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“A friend to all is a friend to none.” -Aristotle
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Talk Outline

1 Framework and motivation

2 Background:

MIMO point-to-point scheme
Overview of orthogonal matrix decompositions:
SVD, QR, GMD, GTD, . . .

3 (New) MIMO multicast scheme

Two-user: via new joint decomposition of two matrices

Multi-user: via algebraic space–time coding structure

4 Various applications

5 New information-theoretic results
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Unicast Multicast

Part I

Framework and Motivation
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Unicast Multicast

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory

SISO

MIMO
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Unicast Multicast Theory SISO MIMO

Unicast: Point-to-Point Communication

Transmitter Receiverp(y |x)x(1), . . . , x(n) y (1), . . . , y (n)

Memoryless channel

p
(
y (1), . . . , y (n)

∣
∣x(1), . . . , x(n)

)
=

n∏

t=1
p
(
y (t)

∣
∣x(t)

)

Channel capacity [Shannon ’48]

Best achievable rate over memoryless channel p(y |x):

C = max
p(x)

I (x ; y)

Maximization over all admissible input distributions p(x)
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Unicast Multicast Theory SISO MIMO

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X

SISO

MIMO
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Unicast Multicast Theory SISO MIMO

Single-Input Single-Output (SISO) Unicast

Receiver

Transmitter

h

y (t) = hx (t) + z (t)

x – Input of power 1

y – Output

h – Channel gain

z – White Gaussian noise ∼ CN (0, 1)

Optimal communication rate (capacity): C = log(1 + |h|2)

Good practical codes that approach capacity are known!
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Unicast Multicast Theory SISO MIMO

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X

SISO X

MIMO
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Unicast Multicast Theory SISO MIMO

Multiple-Input Multiple-Output (MIMO) Unicast

Receiver

Transmitter

H

y
(t) = Hx

(t) + z
(t)

x – Input vector of power 1 · N

y – Output vector

H – Channel matrix

Hkℓ – Gain from transmit-antenna ℓ to receive-antenna k

z – White Gaussian noise ∼ CN (0, I)

Capacity: C = max
Cx

log
∣

∣

∣
I+HCxH

†
∣

∣

∣
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Unicast Multicast Theory SISO MIMO

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X

SISO X

MIMO X
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Unicast Multicast Theory SISO MIMO Motivation

Multicast: Communication over a Compound Channel

Transmitter

Receiver 1

Receiver K

p(y1, . . . , yK |x)x(1), . . . , x(n)

y
(1)
1 , . . . , y

(n)
1

y
(1)
K , . . . , y

(n)
K

Physical-layer multicast

Transmit same message to K receivers: y1, . . . , yK

All receivers recover message with negligible error probability
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Unicast Multicast Theory SISO MIMO Motivation

Multicast: Communication over a Compound Channel

Transmitter Receiverpk(y |x)x(1), . . . , x(n) y (1), . . . , y (n)

Compound channel

K possible channel realizations: {pk(y |x)|k = 1, . . .K}

Transmitter does not know k

Error probability is negligible for all pk(y |x) simultaneously
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Unicast Multicast Theory SISO MIMO Motivation

Multicast: Communication over a Compound Channel

Compound channel / multicast capacity
[Dobrushin ’59][Blackwell-Breiman-Thmoasian ’59][Wolfowitz ’60]

Best achievable rate over K -user memoryless channel {p(yi |x)}:

C = max
p(x)

min
i=1,...,K

I (x ; yi )

Maximization over all admissible input distribution p(x)

Minimization over all users
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Unicast Multicast Theory SISO MIMO Motivation

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X X

SISO X

MIMO X
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Unicast Multicast Theory SISO MIMO Motivation

SISO Multicast

Receiver 1

Receiver 2

Receiver 4

Receiver 3

Transmitter

h1

h2

h4

h3

yi = hix + zi i = 1, . . . ,K

x – Input of power 1

yi – Output of user i

hi – Channel gain to user i

zi – White Gaussian noise ∼ CN (0, 1)

Capacity: C = min
i

log(1 + |hi |2)
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Unicast Multicast Theory SISO MIMO Motivation

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X X

SISO X X

MIMO X
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Unicast Multicast Theory SISO MIMO Motivation

Gaussian MIMO Multicast

Receiver 1

Receiver 2

Receiver 4

Receiver 3

Transmitter

H1

H2

H4

H3

y i = Hix + z i i = 1, . . . ,K

x – N × 1 input vector of power N · 1

y i – Output vector of user i

Hi – Channel matrix to user i

z i – White Gaussian noise vector ∼ CN (0, I)

“Closed loop” (Full channel knowledge everywhere)
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Unicast Multicast Theory SISO MIMO Motivation

Optimal Achievable Rate (Capacity)

Multicast capacity

C = max
Cx

min
i=1,...,K

log
∣
∣
∣I+HiCxH

†
i

∣
∣
∣

Optimization over covariance matrices Cx
satisfying the power constraint

High SNR (and Square Matrices)

Optimal covariance is (approximately) white: Cx ≈ I

CWI ≈ 2 min
i=1,...,K

log |Hi |
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Unicast Multicast Theory SISO MIMO Motivation

MIMO Multicast (Closed Loop): State of the Art

Unicast Multicast

Theory X X

SISO X X

MIMO X ?
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Unicast Multicast Theory SISO MIMO Motivation

Summary: Multicast is (Almost) Everywhere...

  Multicast

Full-Duplex D&F Relay

 Two-Way Relay

Permuted Channels 

Half-Duplex D&F Relay

Gaussian Source Multicast (JSCC)

Wiretap

Rateless Codes

Parallel Relay Network

Confidential Broadcast Dirty Multiple-Access
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Model Goal SVD V-BLAST (QR) GTD

Part II

MIMO Point-to-Point Schemes
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Model Goal SVD V-BLAST (QR) GTD

MIMO Unicast

PSfrag

Receiver

Transmitter

H

y = Hx + z

Capacity

C = log
∣
∣
∣I+HCxH

†
∣
∣
∣

But how is this rate achieved in practice?
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Model Goal SVD V-BLAST (QR) GTD

What Do We Mean by Practical?

Capacity is achieved

Black box approach: Reduce MIMO to SISO

“Off-the-shelf” standard encoders and decoders

Any fixed-rate SISO AWGN codes

Simple signal processing:

linear operations (+modulo)

Successive interference cancellation (SIC)

Or modulo arithmetic instead of SIC

Gap-to-capacity dictated by gap-to-capacity of SISO codes
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Model Goal SVD V-BLAST (QR) GTD SVD with water-filling SVD for Given Cx

Singular-Value Decomposition (SVD) Scheme [Telatar ’99]

H = QDV †

Q and V – unitary

Tx applies V and Rx applies Q†

D =










d1 0 0 · · · 0
0 d2 0 · · · 0
...

...
. . .

. . .
...

0 · · · 0 dN−1 0
0 · · · 0 0 dN










⇒

y1 = d1x1 + z1
y2 = d2x2 + z2

...
yN = dNxN + zN

Results in parallel scalar sub-channels
(each sub-channel has a different SNR)

Apply water-filling on {x1, . . . , xN}: x = VWc
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Model Goal SVD V-BLAST (QR) GTD SVD with water-filling SVD for Given Cx

SVD-based scheme for a given input covariance Cx

HC
1/2
x = QDV †

Q and V – unitary; C
1/2
x – any matrix B s.t. BB† = Cx

Tx applies C
1/2
x V and Rx applies Q

D =










d1 0 0 · · · 0
0 d2 0 · · · 0
...

...
. . .

. . .
...

0 · · · 0 dN−1 0
0 · · · 0 0 dN










⇒

y1 = d1x1 + z1
y2 = d2x2 + z2

...
yN = dNxN + zN

Results in parallel scalar sub-channels
(each sub-channel has a different SNR)

Apply water-filling on {x1, . . . , xn}: x = VWc x = C
1/2
x V c
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Model Goal SVD V-BLAST (QR) GTD SVD with water-filling SVD for Given Cx

Singular-Value Decomposition (SVD) Scheme [Telatar ’99]

SVD scheme with given Cx achieves : R = log
∣
∣IN +HCxH

†
∣
∣

Attains capacity for optimal choice of Cx

Can be used to attain capacity for other covariance constraint
scenarios (e.g., individual power constraints)
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

QRD-based: Zero-forcing VBLAST / GDFE [Foschini ’96]

Based on QR decomposition (QRD)

H = QT

Q – unitary; T – triangular

Rx applies Q† (no SP is required by Tx)

T =










t1 ∗ ∗ · · · ∗
0 t2 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 · · · tN−1 ∗
0 0 · · · 0 tN










⇒

y eff1 = t1x1 + z1
y eff2 = t2x2 + z2

...
y effN = tNxN + zN

Off-diagonal elements are canceled via
successive interference cancellation (SIC)
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

QRD-based: Zero-forcing VBLAST / GDFE [Foschini ’96]

Based on QR decomposition (QRD)
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

QRD-based: Zero-forcing VBLAST / GDFE [Foschini ’96]

Based on QR decomposition (QRD)

H = QT
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

QRD-based: Zero-forcing VBLAST / GDFE [Foschini ’96]

Based on QR decomposition (QRD)

H = QT

Q – unitary; T – triangular

Rx applies Q† (no SP is required by Tx)

T =










t1 ∗ ∗ · · · 0
0 t2 ∗ · · · 0
...

...
. . .

. . .
...

0 0 · · · tN−1 0
0 0 · · · 0 tN










⇒

y eff1 = t1x1 + z1
y eff2 = t2x2 + z2

...
y effN = tNxN + zN

Off-diagonal elements are canceled via
successive interference cancellation (SIC)
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

MMSE-VBLAST for a given covariance Cx [Hassibi ’00]

[

HC
1/2
x

IN

]

= QT

Q – unitary; Q̃ – N × N submatrix of Q

Rx applies Q̃
†
(no SP is required by Tx)

Q̃
†
contains Wiener-filtering (“FFE”)

Effective noise has channel noise and “ISI” components

Effective SNRs satisfy: t2i = 1 + SNRi

log(t2i ) = log(1 + SNRi) = I (ci ; y |cNi+1)

Off-diagonal elements above diagonal canceled via SIC
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

MMSE-VBLAST for a given covariance Cx

For square invertible H, ZF-VBLAST achieves: R =
∣
∣HH†

∣
∣

(

Using Cx at the transmitter achieves: R =
∣
∣HCxH

†
∣
∣

)

MMSE-VBLAST achieves: R =
∣
∣IN +HCxH

†
∣
∣

Canonical channel matrix
[

HC
1/2
x

IN

]

= Q

[
Heff

0

]

Canonical channel matrix Heff is square and invertible

Analagous to the canonical system response of
[Cioffi-Dudevoir-Eyuboglu-Forney ’95]

Treating square invertible matrices suffices!
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

MMSE-VBLAST with precoding for a given covariance Cx

Heff = QTV †

V can be used to design diagonal values ⇔ design SNRs
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

MMSE-VBLAST with precoding for a given covariance Cx

Heff = QTV †

V can be used to design diagonal values ⇔ design SNRs

SVD-scheme as MMSE-VBLAST

Choosing V of the SVD of Heff ⇒ SVD scheme
(no SIC needed)
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Model Goal SVD V-BLAST (QR) GTD ZF MMSE Precoded

MMSE-VBLAST with precoding for a given covariance Cx

Heff = QTV †

V can be used to design diagonal values ⇔ design SNRs

SVD-scheme as MMSE-VBLAST

Choosing V of the SVD of Heff ⇒ SVD scheme
(no SIC needed)

What about other choices of V ?
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

Generalized Triangular Decomposition (GTD)

[Jiang-Hager-Li ’08][Zhang-Wong]

T is upper-triangular

Heff = QTV † = Q








t1 ∗ · · · ∗
0 t2 · · · ∗
...

...
. . .

...
0 0 · · · tN








V †

Desired diagonal: t = (t1 , t2 , . . . , tN) → Ordered vector: t̃

Ordered singular-value vector: σ = (σ1 , σ2 , . . . , σN)

Weyl’s condition: σ � t

ℓ∏

i=1

σi ≥
ℓ∏

i=1

|t̃i | ℓ = 1, . . . ,N

N∏

i=1

σi =
N∏

i=1

|t̃i | (ℓ = N)

Anatoly Khina (Tel Aviv University) Joint matrix decompositions for Gaussian networks



Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

QR Interpretation

Heff =

[
ax bx
ay by

]

= QT ⇔ T = Q†Heff =

[
cos θℓ sin θℓ
− sin θℓ cos θℓ

] [
ax bx
ay by

]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a(1.5, 0.5)

b(1, 1)
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

QR Interpretation

Heff =

[
1.5 1
0.5 1

]

= QT ⇔ T = Q†Heff =

[
cos θℓ sin θℓ
− sin θℓ cos θℓ

] [
1.5 1
0.5 1

]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a(1.5, 0.5)

b(1, 1)
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

QR Interpretation

Heff =

[
1.5 1
0.5 1

]

= QT ⇔ T = Q†Heff =

[
cos θℓ sin θℓ
− sin θℓ cos θℓ

] [
1.5 1
0.5 1

]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a(1.5, 0.5)

b(1, 1)

ã(
√
1.52 + 0.52, 0)

b̃
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

GTD Interpretation

Q†Heff
V =

[
cos θℓ sin θℓ
− sin θℓ cos θℓ

] [
ax bx
ay by

] [
cos θr − sin θr
sin θr cos θr

]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a

b
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

GTD Interpretation

Q†Heff
V =

[
cos θℓ sin θℓ
− sin θℓ cos θℓ

] [
ax cos θr + bx sin θr ax cos(θr +

π
2
) + bx sin(θr +

π
2
)

ay cos θr + by sin θr ay cos(θr +
π
2
) + by sin(θr +

π
2
)

]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θr = 0

θr =
π

2
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

SVD Interpretation

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The SVD corresponds to the longest and shortest
vectors/diagonal elements

These vectors are necessarily orthogonal
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

Geometric Mean Decomposition (GMD)

[Kosowski-Smoktunowicz ’99][Zhang-Kavčić-Wong ’05][Jiang-Hager-Li ’05]

Heff = QTV † = Q








t ∗ · · · ∗
0 t · · · ∗
...

...
. . .

...
0 0 · · · t








V †

Constant diagonal: t = N

√
∏N

i=1 σi

Geometric mean of singular values

Always possible!

AM-GM inequality ⇒ Weyl’s condition is always satisfied

ℓ∏

i=1

σi ≥ |t|ℓ ℓ = 1, . . . ,N
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

Geometric Mean Decomposition (GMD)

[Kosowski-Smoktunowicz ’99][Zhang-Kavčić-Wong ’05][Jiang-Hager-Li ’05]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a

b
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

Geometric Mean Decomposition (GMD)

[Kosowski-Smoktunowicz ’99][Zhang-Kavčić-Wong ’05][Jiang-Hager-Li ’05]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

Geometric Mean Decomposition (GMD)

[Kosowski-Smoktunowicz ’99][Zhang-Kavčić-Wong ’05][Jiang-Hager-Li ’05]

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Model Goal SVD V-BLAST (QR) GTD QR GTD SVD GMD Scheme

GMD-based Scheme
[Zhang-Kavčić-Wong IT’05][Jiang-Hager-Li SP’05]

All sub-channels have the same SNR

No need for bit-loading

The same codebook can be used over all sub-channels

Again, a DPC variant can be constructed
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Model Goal SVD QR Idea Joint Triang. Examples

Part III

MIMO Multicast via Joint Matrix Decompositions
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Model Goal SVD QR Idea Joint Triang. Examples

Gaussian MIMO Multicast

Receiver 1

Receiver 2

Receiver 4

Receiver 3

Transmitter

H1

H2

H4

H3

y i = Hix + z i i = 1, . . . ,K

x – N × 1 input vector of power N · 1

y i – Output vector of user i

Hi – Channel matrix to user i

z i – White Gaussian noise vector ∼ CN (0, I)

“Closed loop” (Full channel knowledge everywhere)
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Model Goal SVD QR Idea Joint Triang. Examples

Goal: As in the Point-to-Point Setting...

Capacity is achieved

Black box approach: Reduce MIMO to SISO

“Off-the-shelf” standard encoders and decoders

Any fixed-rate SISO AWGN codes

Simple signal processing:

linear operations (+modulo)

Successive interference cancellation (SIC)

Or modulo arithmetic instead of SIC

Gap-to-capacity dictated by gap-to-capacity of SISO codes
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Model Goal SVD QR Idea Joint Triang. Examples

Generalization of SVD-based Scheme?

Heff

1 = Q1D1V
†
1

Heff

2 = Q2D2V
†
2

Precoding matrix V i depends on the channel matrix Heff

i

But V is shared by all users!

Cannot be used for multi-user case /

Diagonal Matrices

Even if all matrices are diagonal ⇒ Bottleneck problem!
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF mismatch

Generalization of QR-based Scheme?

Heff

1 = Q1T 1

Heff

2 = Q2T 2

T i depends on Hi

diag(T 1) 6= diag(T 2) ⇒ different sub-channel gains!

Bottleneck problem

Info. Theory:
N∑

j=1

log |T1;jj |2 =
N∑

j=1

log |T2;jj |2 X

Comm.: Rj = log |min {T1;jj ,T2;jj}|2 X

Can we have equal diagonals?
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF mismatch

Bottleneck Problem

P2P:

Heff
1 =

(
2 ∗
0 6

)

Heff
2 =

(
3 ∗
0 4

)

R1;1 = log(22),R1;2 = log(62) R2;1 = log(32),R2;2 = log(42)

C1 = R1;1 + R1;2 = log(122) C2 = R2;1 + R2;2 = log(122)

Multicast:

R1 = log(min{22, 32}) = log (22)

R2 = log(min{62, 42}) = log (42)

Rmulticast = R1 + R2 = log (64) < log (144) = log(122) = Cmulticast
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF mismatch

Example: Degrees-of-Freedom Mismatch

Heff

1

Heff

2

H1 =

[
3 0
0 3

]

, H2 =
[ √

99 0
]

Heff

1 =

[ √
10 0

0
√
10

]

, Heff

2 =

[
10 0
0 1

]

CWI
1 = 2 log

(
1 + 32

)
= log

(

1 +
(√

99
)2
)

= CWI
2
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF mismatch

Example: Degrees-of-Freedom Mismatch

Best practical existing schemes for the example at high SNR:

Time-sharing: 50% of capacity
(
= 1

No. of users

)

Single-stream beamforming: 50% of capacity
(
= used DoF

total DoF

)

Alamouti coding: 50% of capacity
(
= used DoF

total DoF

)

None of these schemes approaches capacity!

For more users/antennas → achievable rate goes down
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...

What else can the V serve for?
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...

What else can the V serve for?

Can V help in QR case to achieve equal diagonals?
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...

What else can the V serve for?

Can V help in QR case to achieve equal diagonals?

YES!
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...

What else can the V serve for?

Can V help in QR case to achieve equal diagonals?

YES!
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Model Goal SVD QR Idea Joint Triang. Examples

Idea

SVD uses both Q and V but tries to diagonalize

But triangularization suffices

QR uses only Q...

What else can the V serve for?

Can V help in QR case to achieve equal diagonals?

YES!

“The worst form of inequality is to try to make

unequal things equal.” -Aristotle
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

Joint Triangularization

Theorem [Kh.-Kochman-Erez SP’12]

Heff

1 and Heff

2 — N × N matrices

Heff
1 and Heff

2 can be jointly decomposed as:

Heff

1 = Q1T 1V
†

Heff

2 = Q2T 2V
†

where

Q1, Q2, V — Unitary

T 1, T 2 — Upper-triangular

µ(Heff

1 ,Heff

2 ) — Generalized singular values vector

If and only if diag(T 1)/diag(T 2) � µ(Heff
1 ,Heff

2 )
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

Joint Triangularization

Special case: Joint Equi-Diagonal Triangularization (JET)

Heff

1 and Heff

2 — N × N matrices

det(Heff
1 ) = det(Heff

2 )

Heff
1 and Heff

2 can be jointly decomposed as:

Heff

1 = Q1T 1V
†

Heff

2 = Q2T 2V
†

where

Q1, Q2, V — Unitary

T 1, T 2 — Upper-triangular

diag(T 1) = diag(T 2)
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

Joint Triangularization

Proof idea

GTD condtion on diagonal → condition on ratio of 2 diagonals

Block-triangular version

Generalizes to a block-triangular variant:
Desired ratios between the block determinants

Necessary and sufficient conditions
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

JET Interpretation

H1 =

[
1.5 1
0.5 1

]

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a1(1.5, 0.5)

b1(1, 1)

H2 =

[
2 −2

−0.5 1

]

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a2(2,−0.5)

b2(−2, 1)
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

JET Interpretation

H1 =

[
1.5 1
0.5 1

]

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a1(1.5, 0.5)

b1(1, 1)

H2 =

[
2 −2

−0.5 1

]

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

a2(2,−0.5)

b2(−2, 1)

Anatoly Khina (Tel Aviv University) Joint matrix decompositions for Gaussian networks



Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

JET Interpretation

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

JET Interpretation

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Model Goal SVD QR Idea Joint Triang. Examples General JET Proof; block-triang. Geometry

JET Interpretation

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF Mismatch

Bottleneck Problem

Heff
1 =

[
2 3
0 6

]

=

Q1
︷ ︸︸ ︷
[
0.238 0.971
−0.971 0.238

]

T 1
︷ ︸︸ ︷
[
2.522 −4.472
0 4.758

]

V
†

︷ ︸︸ ︷
[
0.913 −0.408
0.408 0.913

]

Heff
2 =

[
3 2
0 4

]

=

Q1
︷ ︸︸ ︷
[
0.762 0.647
−0.647 0.762

]

T 2
︷ ︸︸ ︷
[
2.522 −0.039
0 4.758

]

V
†

︷ ︸︸ ︷
[
0.913 −0.408
0.408 0.913

]

diag(T 1) = diag(T 2) =
[
2.522 4.758

]

Q†
1Q1 = Q†

2Q2 = V †V = I2
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Model Goal SVD QR Idea Joint Triang. Examples Bottleneck DoF Mismatch

Degrees-of-Freedom Mismatch Example

Matrix V is applied to
[

Hi

IN

]

(MMSE variant):

[
H1
I2

]

=







3 0
0 3
1 0
0 1







=

Q1
︷ ︸︸ ︷






0.286 −0.905
0.905 0.286
0.095 −0.301
0.301 0.095







T1
︷ ︸︸ ︷
[ √

10 0

0
√
10

]

V†

︷ ︸︸ ︷
[

0.302 0.954
−0.954 0.302

]

[
H2
I2

]

=





√
99 0
1 0
0 1



 =

Q2
︷ ︸︸ ︷




0.949 −0.300
0.905 −0.030
0.302 0.954





T2
︷ ︸︸ ︷
[ √

10 −9

0
√
10

]

V†

︷ ︸︸ ︷
[

0.302 0.954
−0.954 0.302

]

Q†
1Q1 = Q†

2Q2 = V †V =

[

1 0
0 1

]

diag(T 1) = diag(T 2) =
[ √

10
√
10

]T

⇓
Parallel SISO channels with equal gains for both users!
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K -JET Perfect 2-GMD STC Construction

Part IV

Multiple Users
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K -JET Perfect 2-GMD STC Construction Idea STC

Multiple Users

Problem

We have used V to triangularize two matrices

What to do for more??

Is 2 just a bit more than 1?
Or... Is 2 a simplified ∞?

How one buys more degrees of freedom?

And at what price?
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K -JET Perfect 2-GMD STC Construction Idea STC

Multiple Users

Problem

We have used V to triangularize two matrices

What to do for more??

Is 2 just a bit more than 1?
Or... Is 2 a simplified ∞?

How one buys more degrees of freedom?

And at what price?

Space–Time Coding

to the Rescue!
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K -JET Perfect 2-GMD STC Construction Idea STC

K -user JET/GMD via Space–Time Coding

[Kh.-Hitron-Livni-Erez IT ’15]

Main Idea

Create more degrees of freedom using space–time modulation

Original channel: y i = Hix + z i

x
(1)
i |x (2)

i | · · · |x (L)
i

︸ ︷︷ ︸

X

→ Hi →
z (j)

i
↓
⊕ → y

(1)
i |y (2)

i | · · · |y (L)
i

︸ ︷︷ ︸

Yi

Time extended channel: Yi = HiX + Zi

X ,Yi ,Zi : vectors of length N · L
Hi : matrix of size NL× NL
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K -JET Perfect 2-GMD STC Construction Idea STC

K -user JET/GMD via Space–Time Coding

[Kh.-Hitron-Livni-Erez IT ’15]

Heff

i = QiT iV
† X

Bunch two channel uses together:

Hi
︷ ︸︸ ︷
(
Heff

i 0

0 Heff

i

)

=

Qi
︷ ︸︸ ︷
(
Qi 0
0 Qi

)

Ti
︷ ︸︸ ︷
(

T i 0
0 T i

)

V
︷ ︸︸ ︷
(

V † 0

0 V †

)

X

Hi have a block-diagonal structure

Use general Qi , V (not block-diagonal):

Hi
︷ ︸︸ ︷
(
Heff

i 0

0 Heff

i

)

=

(Qi

) (Ti
) (V)†

X

Exploiting off-diagonal 0s enables JET/GMD of more users!
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K -JET Perfect 2-GMD STC Construction

Multiple Users: K -User JET

K -GMD ⇔ (K + 1)-JET

But K -GMD for K > 1 is not possible in general /

2-GMD for 2× 2 matrices [Kh.-Hitron-Livni-Erez IT ’15]

2-GMD of the 2× 2 matrices H1 and H2 is possible if and only if

F
(

Heff †
1 Heff

1 − I,Heff †
2 Heff

2 − I
)

≥ 0

F (A1,A2) , |A1adj(A2)− A2adj(A1)|

Another special case

Diagonal permuted matrices [Presented in the sequel]
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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Space–Time Coding Structure

Theorem: K -GMD [Kh.-Hitron-Livni-Erez IT ’15]

Any number of users K

Any number of antennas at each node

Joint constant-diagonal triangularization of K matrices

Process jointly #symbols ≥ NK−1

Prefix–suffix loss of (NK−1 − 1) scalar code entries total

Numerical evidence: Can be improved!

K -JET

For joint equal-diagonal (✭✭✭✭✭❤❤❤❤❤constant) triangularization:

Process jointly #symbols ≥ NK−2

Prefix–suffix loss of (NK−2 − 1) symbols total
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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Demonstration of 3-JET for 2× 2 Matrices

Step 1: Construct time-extended matrices

H1 =







Heff

1 0 0 0

0 Heff

1 0 0

0 0 Heff

1 0

0 0 0 Heff

1







H2 =







Heff

2 0 0 0

0 Heff

2 0 0

0 0 Heff

2 0

0 0 0 Heff

2







H3 =







Heff

3 0 0 0

0 Heff

3 0 0

0 0 Heff

3 0

0 0 0 Heff

3





















∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 t1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 t2 ∗ ∗ ∗ ∗ ∗
0 0 0 t1 ∗ ∗ ∗ ∗
0 0 0 0 t2 ∗ ∗ ∗
0 0 0 0 0 t1 ∗ ∗
0 0 0 0 0 0 t2 ∗
0 0 0 0 0 0 0 ∗














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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Demonstration of 3-JET for 2× 2 Matrices

Step 2: blockwise JET for H1 and H2














r1 ∗ 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r1 ∗ 0 0 0 0
0 0 0 r2 0 0 0 0
0 0 0 0 r1 ∗ 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r1 ∗
0 0 0 0 0 0 0 r2





























r1 ∗ 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r1 ∗ 0 0 0 0
0 0 0 r2 0 0 0 0
0 0 0 0 r1 ∗ 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r1 ∗
0 0 0 0 0 0 0 r2





























s1 ∗ 0 0 0 0 0 0
0 s2 0 0 0 0 0 0
0 0 s1 ∗ 0 0 0 0
0 0 0 s2 0 0 0 0
0 0 0 0 s1 ∗ 0 0
0 0 0 0 0 s2 0 0
0 0 0 0 0 0 s1 ∗
0 0 0 0 0 0 0 s2














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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Demonstration of 3-JET for 2× 2 Matrices

Step 2: “off-by-one” blockwise JET














r1 ∗ 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r1 ∗ 0 0 0 0
0 0 0 r2 0 0 0 0
0 0 0 0 r1 ∗ 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r1 ∗
0 0 0 0 0 0 0 r2





























r1 ∗ 0 0 0 0 0 0
0 r2 0 0 0 0 0 0
0 0 r1 ∗ 0 0 0 0
0 0 0 r2 0 0 0 0
0 0 0 0 r1 ∗ 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r1 ∗
0 0 0 0 0 0 0 r2





























s1 ∗ 0 0 0 0 0 0
0 s2 0 0 0 0 0 0
0 0 s1 ∗ 0 0 0 0
0 0 0 s2 0 0 0 0
0 0 0 0 s1 ∗ 0 0
0 0 0 0 0 s2 0 0
0 0 0 0 0 0 s1 ∗
0 0 0 0 0 0 0 s2














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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Demonstration of 3-JET for 2× 2 Matrices

Step 2: “off-by-one” blockwise JET














r1 ∗ 0 0 0 0 0 0
0 t2 ∗ 0 0 0 0 0
0 0 t1 ∗ 0 0 0 0
0 0 0 t2 ∗ 0 0 0
0 0 0 0 t1 ∗ 0 0
0 0 0 0 0 t2 ∗ 0
0 0 0 0 0 0 t1 ∗
0 0 0 0 0 0 0 r2





























r1 ∗ 0 0 0 0 0 0
0 t2 ∗ 0 0 0 0 0
0 0 t1 ∗ 0 0 0 0
0 0 0 t2 ∗ 0 0 0
0 0 0 0 t1 ∗ 0 0
0 0 0 0 0 t2 ∗ 0
0 0 0 0 0 0 t1 ∗
0 0 0 0 0 0 0 r2





























s1 ∗ 0 0 0 0 0 0
0 t2 ∗ 0 0 0 0 0
0 0 t1 ∗ 0 0 0 0
0 0 0 t2 ∗ 0 0 0
0 0 0 0 t1 ∗ 0 0
0 0 0 0 0 t2 ∗ 0
0 0 0 0 0 0 t1 ∗
0 0 0 0 0 0 0 s2














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K -JET Perfect 2-GMD STC Construction 3-JET illustration 3-GMD illustration

Demonstration of 3-JET for 2× 2 Matrices

Step 4: Extract middle matrices using O














✚❩r1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 t1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 t2 ∗ ∗ ∗ ∗ ∗
0 0 0 t1 ∗ ∗ ∗ ∗
0 0 0 0 t2 ∗ ∗ ∗
0 0 0 0 0 t1 ∗ ∗
0 0 0 0 0 0 t2 ∗
0 0 0 0 0 0 0 ✚❩r2





























✚❩r1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 t1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 t2 ∗ ∗ ∗ ∗ ∗
0 0 0 t1 ∗ ∗ ∗ ∗
0 0 0 0 t2 ∗ ∗ ∗
0 0 0 0 0 t1 ∗ ∗
0 0 0 0 0 0 t2 ∗
0 0 0 0 0 0 0 ✚❩r2





























✚✚❩❩s1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 t1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 t2 ∗ ∗ ∗ ∗ ∗
0 0 0 t1 ∗ ∗ ∗ ∗
0 0 0 0 t2 ∗ ∗ ∗
0 0 0 0 0 t1 ∗ ∗
0 0 0 0 0 0 t2 ∗
0 0 0 0 0 0 0 ✚✚❩❩s2















O† =











0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0











Extract: O†TiO
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Demonstration of 3-GMD for 2× 2 Matrices

Step 1: Construct time-extended matrices

H1 =







Heff

1 0 0 0

0 Heff

1 0 0

0 0 Heff

1 0

0 0 0 Heff

1







H2 =







Heff

2 0 0 0

0 Heff

2 0 0

0 0 Heff

2 0

0 0 0 Heff

2







H3 =







Heff

3 0 0 0

0 Heff

3 0 0

0 0 Heff

3 0

0 0 0 Heff

3





















∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 ∗














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Demonstration of 3-GMD for 2× 2 Matrices

Step 2: blockwise GMD for H1














1 ∗ 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 ∗ 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





























r21 ∗ 0 0 0 0 0 0
0 r22 0 0 0 0 0 0
0 0 r21 ∗ 0 0 0 0
0 0 0 r22 0 0 0 0
0 0 0 0 r21 ∗ 0 0
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 r21 ∗
0 0 0 0 0 0 0 r22





























r31 ∗ 0 0 0 0 0 0
0 r32 0 0 0 0 0 0
0 0 r31 ∗ 0 0 0 0
0 0 0 r32 0 0 0 0
0 0 0 0 r31 ∗ 0 0
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 r31 ∗
0 0 0 0 0 0 0 r32














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Demonstration of 3-GMD for 2× 2 Matrices

Step 3: Perform GMD on in H2















1 ∗ 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 ∗ 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





























r21 ∗ 0 0 0 0 0 0
0 r22 0 0 0 0 0 0
0 0 r21 ∗ 0 0 0 0
0 0 0 r22 0 0 0 0
0 0 0 0 r21 ∗ 0 0
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 r21 ∗
0 0 0 0 0 0 0 r22





























r31 ∗ 0 0 0 0 0 0
0 r32 0 0 0 0 0 0
0 0 r31 ∗ 0 0 0 0
0 0 0 r32 0 0 0 0
0 0 0 0 r31 ∗ 0 0
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 r31 ∗
0 0 0 0 0 0 0 r32















(
1 0
0 1

)

= V †

(
1 0
0 1

)

V
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Demonstration of 3-GMD for 2× 2 Matrices

Step 4: Perform the same GMD on in H2















1 ∗ 0 0 ∗ 0 0 0
0 1 0 0 0 ∗ 0 0
0 0 1 ∗ 0 0 ∗ 0
0 0 0 1 0 0 0 ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





























r21 ∗ 0 0 ∗ 0 0 0
0 1 0 0 ∗ ∗ 0 0
0 0 r21 ∗ 0 0 ∗ 0
0 0 0 1 0 0 ∗ ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 r22





























r31 ∗ 0 0 ∗ 0 0 0
0 d2 0 0 ∗ ∗ 0 0
0 0 r31 ∗ 0 0 ∗ 0
0 0 0 d2 0 0 ∗ ∗
0 0 0 0 d1 ∗ 0 0
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 d1 ∗
0 0 0 0 0 0 0 r32














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Demonstration of 3-GMD for 2× 2 Matrices

Step 5: Perform GMD on in H3















1 ∗ 0 0 ∗ 0 0 0
0 1 0 0 0 ∗ 0 0
0 0 1 ∗ 0 0 ∗ 0
0 0 0 1 0 0 0 ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 1





























r21 ∗ 0 0 ∗ 0 0 0
0 1 0 0 ∗ ∗ 0 0
0 0 r21 ∗ 0 0 ∗ 0
0 0 0 1 0 0 ∗ ∗
0 0 0 0 1 ∗ 0 0
0 0 0 0 0 r22 0 0
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 r22





























r31 ∗ 0 0 ∗ 0 0 0
0 d2 0 0 ∗ ∗ 0 0
0 0 r31 ∗ 0 0 ∗ 0
0 0 0 d2 0 0 ∗ ∗
0 0 0 0 d1 ∗ 0 0
0 0 0 0 0 r32 0 0
0 0 0 0 0 0 d1 ∗
0 0 0 0 0 0 0 r32














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Demonstration of 3-GMD for 2× 2 Matrices

Step 6: Extract middle matrices using O















✁❆1 ∗ 0 ∗ ∗ 0 0 0
0 ✁❆1 0 0 0 ∗ 0 0
0 0 ✁❆1 ∗ ∗ 0 ∗ 0
0 0 0 1 0 ∗ 0 ∗
0 0 0 0 1 ∗ 0 ∗
0 0 0 0 0 ✁❆1 0 0
0 0 0 0 0 0 ✁❆1 ∗
0 0 0 0 0 0 0 ✁❆1





























✓✓❙❙r
2
1 ∗ 0 ∗ ∗ 0 0 0
0 ✁❆1 0 ∗ ∗ ∗ 0 0

0 0 ✓✓❙❙r
2
1 ∗ ∗ 0 ∗ 0

0 0 0 1 0 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 ✓✓❙❙r

2
2 0 0

0 0 0 0 0 0 ✁❆1 ∗
0 0 0 0 0 0 0 ✓✓❙❙r

2
2





























✓✓❙❙r
3
1 ∗ 0 ∗ ∗ 0 0 0
0 ��❅❅d2 0 ∗ ∗ ∗ 0 0

0 0 ✓✓❙❙r
3
1 ∗ ∗ 0 ∗ 0

0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 ✓✓❙❙r

3
2 0 0

0 0 0 0 0 0 ��❅❅d1 ∗
0 0 0 0 0 0 0 ✓✓❙❙r

3
2















O† =

(
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

)

O†T
(3)
i O =

(
1 ∗
0 1

)

approach capacity when L → ∞
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Part V

Applications
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HARQ Relay Source Multicast WTC Permuted channels

Summary: Multicast is (Almost) Everywhere...

  Multicast

Full-Duplex D&F Relay

 Two-Way Relay

Permuted Channels 

Half-Duplex D&F Relay

Gaussian Source Multicast (JSCC)

Wiretap

Rateless Codes

Parallel Relay Network

Confidential Broadcast Dirty Multiple-Access
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Gaussian Rateless (Incremental Redundancy) Coding

y = αx + z ,

α is unknown at Tx but is known at Rx

Rx sends NACKs/ACKs until it is able to recover the message

Assume α can take only a finite number of values: α1, α2, ...

Can be represented as a MIMO multicast problem
[Kh.-Kochman-Erez-Wornell ITW’11]

Example α ∈ {α1, α2}, α1 > α2

C1 = 2C2

Effective matrices: H1 =
(
α1 0

)
,H2 =

(
α2 0
0 α2

)

Coincides with the solution of [Erez-Trott-Wornell IT’12]

Works for MIMO channels H1,H2 (replacing α1, α2)
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HARQ Relay Source Multicast WTC Permuted channels Half-Duplex Full-Duplex DMAC Two-Way Parallel

Half-Duplex Relay

ht,r

ht,rel hrel,r

xt

xrel

yr

yrel

Transmitter Receiver

Relay

Half-duplex: Relay can receive or transmit but not both

Decode-and-forward implementation: “rateless relay”

Effective Matrices [Kh.-Kochman-Erez-Wornell ITW’11]

Hrel =
[ √

P1ht,rel 0
]
,Hr =

[ √
P1ht,r 0
0

√
P2ht,r +

√
Prelhrel,r

]
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Full-Duplex Relay

ht,r

ht,rel hrel,r

xt

xrel

yr

yrel

Transmitter Receiver

Relay

Full-duplex: Relay can receive and transmit simultaneously

Decode-and-forward implementation (previous works):
Special code constructions.

But... “Off-the-shelf” codes suffice!

Effective Matrices [Kh.-Ordentlich-Erez-Kochman-Wornell ITW’12]

Hrel =
√
2
(√

1− ρ2ht,rel 0
)

, Hr =
√
2





√

1− ρ2ht,r 0

0
ρht,r+hrel,r

√

((1−ρ2)h2t,rP+1




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Dirty MIMO Multiple-Access Channel (New Achievable)

Transmitter 1

Transmitter 2

Receiver

H1

H2

x1

x2

s1

s2

z

y

SISO capacity region at high SNR [Philosof-Erez-Zamir-Khisti IT’11]

R1 + R2 ≤ logmin
{

|h1|2 , |h2|2
}

Sum capacity limited by minimum of individual capacity

Best for balanced powers!

MIMO capacity region at high SNR

R1 + R2 ≤ logmin
{

|H1|2 , |H2|2
}
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MIMO Two-Way Relay (New Achievable) [Kh.-Kochman-Erez ISIT’11]

Two nodes want to exchange messages via a relay

Node 1 Node 2

Relay

H1 H2

(a) MAC Phase

Node 1 Node 2

Relay

G1 G2

(b) Broadcast Phase

MAC Phase

Apply JET to H1 and H2 (roles of V and Q switched)

Use dirty-paper coding to pre-cancel off-diagonal elements

(Replaces successive interference cancellation of broadcast)

Broadcast (Multicast!) Phase

Use proposed multicast scheme
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Parallel MIMO Relay Network

Tx conveys message to Rx via parallel relays

Relay 1

Relay 2

ReceiverTransmitter

zrel1

z r

Ht,rel1 Hrel1,r

zrel2

Ht,rel2

x t y r

Hrel2,r
y rel2

yrel1

Decode-and-Forward

BC (multicast!) phase: Use proposed multicast scheme

MAC phase: Equivalent to MIMO-P2P with individual power
constraints

Decode-and-Forward + Amplify-and-Forward

Can be constructed for specific cases (under generalized Weyl’s condition)
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MIMO Multicast of a Gaussian Source (New Achievable)

[Kh.-Kochman-Erez SP’12]

Rx1

Rx2

Tx
s x

z1

z2

y1

y2

ŝ1

ŝ2

H1

H2

s – Scalar white Gaussian source of power PS .

Separation does not hold!

Different triangularization is needed

Combine with hybrid digital–analog scheme
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MIMO Multicast of a Gaussian Source (New Achievable)

[Kh.-Kochman-Erez SP’12]

Hybrid digital–analog scheme

(Nt − 1) sub-channels with equal diagonal values:
Transmit digital message = quantized source

Last gain differs: Transmit analog quantization error

Decomposition possible under a “generalized Weyl condition”

When decomposition is possible: New achievable distortion!

For 2 transmit-antennas: Optimum performance!

Anatoly Khina (Tel Aviv University) Joint matrix decompositions for Gaussian networks



HARQ Relay Source Multicast WTC Permuted channels

MIMO Multicast of a Gaussian Source (New Achievable)

[Kh.-Kochman-Erez SP’12]

Example: 2× 2 diagonal channels

Heff

1 =

[
α1 0
0 β1

]

, Heff

2 =

[
α2 0
0 β2

]

Digital

HDA

HDA

log |β1/β2|

log |α1/α2|
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MIMO Multicast of a Gaussian Source (New Achievable)

[Kh.-Kochman-Erez SP’12]

Example: 2× 2 diagonal channels

Heff

1 =

[
α1 0
0 β1

]

, Heff

2 =

[
α2 0
0 β2

]

Digital

HDA

HDA

New

New

log |β1/β2|

log |α1/α2|
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Channel Model: Gaussian MIMO Wiretap Channel

Bob Eve

Alice

HB HE

yB = HBx + zB yE = HEx + zE

x – N × 1 input vector of power P

yB , yE – NB × 1, NE × 1 received vectors

HB , HE – NB × N, NE × N channel matrices

zB ∼ CN (0, INB
), zE ∼ CN (0, INE

) – noise vectors

“Closed loop” (full channel knowledge everywhere)
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Capacity

Gaussian SISO channel capacity [Leung-Yan-Cheong, Hellman ’78]

CS (hB , hE ) =
[

I (X ;YB)
︷ ︸︸ ︷

log
(

1 + |hB |2 P
)

−

I (X ;YE )
︷ ︸︸ ︷

log
(

1 + |hE |2 P
) ]

+

Gaussian MIMO channel capacity [Khisti,Wornell ’10][Oggier,Hassibi ’11]

CS (HB ,HE ) = max
Cx :

[

I (x ;yB)
︷ ︸︸ ︷

log
∣
∣
∣I+HBCxH

†
B

∣
∣
∣−

I (x ;y E )
︷ ︸︸ ︷

log
∣
∣
∣I+HECxH

†
E

∣
∣
∣

]

Maximization over Cx satisfying power constraint: tr {Cx} ≤ P

Power constraint can be replaced with covariance constraint
[Liu-Shamai ’09]
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Scheme for General SNR [Kh.-Kochman-Khisti ISIT’14]

[

HBC
1/2
x V A

IN

]

= QB

T B
︷ ︸︸ ︷





b1 ∗ ∗
0

. . . ∗
0 0 bN




 , b2i = 1 + SNRB

i

[

HCC
1/2
x V A

IN

]

= QC

T C
︷ ︸︸ ︷





e1 ∗ ∗
0

. . . ∗
0 0 eN




 , e2i = 1 + SNRE

i

Use good SISO wiretap codes for SNR-pairs (b2i − 1, e2i − 1)

V A of Charlie’s SVD ⇒ Easy secrecy analysis + strong
secrecy

V A of Bob’s SVD ⇒ No need for V-BLAST

diag{TB}, diag{TE} are const. ⇒ Same code over all channels
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Scheme for General SNR [Kh.-Kochman-Khisti ISIT’14]

[

HBC
1/2
x V A

IN

]

= QB

T B
︷ ︸︸ ︷





b1 ∗ ∗
0

. . . ∗
0 0 bN




 , b2i = 1 + SNRB

i

[

HCC
1/2
x V A

IN

]

= QC

T C
︷ ︸︸ ︷





e1 ∗ ∗
0

. . . ∗
0 0 eN




 , e2i = 1 + SNRE

i

Use good SISO wiretap codes for SNR-pairs (b2i − 1, e2i − 1)

Genie-aided secrecy-proof

Charlie tries to recover messages sequentially (from last to first)

For the recovery of message i all previous messages are revealed
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Wiretap Capacity under an Input Covariance Constraint

Cx � C̄x

Theorem [Bustin-Liu-Poor-Shamai ’09]

Let µi(HB ,HC , C̄x ) be the GSVs of G (HB , C̄x ), G (HC , C̄x ).
Then,

C (HB ,HC , C̄x ) =

NA∑

i=1

[log µ2
i (HB ,HC , C̄x )]

+

Proof in [Bustin et al. ’09] uses heavy tools such as
channel enhancement and I-MMSE connection

Alternative simple proof [Kh.-Kochman-Khisti, submitted ISIT’15]

1 The GSVD majorizes all other joint triangularizations

2 Apply GSVD and take all GSVs > 1
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Model: Confidential Gaussian MIMO Broadcast

Bob: MB , ✟✟❍❍MC Charlie: ✟✟❍❍MB , MC

Alice: MB , MC

HB HC

yB = HBxA + zB yC = HCxA + zC

MB – message intended for Bob

kept secret from Charlie

MC – message intended for Charlie

kept secret from Bob
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Capacity-Achieving Confidential MIMO Broadcast

Covariance constraint [Liu-Liu-Poor-Shamai IT’10]

No tension between users

Both users achieve optimal wiretap capacities simultaneously!

Again, proof uses heavy machinery...

[

HB C̄
1/2
x

IN

]

= QB





b1 ∗ ∗

0
. . . ∗

0 0 bN



V
†
A ,

[

HC C̄
1/2
x

IN

]

= QC





c1 ∗ ∗

0
. . . ∗

0 0 cN



V
†
A

Choosing directions of bi > ci is optimal for Bob

But... Choosing directions of bi < ci is optimal for Charlie!

⇒ Allocate bi > ci to Bob
Allocate bi < ci to Charlie

Anatoly Khina (Tel Aviv University) Joint matrix decompositions for Gaussian networks



HARQ Relay Source Multicast WTC Permuted channels Model Capacity Scheme Optimal cov. Confidential BC

Capacity-Achieving Confidential MIMO Broadcast

Covariance constraint [Liu-Liu-Poor-Shamai IT’10]

No tension between users

Both users achieve optimal wiretap capacities simultaneously!

Again, proof uses heavy machinery...

[

HB C̄
1/2
x

IN

]

= QB





b1 ∗ ∗

0
. . . ∗

0 0 bN



V
†
A ,

[

HC C̄
1/2
x

IN

]

= QC





c1 ∗ ∗

0
. . . ∗

0 0 cN



V
†
A

Alternative simple proof [Kh.-Kochman-Khisti, submitted ISIT’15]

Apply GSVD

Send information to Bob over sub-channels with bi > ci

Send information to Charlie over sub-channels with ci > bi
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Gaussian Permuted Parallel Channels

General channels: [Willems, Gorokhov IT’08][Hof, Sason, Shamai ITW’10]

z1

z2

zN

x1

x2

xN

α1

α2

αN

RxTx

...

Gains {αi} are known

Order of gains is not known at Tx, but known at Rx

Equivalent Problem

Be optimal for all permutation-orders simultaneously.
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Gaussian Permuted Parallel Channels

Special case of MIMO multicast problem!

N! effective channel matrices:

Hi ,








απi (1) 0 · · · 0

0 απi (2) · · · 0
...

...
. . .

...
0 0 · · · απi (N)








,
πi ∈ SN

i = 1, ...,N!

Optimal precoding matrices [Hitron-Kh.-Erez ISIT’12]

2 gains: Hadamard/DFT; 1 real channel use

3 gains: DFT; 1 complex channel use ⇒ 2 real uses

4 gains: Quaternion-based matrix; 1 quater. ⇒ 2 complex uses

N > 4 gain: • • • ?
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Part VI

Summary
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Summary

Summary: Multicast is (Almost) Everywhere...

  Multicast

Full-Duplex D&F Relay

 Two-Way Relay

Permuted Channels 

Half-Duplex D&F Relay

Gaussian Source Multicast (JSCC)

Wiretap

Rateless Codes

Parallel Relay Network

More...?

Confidential Broadcast
Dirty Multiple-Access

Even now, me talking to you...
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Part VII

Supplementary
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WTC Proof

Wiretap under Cov. Constraint: Alternative Proof Outline

W.l.o.g., Cx � C̄x can be written as

Cx = C̄
1/2
x V ADV

†
AC̄

†/2
x

where D is non-negative diagonal with all elements ≤ 1

For any V A,

I (HB ,Cx )− I (HC ,Cx ) =
N∑

i=1

log
b2i
c2i

Optimal D for a given V A: truncation

CB(HB ,HC , C̄x ) = max
V A

N∑

i=1

[

log
b2i
c2i

]+

By multiplicative majorization of joint triangularization
[Khina, Kochman, Erez SP’12], V A of the GSVD is optimal
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