, 2012$

Talk Outline

- Novel MIMO multicast scheme
- Two-user: via new joint decomposition of two matrices
- Multi-user: via algebraic space-time coding structure
- Various applications
- New information-theoretic results

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast
Theory		
SISO		
MIMO		

Single-Input Single-Output (SISO) Unicast

$$
y=h x+z
$$

- x - Input of power 1
- y_{i}-Output
- h - Channel gain
- z - White Gaussian noise $\sim \mathcal{C N}(0,1)$
- Optimal communication rate (capacity): $C=\log \left(1+|h|^{2}\right)$
- Good practical codes that approach capacity are known!

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast	
Theory			
SISO			
MIMO			

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast	
Theory			
SISO			
MIMO			

Multiple-Input Multiple-Output (MIMO) Unicast

- x-Input vector of power $1 \cdot N_{t}$
- \mathbf{y} - Output vector
- H-Channel matrix
- $H_{k \ell}$ - Gain from transmit-antenna ℓ to receive-antenna k.
- z - White Gaussian noise $\sim \mathcal{C N}(\mathbf{0}, I)$
- Optimal rate (capacity): $C=\max _{C_{\mathbf{X}}} \log \left(1+H C_{\mathbf{x}} H^{\dagger}\right) \approx \log \left(1+H H^{\dagger}\right)$

MIMO Multicast (Closed Loop): State of the Art

| | Unicast | Multicast | |
| :--- | :---: | :---: | :---: | :---: |
| Theory | | | |
| | | | |
| SISO | | | |
| | | | |
| MIMO | | | |

SISO Multicast

- x - Input of power 1
- y_{i} - Output of user i
- h_{i} - Channel gain to user i
- z_{i} - White Gaussian noise $\sim \mathcal{C N}(0,1)$
- Optimal rate (capacity): $C=\min _{i} \log \left(1+\left|h_{i}\right|^{2}\right)$

MIMO Multicast (Closed Loop): State of the Art

Gaussian MIMO Multicast

- $\mathrm{x}-N_{t} \times 1$ input vector of power $N_{t} \cdot 1$
- \mathbf{y}_{i} - Output vector of user i
- H_{i} - Channel matrix to user i
- \mathbf{z}_{i} - White Gaussian noise vector $\sim \mathcal{C N}(\mathbf{0}, I)$
- "Closed loop" (Full channel knowledge everywhere)

Optimal Achievable Rate (Capacity)

Multicasting capacity

$$
\mathcal{C}=\max _{C_{X}} \min _{i=1, \ldots, K} \log \left\{\operatorname{det}\left(I+H_{i} C_{X} H_{i}^{\dagger}\right)\right\}
$$

- Optimization over covariance matrices C_{X} satisfying the power constraint

White Input / High SNR

$$
\mathcal{C}_{\mathrm{WI}} \approx \min _{i=1, \ldots, K} \log \left\{\operatorname{det}\left(I+H_{i} H_{i}^{\dagger}\right)\right\}
$$

Summary: Multicast is (Almost) Everywhere...

Unicast

$$
\mathbf{y}=H \mathbf{x}+\mathbf{z}
$$

White-input capacity

$$
\mathcal{C}_{\mathrm{WI}}=\log \left\{\operatorname{det}\left(I+H H^{\dagger}\right)\right\}
$$

- But how is this rate achieved?

Practical (Capacity-Achieving) Unicast Approaches

(Info. Theory) White-input capacity

$$
\mathcal{C}_{\mathrm{WI}}=\log \left\{\operatorname{det}\left(I+H H^{\dagger}\right)\right\}
$$

(Comm.) Achieving this rate with a practical scheme

- Singular value decomposition (SVD)
- QR decomposition (GDFE / V-BLAST)
- Geometric mean decomposition (GMD)
- Dirty-paper coding (DPC)

Practical (Capacity-Achieving) Unicast Approaches

(Info. Theory) White-input capacity

$$
\mathcal{C}_{\mathrm{WI}}=\log \left\{\operatorname{det}\left(I+H H^{\dagger}\right)\right\}
$$

(Comm.) Achieving this rate with a practical scheme

- Singular value decomposition (SVD)
- QR decomposition (GDFE / V-BLAST)
- Geometric mean decomposition (GMD)
- Dirty-paper coding (DPC)

Singular Value Decomposition (SVD)

$$
H=Q \wedge V^{\dagger}
$$

- Q, V - Unitary
- Λ - Diagonal
- Parallel AWGN SISO sub-channels \rightarrow "off-the-shelf" codes
- Diagonal of $\Lambda=$ SISO channel gains $\Rightarrow R_{i}=\log \left(1+\lambda_{i}^{2}\right)$

Generalization to Multicast?

- Precoding matrix V depends on channel matrix H
- Which V to take??
- Bottleneck problem $\left(\Lambda_{1} \neq \Lambda_{2}\right)$

$$
H=Q T
$$

- Q - Unitary
- T - Upper-triangular matrix
- Successive interference cancellation
- Parallel AWGN SISO channels
- Diagonal of T - SISO channel gains

Remark

Both zero-forcing and MMSE (capacity-achieving) solutions exist.

QR Based Scheme

Scheme

- Channel: $\mathbf{y}=H \mathbf{x}+\mathbf{z}=Q T \mathbf{x}+\mathbf{z}$
- Transmitter: x - SISO codebooks
- Receiver: $\tilde{\mathbf{y}}=Q^{\dagger} \mathbf{y}=T \mathbf{x}+Q^{\dagger} \mathbf{z}$
- $\tilde{\mathbf{z}}=Q^{\dagger} \mathbf{z} \sim \mathcal{C N}\left(0, I_{N}\right)$

Example for 2×2

$$
\begin{aligned}
& \tilde{y}_{1}=[T]_{11} x_{1}+\overbrace{[T]_{12} x_{2}}^{\text {Interference }}+\tilde{z}_{1} \\
& \tilde{y}_{2}=0 x_{1}+[T]_{22} x_{2}+\tilde{z}_{2}
\end{aligned}
$$

QR Based Scheme

Generalization of QR based solution to Multicast?

- T depends on H.
- For two channel matrices H_{1} and H_{2} : $\operatorname{diag}\left(T_{1}\right) \neq \operatorname{diag}\left(T_{2}\right) \Rightarrow$ different sub-channel gains!
- Bottleneck problem:
- Info. Theory: $\sum_{j=1}^{N_{t}} \log \left(\left|\left[T_{1}\right]_{j j}\right|^{2}\right)=\sum_{j=1}^{N_{t}} \log \left(\left|\left[T_{2}\right]_{j j}\right|^{2}\right) \checkmark$
- Comm.: $R_{j}=\log \left(\left|\min \left\{\left[T_{1}\right]_{j j},\left[T_{2}\right]_{j j}\right\}\right|^{2}\right) \quad X$
- Can we have equal diagonals?

QR Based Scheme

Idea

- SVD uses both Q and V
- QR uses only Q
- Can V help in QR case to achieve equal diagonals?
- YES!

Illustrative Example

$$
H_{1}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \quad H_{2}=\left[\begin{array}{cc}
\sqrt{99} & 0
\end{array}\right]
$$

- $C_{1}^{\mathrm{WI}}=2 \log \left(1+3^{2}\right)=\log \left(1+(\sqrt{99})^{2}\right)=C_{2}^{\mathrm{WI}}$
- Send same signal over both antennas

Losses half of the rate at High SNR!

- What if we add a precoding matrix V ? How to choose V ?

Joint Equi-Diagonal Triangularization (JET)

Theorem [Kh., Kochman, Erez; Allerton2010, SP2012]

- H_{1} and $H_{2}-N \times N$ non-singular matrices
- $\operatorname{det}\left(H_{1}\right)=\operatorname{det}\left(H_{2}\right)$
- H_{1} and H_{2} can be jointly decomposed as:

$$
\begin{aligned}
H_{1} & =Q_{1} T_{1} V^{\dagger} \\
H_{2} & =Q_{2} T_{2} V^{\dagger}
\end{aligned}
$$

- Q_{1}, Q_{2}, V - unitary
- T_{1} and T_{2} are upper-triangular with equal diagonals

For $\operatorname{det}\left(H_{1}\right)>\operatorname{det}\left(H_{2}\right)$:

$$
\begin{aligned}
& H_{1}=\sqrt[N]{\operatorname{det}\left(H_{1}\right)} Q_{1} T_{1} V^{\dagger} \\
& H_{2}=\sqrt[N]{\operatorname{det}\left(H_{2}\right)} Q_{2} T_{2} V^{\dagger}
\end{aligned}
$$

Illustrative Example

Matrix V is applied to $\left[\begin{array}{c}H_{i} \\ I_{N_{t}}\end{array}\right]$ (MMSE variant):

$$
\begin{align*}
& \text { - } Q_{1}^{\dagger} Q_{1}=Q_{2}^{\dagger} Q_{2}=V^{\dagger} V=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \text { - } \operatorname{diag}\left(T_{1}\right)=\operatorname{diag}\left(T_{2}\right)=\left[\begin{array}{ll}
\sqrt{10} & \sqrt{10}
\end{array}\right]^{T}
\end{align*}
$$

Parallel SISO channels with equal gains for both users!

Network Modulation: MIMO Multicast Scheme

Transmitter:

Network Modulation: MIMO Multicast Scheme

Effective Channel:

$$
\begin{aligned}
\tilde{\mathbf{y}}_{i} & =T_{i} \tilde{\mathbf{x}}_{i}+\tilde{\mathbf{z}}_{i} \\
\tilde{\mathbf{z}}_{i} & =Q^{\dagger} \mathbf{z}_{i} \sim \mathcal{C N}(0, I)
\end{aligned}
$$

Network Modulation: MIMO Multicast Scheme

Receiver:

Extensions

Extension: Optimal MMSE (Capacity-Achieving) Scheme

- Holds for channel matrices of any dimension and rank (not equal between H_{1} and H_{2})
- Based upon an extension of the decomposition to non-square matrices
- Similar to the extension of V-BLAST from zero-forcing to MMSE
- For non-white input covariance matrix $C_{\mathbf{x}}$, decompose:

$$
\left[\begin{array}{c}
H_{i} C_{\mathbf{X}}^{1 / 2} \\
I_{N_{t}}
\end{array}\right]
$$

- Any number of codebooks \geq number of $T x$ antennas

Multiple Users

Problem

- We have used V to triangularize two matrices.
- What to do for more??

Is 2 just a bit more than 1 ?
 Or... Is 2 a simplified ∞ ?

- How one buys more degrees of freedom?
- And and what price?

Multiple Users

Problem

- We have used V to triangularize two matrices.
- What to do for more??

Is 2 just a bit more than 1?
 Or... Is 2 a simplified ∞ ?

- How one buys more degrees of freedom?
- And and what price?

Space-Time Coding to the Rescue!

Space-Time Coding Structure

$$
H_{i}=Q_{i} T_{i} V^{\dagger} \quad X
$$

- Bunch two channel uses together:

- \mathcal{H}_{i} have a block-diagonal structure.
- Use general $\mathcal{Q}_{i}, \mathcal{V}$ (not block-diagonal):

$$
\overbrace{\left(\begin{array}{cc}
H_{i} & \mathbf{0} \\
\mathbf{0} & H_{i}
\end{array}\right)}^{\mathcal{H}_{i}}=\left(\mathcal{Q}_{i}\right)\left(\mathcal{T}_{i}\right)(\mathcal{V})^{\dagger}
$$

- Exploiting off-diagonal Os enables JET of more users!

Space-Time Coding Structure

Space-Time Coding Structure

[Kh., Hitron, Erez ISIT2011][Livni, Kh., Hitron, Erez ISIT2012]

- Any number of users K
- Any number of antennas at each node
- Joint constant-diagonal triangularization of K matrices
- Process jointly N_{t}^{K-1} symbols
- Prefix-suffix loss of N_{t}^{K-1} symbols total
- Numerical evidence: Can be improved!

Applications

Gaussian Permuted Parallel Channels

- General channels: [Willems, Gorokhov][Hof, Sason, Shamai]

- Gains $\left\{\alpha_{i}\right\}$ are known
- Order of gains is not known at Tx, but known at Rx

Equivalent Problem

Be optimal for all permutation-orders simultaneously.

Gaussian Permuted Parallel Channels

Special case of MIMO multicasting problem!

n ! effective channel matrices:

$$
H_{i} \triangleq\left(\begin{array}{cccc}
\alpha_{\pi_{i}(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_{i}(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_{i}(n)}
\end{array}\right), \quad \begin{aligned}
& \boldsymbol{\pi}_{i} \in S_{n} \\
& i=1, \ldots, n!
\end{aligned}
$$

Optimal precoding matrices [Hitron, Kh., Erez ISIT2012]

- 2 gains: Hadamard/DFT; Single channel use
- 3 gains: DFT; Single channel use
- 4-6 gains: Quaternion-based matrices; Two channel uses

Gaussian Rateless (Incremental Redundancy) Coding

$$
y=\alpha x+z
$$

- α is unknown at $\mathbf{T x}$ but is known at $\mathbf{R x}$
- Rx sends NACKS/ACKS until it is able to recover the message
- Assume α can take only a finite number of values: $\alpha_{1}, \alpha_{2}, \ldots$
- Can be represented as a MIMO multicasting problem [Kh., Kochman, Erez, Wornell ITW2011]

Example $\alpha \in\left\{\alpha_{1}, \alpha_{2}\right\}, \alpha_{1}>\alpha_{2}$

- $C_{1}=2 C_{2}$
- Effective matrices: $H_{1}=\left(\begin{array}{cc}\alpha_{1} & 0\end{array}\right), H_{2}=\left(\begin{array}{cc}\alpha_{2} & 0 \\ 0 & \alpha_{2}\end{array}\right)$
- Coincides with the solution of [Erez, Trott, Wornell]
- Works for MIMO channels H_{1}, H_{2} (replacing α_{1}, α_{2})

Half-Duplex Relay

- Half-duplex: Relay can receive or transmit but not both
- Decode-and-forward implementation: "rateless relay"

Effective Matrices: [Kh., Kochman, Erez, Wornell ITW2011]
$\mathcal{H}_{1}=\left[\begin{array}{llll}\sqrt{P_{1}} h_{t, \text { rel }} & 0 & \cdots & 0\end{array}\right], \mathcal{H}_{2}=\left[\begin{array}{cccc}\sqrt{P_{1}} h_{t, r} & 0 & \cdots & 0 \\ 0 & \sqrt{P_{2}} h_{t, r} & \cdots & 0 \\ \vdots \sqrt{P_{\text {rel }}} h_{\text {rel }, r} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{P_{2}} h_{t, r} \\ & & \sqrt{P_{\text {rel }}} h_{\text {rel }, r}\end{array}\right]$

MIMO Two-Way Relay (New Achievable) [Kh., Kochman, Erez ISIT2011]

- Two nodes want to exchange messages via a relay

Node 2
(a) MAC Phase
(b) Broadcast Phase

MAC Phase

- Apply JET to H_{1} and H_{2} (roles of V and Q switched)
- Use dirty-paper coding to pre-cancel off-diagonal elements (Replaces successive interference cancellation of broadcast)

Broadcast (Multicast!) Phase

- Use previously discussed multicasting scheme

MIMO Multicasting of a Gaussian Source

[Kochman, Kh., Erez ICASSP2011][Kh., Kochman, Erez SP2012]

- Separation does not hold!
- Different triangularization is needed
- ($N_{t}-1$) sub-channels with equal diagonal values (last gain may differ)
- Combine with hybrid digital-analog scheme
- Decomposition possible under a "generalized Weyl condition"
- When decomposition is possible: New achievable distortion!
- For 2 transmit-antennas: Optimum performance!

Summary: Multicast is (Almost) Everywhere...

Even now, me talking to you...

