LDPC Ensembles that Universally Achieve Capacity under Belief Propagation Decoding A Simple Derivation

Anatoly Khina

Joint work with: Yair Yona, Uri Erez

Tel Aviv University

IEEEI 2014 Eilat, Israel December 5, 2014

Anatoly Khina, Yair Yona, Uri Erez

IEEEI 2014 LDPC Ensembles that Universally Achieve Capacity under BP

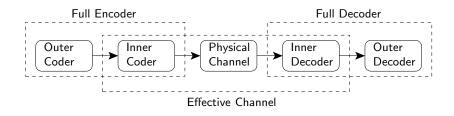
Requirements of a "Good Code"

- Capacity achieving (universally?)
- Low computational complexity
- Good performance in practice (BP?)

Random codes [Shannon '48]

- Capacity achieving \checkmark
- Universal for Binary-Input Memoryless Output-Symmetric (BMS) channels with same capacity ☺
- Exponential encoding/decoding complexity X
- Impractical 😳

< 🗇 > < 🗆 >



Concatenated codes [Forney '61]

- Approach capacity ✓
- Can be extended to work universally over BMS channels
- Reduced (polynomial) complexity
- Works well in practice \checkmark

< 1 >

Expander codes [Barg-Zémor '04][Guruswami-Indyk '05]

- Approach capacity \checkmark
- Linear complexity \checkmark
- Can be extended to work universally over BMS channels
- Impractical X

Expander codes [Barg–Zémor '04][Guruswami-Indyk '05]

- Approach capacity \checkmark
- Linear complexity \checkmark
- Can be extended to work universally over BMS channels
- Impractical X

Polar codes [Arıkan '09]

- Approach capacity \checkmark
- Low complexity: $\mathcal{O}(N \log N)$
- Practical...? The verdict is still out

イロト イポト イヨト イヨト

Recent entry: Convolutional/spatially-coupled LDPC codes [Felström–Zigangirov '99]

- ullet Linear decoding complexity under BP decoding \checkmark
- Approach capacity over BMS channels [Kudekar et al. ISIT'12]
- Performance in practice? Good for long blocklengths
- Overall code performance under BP decoding

Shorter regular LDPC code performance under ML decoding

A (1) > (1) > (1)

• LDPC ensemble (different from spatially-coupled)

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner code should be good for the BSC
 ↓
 Convolutional code (BCJR = BP!)

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner code should be good for the BSC
 ↓
 Convolutional code (BCJR = BP!)
 - $\bullet\,$ Universality guarantee is immediate from randomness $\checkmark\,$

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner code should be good for the BSC
 ↓
 Convolutional code (BCJR = BP!)
 - $\bullet\,$ Universality guarantee is immediate from randomness $\checkmark\,$
 - Outer **LDPC** code should be good for the BEC

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity) \checkmark
- Simple "black box" analysis
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner code should be good for the BSC
 ↓
 Convolutional code (BCJR = BP!)
 - $\bullet\,$ Universality guarantee is immediate from randomness $\checkmark\,$
 - Outer LDPC code should be good for the BEC
 - LDPC over BEC behavior guarantees suffice [Khandekar '02][Miller–Burshtein '02]

- 4 回 ト - 4 回 ト

New Code Construction

Bonus

- Regular LDPC codes can be used
- IRA codes can be used \Rightarrow Systematic representation Linear encoding

New Code Construction

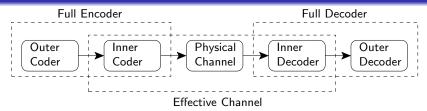
Bonus

Regular LDPC codes can be used

• IRA codes can be used \Rightarrow Systematic representation Linear encoding

- Practical?
 - Good reasons to believe it is
 - Currently under research

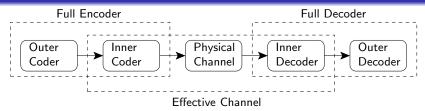
First Scheme: Two-Stage Message-Passing Decoding



Concatenated encoder

- Encode info. bits using an (outer) LDPC code of length n
- [Interleave LDPC coded bits]
- Encode LDPC coded bits using an (inner) zero-terminated convolutional code of length *L*

First Scheme: Two-Stage Message-Passing Decoding



Two-stage message passing decoder

- Apply BCJR decoding of the inner convolutional code \Rightarrow Calculate LLRs of each input bit
- De-interleave LLRs]
- Apply BP decoding of LDPC code over induced LLR channel
- [The induced channel is memoryless due to the interleaver]

(Full) BP decoding

BP decoder outperforms two-stage decoder (under tree assump.)

Universality of Block Codes

Exponential upper bound on block error probability [Gallager '68]

For a BMS *c* of capacity *C*:

$$\mathsf{P}_b^{(c)} \leq e^{-N \, \mathsf{E}_G(R)}$$

- Achievable by a random (block) code
- $E_G(R) > 0$ for R < C
- Upper bounds also the BER

Extremes of Error Exponents (EE) [Guillen i Fabregas et al. '13]

EE of BSC is worse than EE of any other BMS with same capacity: $E_G^{(c)}(R) \geq E_G^{\rm BSC}(R)$

Conclusion for random block codes

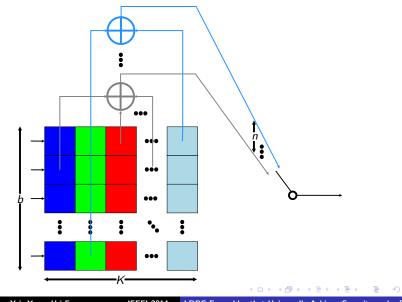
Random codes designed for BSC(C) achieve better BER over all BMS(C)

Anatoly Khina, Yair Yona, Uri Erez

IEEEI 2014

14 LDPC Ensembles that Universally Achieve Capacity under BP

Universality of Convolutional Codes



Anatoly Khina, Yair Yona, Uri Erez

IEEEI 2014

LDPC Ensembles that Universally Achieve Capacity under BP

Universality of Convolutional Codes

Upper bound on BER of convolutional codes [Yudkin '65][Viterbi '67]

For a BMS *c* of capacity *C* and any $0 < \epsilon < 1$:

$$P_{b} \leq \left(2^{b} - 1\right) \frac{2^{-\kappa \frac{b}{R}E_{VY}(R,\epsilon)}}{\left[1 - 2^{-\epsilon \frac{b}{R}E_{VY}(R,\epsilon)}\right]^{2}} \triangleq P_{b}^{UB}$$

• Achievable by a random time-varying convolutional code

•
$$E_{VY}(R,\epsilon) > 0$$
 for $R < C(1-\epsilon)$

• Constraint length K takes the role of the blocklength

Lower bound on Viterbi-Yudkin EE

BSC block-coding EE serves as lower bound:

$$E_{\mathsf{VY}}^{(c)}(R,\epsilon) \ge E_G^{(c)}\left(rac{R}{1-\epsilon}
ight) \ge E_G^{\mathsf{BSC}}\left(rac{R}{1-\epsilon}
ight) > 0$$

Conclusion for random (time-varying) convolutional codes

Random codes designed for BSC(C) achieve better BER over all BMS(C)

Universality of Convolutional Codes

Bhattacharyya parameter B [Guillen i Fabregas '13]

B of any BMS c is bounded by those of BEC(C) and BSC(C):

$$P(\text{Erasure}) \equiv B^{\text{BEC}} \leq B^{(c)} \leq B^{\text{BSC}} \equiv 2\sqrt{BER \cdot (1 - BER)}$$

Will serve as a guarantee for performance of outer LDPC code
B^(c) can always be upper bounded by B^{BSC} after "slicing"

- 4 回 ト 4 ヨ ト 4 ヨ ト

Performance of LDPC codes over BMS

LDPC over BEC

- LDPC ensembles that approach capacity over the BEC under BP decoding are known [Luby *et al.* "97][Shokrollahi '01], ...
- True also for IRA codes [Khandekar '02]

LDPC performance over BMS [Khandekar '02]

BER of LDPC ensemble over BEC with Bhattacharyya param. B \geq BER of LDPC ensemble over BMS with Bhattacharyya param. B

Conclusion

LDPC ensembles for BEC guarantee performance over BMS with same B

Analysis of Two-Stage Message-Passing Decoder

- Total rate: $R = C \Delta$, for any $\Delta > 0$
- Convolutional code rate: $r \in (R, C)$
- Constraint length K is taken long enough (but fixed!), s.t.

$$0 < 2\sqrt{P_b^{\mathsf{UB}}\left[1 - P_b^{\mathsf{UB}}\right]} \triangleq B^{\mathsf{UB}} < 1 - \frac{R}{r}$$

- Use LDPC ensemble of rate $\frac{R}{r}$ with threshold $> B^{\text{UB}}$ over BEC
- Long enough LDPC ensemble $n \Rightarrow$ Arbitrarily small BER

Conclusion

Achieves universally capacity with linear complexity over BMS(C)!

Anatoly Khina, Yair Yona, Uri Erez

・ 同・ ・ ヨ・

Analysis of Two-Stage Message-Passing Decoder

Using regular LDPC codes

- A regular LDPC ensemble
- Varaible- and check-node degrees d_{ν} and d_{c}
- Has a threshold T bounded away from zero

Conclusion:

- Take long enough constraint length K s.t. $T > B^{UB}$
- BER can be made arbitrarily small by enlarging LDPC length n

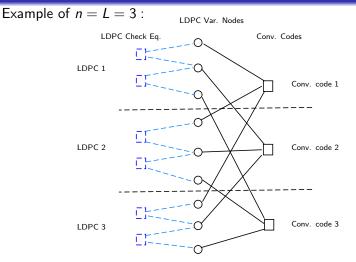
Using IRA codes

- Performance guarantee via Bhattacharyya parameter holds for IRA
- Using IRA codes achieves \Rightarrow

Systematic representation Linear encoding

Anatoly Khina, Yair Yona, Uri Erez

Analysis of BP Decoding over Overall Factor Graph



- Factor graphs of LDPC codes
- Factor graphs of convolutional codes

Anatoly Khina, Yair Yona, Uri Erez

IEEEI 2014

014 LDPC Ensembles that Universally Achieve Capacity under BP

Analysis of BP Decoding over Overall Factor Graph

Extended tree assumption

 ℓ -depth extended tree of variable node shares no loops with ℓ -depth trees of other variable nodes.

- "Standard" tree assumption for each LDPC code
- "Extension": No loops with variable nodes that belong to same convolutional code

Lemma

Extended tree assumption is satisfied w.h.p. for large enough n.

Requires longer n than "standard" tree assumption

BP decoding universally achieves capacity

- Under extended tree assumption (guaranteed by long enough n)
- BP over the factor graph is optimal
- \Rightarrow Outperforms two-stage decoding

• LDPC ensemble (different from spatially-coupled)

Anatoly Khina, Yair Yona, Uri Erez

IEEEI 2014 LDPC Ensembles that Universally Achieve Capacity under BP

A 3 >

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach

A (1) > (1) > (1)

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner **convolutional** code designed for the BSC

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner **convolutional** code designed for the BSC

• Outer LDPC code designed for the BEC

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner **convolutional** code designed for the BSC
 - Outer LDPC code designed for the BEC
- Inner code of rate close to capacity reduces *B* parameter to desired (fixed) value beneath threshold of outer LDPC

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner **convolutional** code designed for the BSC
 - Outer LDPC code designed for the BEC
- Inner code of rate close to capacity reduces *B* parameter to desired (fixed) value beneath threshold of outer LDPC
- LDPC ensemble of rate close to 1 achieves arbitrarily low BER over resulting channel

・ 同下 ・ ヨト ・ ヨト

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner **convolutional** code designed for the BSC
 - Outer LDPC code designed for the BEC
- Inner code of rate close to capacity reduces *B* parameter to desired (fixed) value beneath threshold of outer LDPC
- LDPC ensemble of rate close to 1 achieves arbitrarily low BER over resulting channel
- Simple "black box" analysis

A (10) A (10)

- LDPC ensemble (different from spatially-coupled)
- Achieves capacity under BP (linear complexity)
- Follows code-concatenation approach
- Builds upon the extremal properties of BEC and BSC:
 - Random inner convolutional code designed for the BSC
 - Outer LDPC code designed for the BEC
- Inner code of rate close to capacity reduces B parameter to desired (fixed) value beneath threshold of outer LDPC
- LDPC ensemble of rate close to 1 achieves arbitrarily low BER over resulting channel
- Simple "black box" analysis
- Regular LDPC, or systematic rep. and linear enc. via IRA