State-Dependent Channels with Composite State Information at the Encoder

Anatoly Khina, Tel Aviv University

Joint work with: Mustafa Kesal Uri Erez

October 17, 2011

Channel Model: Memoryless State-dependent Channel

Memoryless channel:

$$p(\mathbf{y}|\mathbf{x},\mathbf{s}) = \prod_{i=1}^{n} p(y_i|x_i,s_i).$$

"Memoryless" (i.i.d.) state sequence:

$$p(\mathbf{s}) = \prod_{i=1}^n p(s_i) \, .$$

E + 4 E +

State not Known

• Problem reduces to "regular" DMC:

$$p(y|x) = \sum_{s \in S} p(s)p(y|x, s)$$
$$p(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i).$$

• Capacity [Shannon '48]: $\max_{p_x} I(X; Y)$

State Known at the Receiver

- State (S) available at Rx can be regarded as part of output.
- Define $\tilde{Y} = (Y, S)$. \downarrow Channel from X to \tilde{Y} with no state available at Rx.
- No special treatment is required for state available at Rx.

State Known at the Transmitter

Causal state knowledge [Shannon '58]

• $x_i = \operatorname{func}(w, s_1^i) - \operatorname{at} \operatorname{time} i$, only states s_1, \ldots, s_i are known.

Capacity: max_{p(t)} I(T; Y) ,

where $t : S \to X$, i.e., mappings x = t(s).

• Equivalent representation: $\max_{p(u),x(u,s)} I(U; Y)$

(U is independent of S)

State Known at the Transmitter

Non-causal state knowledge [Gel'fand & Pinsker '80]

- $x_i = \operatorname{func}(w, s_1^n) \operatorname{at} \operatorname{time} i$, all states s_1, \ldots, s_n are known.
- **Capacity:** $\max_{p(u|s),x(u,s)} I(U;Y) I(U;S).$
- In terms of "Shannon strategies": $x = t_s(s)$.

(here random strategy t depends on s)

• Achievable using "random-binning".

NC knowledge with limited look-ahead [Weissman & El Gamal '06]

• Limited look-ahead k.

•
$$x_i = \operatorname{func}\left(w, s_1^{i+k}\right)$$
 – at time *i*, states s_1, \ldots, s_{i+k} are known.

イロン 不同と 不同と 不同と

э

Composite State Known at the Transmitter

Observations

- Achievables of causal and non-causal cases can be derived in the same way.
- Converses of causal and non-causal cases are similar and can be combined.

State with parts known at Tx causally and non-causally

•
$$S = (^{c}S, ^{nc}S).$$

- ^{c}S known *causally* at Tx.
- ${}^{nc}S$ known *non-causally* at Tx.
- Capacity: $C = \max_{p(u|n^{c}s), x(u,n^{c}s,s)} [I(U;Y) I(U;n^{c}S)].$
- U is independent of ^cS given ${}^{nc}S$.

Converse

$$n(R-\epsilon_n) \stackrel{\text{Fano}}{\leq} I(W;Y_1^n) = \sum_{i=1}^n I(W;Y_i|Y_1^{i-1}) \leq \sum_{i=1}^n I(W,Y_1^{i-1};Y_i)$$

Shannon (causal)

•
$$U_i \triangleq (W, Y_1^{i-1}).$$

- Causality ∜
 - U_i is independent of S_i .

$$\sum I(W, Y_1^{i-1}; Y_i)$$

$$= \sum I(U_i; Y_i)$$

$$\leq n \max_{p(u), p(x|u,s)} I(U; Y)$$

er (non-causal)

•
$$U_i \triangleq (W, Y_1^{i-1}, S_{i+1}^n)$$

- S_i independent of (W, S_{i+1}^n)
- Chain-rule for mutual informations.

$$\sum I(W, Y_1^{i-1}; Y_i) = \cdots =$$
$$= \sum I(U_i; Y_i) - I(U_i; S_i)$$

$$\leq \max_{p(u|s),p(x|u,s)} \left\{ I(U;Y) - I(U;S) \right\}$$

(ロ) (同) (E) (E) (E)

Converse

In both converses...

- Achievable rate bounded by $I(U_i; Y_i) I(U_i; S_i)$.
- Auxiliary variable: $U_i = (W, Y_1^{i-1}, S_{i+1}^n)$.
 - Causal case: reduces to U_i = (W, Y₁ⁱ⁻¹), since Sⁿ_{i+1} is independent of Y_i.

• Can be used for the composite causal-non-causal case!

Converse for the composite causal-non-causal case

- $S = ({}^{c}S, {}^{nc}S).$
- Achievable rate is bounded by $I(U_i; Y_i) I(U_i; {}^{nc}S_i)$.
- Auxiliary variable: $U_i = (W, Y_1^{i-1}, {}^{\mathsf{nc}}S_{i+1}^n).$
- Maximization over $p(u|^{nc}s)$ and $x = \text{func}(u, {}^{c}s, {}^{nc}s)$.

(*U* is independent of ^cS given ${}^{nc}S$)

Achievable

Causal (Shannon) case

- x = t(s).
- Strategy t is generated from W (input to equivalent channel).
- Can be thought of as "degenerated random binning" (U independent of S).

Non-causal (Gel'fand-Pinsker) case

• Use random binning w.r.t. p(u|s) and x(u,s).

Composite causal-non-causal case

- Use random binning w.r.t $p(u, {}^{nc}s)$ and $x(u, {}^{c}s, {}^{nc}s)$.
- Alternatively, combine random strategies w.r.t ^cS and random binning w.r.t. ^{nc}S.

Model SI Scenarios Composite SI@Tx WZ Compound

Source Coding with Side-information at the Receiver

• X – Source.

- \hat{X} Reconstructed (distorted) source at the decoder.
- S Side-information.
- $d(X, \hat{X})$ Distortion measure.

Side-information at the encoder (\mathbb{A} is closed)

- S can be regarded as part of the source $(\tilde{X} \triangleq (X, S))$.
- Distortion measure is w.r.t. X (and not \tilde{X}).

Source Coding with Side-information at the Receiver

Non-causal side-information [Wyner-Ziv '76]

$$R(D) = \min \left[I(U; X) - I(U; S) \right],$$

where minimum is over all $f : \mathcal{U} \times S \to \hat{\mathcal{X}}$, s.t. $E[d(X, f(U, S))] \leq D$.

Causal side-information [Weissman-El Gamal '06]

 $R(D) = \min I(U; X)$

minimum over the same set as in the non-causal problem.

Composite causal-non-causal side-information

$$R(D) = \min \left[I(U; X) - I(U; {}^{\mathsf{nc}}S) \right]$$

minimum over the same set.

Anatoly Khina, Mustafa Kesal, Uri Erez, ITW 2011 State-Dependent Channels with Composite SI @ Tx

When do Both Converses Diverge?

Compound state-dependent channel:

• $\theta \in \Theta$ – "Compound parameter": constant, unknown to Tx.

Compound channel with no state knowledge (\mathbb{A} is open)

- Worst-case capacity Maximal rate for all θ simultaneously.
- Capacity: [Blackwell et al. '59; Dobrushin '59; Wolfowitz '60]

$$C^{\mathsf{wc}} = \max_{p(x)} \min_{\theta \in \Theta} I(X; Y)$$

Anatoly Khina, Mustafa Kesal, Uri Erez, ITW 2011 State-Dependent Channels with Composite SI @ Tx

When do Both Converses Diverge?

Compound Channel with state S known *causally* at Tx

Trying to generalize Shannon's converse to compound case:

- $U_i \triangleq (W, Y_1^{i-1}).$
- U_i depends on the statistics of Y which is unknown! (since θ not known).

$$n(R-\epsilon_n) \leq \sum_{i=1}^n I_{\theta}(W, Y_1^{i-1}; Y_i) \leq \sum_{i=1}^n I_{\theta}(W, Y_1^{i-1}; Y_i) \leq \sum_{i=1}^n I_{\theta}(W, Y_1^{i-1}; Y_i)$$

- U_i ≜ (W, S₁ⁱ⁻¹) No knowledge of θ is assumed! (Original U_i used by Shannon)
- (Worst-case) Capacity: [Khina, Erez '10]

$$C^{\mathrm{wc}} = \max_{p(u), x(u,s)} \min_{\theta \in \Theta} I_{\theta}(U; Y)$$

A (B) > A (B) > A (B) >

When do Both Converses Diverge?

Compound Channel with state S known *non-causally* at Tx

• Similarly one would expect:

$$C^{\mathsf{wc}} = \max_{p(u|s), x(u,s)} \min_{\theta \in \Theta} I_{\theta}(U; Y)$$

- This is achievable but not optimal! [Piantanida, Shamai '10; Nair, El Gamal, Chia '10]
 - Marton's broadcast technique improves performance.

Summary

- Different side-information scenarios can be treated similarly.
- Recognizing these similarities allows to:
 - Solve several different scenarios at once.
 - Combining results for composite/mixed scenarios.
- In more complex scenarios similar/combined treatments might diverge.