Joint Matrix Decompositions for Gaussian Communication Networks

Anatoly Khina
EE-Systems Department
Tel Aviv University

"A friend to all is a friend to none." -Aristotle

Talk Outline

(1) Framework and motivation
(2) Background:

- MIMO point-to-point scheme
- Overview of orthogonal matrix decompositions: SVD, QR, GMD, GTD, ...
(3) (New) MIMO multicast scheme
- Two-user: via new joint decomposition of two matrices
- Multi-user: via algebraic space-time coding structure
(4) Various applications
(3) New information-theoretic results

Part I

Framework and Motivation

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast
Theory		
SISO		
MIMO		

Unicast: Point-to-Point Communication

Memoryless channel

$$
p\left(y^{(1)}, \ldots, y^{(n)} \mid x^{(1)}, \ldots, x^{(n)}\right)=\prod_{t=1}^{n} p\left(y^{(t)} \mid x^{(t)}\right)
$$

Channel capacity [Shannon '48]

Best achievable rate over memoryless channel $p(y \mid x)$:

$$
C=\max _{p(x)} I(x ; y)
$$

- Maximization over all admissible input distributions $p(x)$

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast
Theory		
SISO		
MIMO		

Single-Input Single-Output (SISO) Unicast

$$
y^{(t)}=h x^{(t)}+z^{(t)}
$$

- x - Input of power 1
- y-Output
- h - Channel gain
- z - White Gaussian noise $\sim \mathcal{C N}(0,1)$
- Optimal communication rate (capacity): $C=\log \left(1+|h|^{2}\right)$
- Good practical codes that approach capacity are known!

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast	
Theory	1		
SISO			
MIMO			

Multiple-Input Multiple-Output (MIMO) Unicast

$$
\boldsymbol{y}^{(t)}=\mathbf{H} \boldsymbol{x}^{(t)}+\boldsymbol{z}^{(t)}
$$

- x - Input vector of power $1 \cdot N$
- \boldsymbol{y}-Output vector
- H - Channel matrix
- $\mathbf{H}_{k \ell}$ - Gain from transmit-antenna ℓ to receive-antenna k
- z - White Gaussian noise $\sim \mathcal{C N}(\mathbf{0}, \mathbf{I})$
- Capacity: $C=\max _{\mathbf{C}_{\boldsymbol{X}}} \log \left|\mathbf{I}+\mathbf{H C}_{\boldsymbol{X}} \mathbf{H}^{\dagger}\right|$

MIMO Multicast (Closed Loop): State of the Art

	Unicast	Multicast		
Theory				
SISO				
MIMO				

Multicast: Communication over a Compound Channel

Physical-layer multicast

- Transmit same message to K receivers: y_{1}, \ldots, y_{K}
- All receivers recover message with negligible error probability

Multicast: Communication over a Compound Channel

Compound channel

- K possible channel realizations: $\left\{p_{k}(y \mid x) \mid k=1, \ldots K\right\}$
- Transmitter does not know k
- Error probability is negligible for all $p_{k}(y \mid x)$ simultaneously

Multicast: Communication over a Compound Channel

Compound channel / multicast capacity
 [Dobrushin '59][Blackwell-Breiman-Thmoasian '59][Wolfowitz '60]

Best achievable rate over K-user memoryless channel $\left\{p\left(y_{i} \mid x\right)\right\}$:

$$
C=\max _{p(x)} \min _{i=1, \ldots, K} I\left(x ; y_{i}\right)
$$

- Maximization over all admissible input distribution $p(x)$
- Minimization over all users

MIMO Multicast (Closed Loop): State of the Art

SISO Multicast

- x - Input of power 1
- y_{i} - Output of user i
- h_{i} - Channel gain to user i
- z_{i} - White Gaussian noise $\sim \mathcal{C N}(0,1)$
- Capacity: $C=\min _{i} \log \left(1+\left|h_{i}\right|^{2}\right)$

MIMO Multicast (Closed Loop): State of the Art

Gaussian MIMO Multicast

- $x-N \times 1$ input vector of power $N \cdot 1$
- \boldsymbol{y}_{i} - Output vector of user i
- \mathbf{H}_{i} - Channel matrix to user i
- \boldsymbol{z}_{i} - White Gaussian noise vector $\sim \mathcal{C N}(\mathbf{0}, \mathbf{I})$
- "Closed loop" (Full channel knowledge everywhere)

Optimal Achievable Rate (Capacity)

Multicast capacity

$$
C=\max _{\mathbf{C}_{\boldsymbol{X}}} \min _{i=1, \ldots, K} \log \left|\mathbf{I}+\mathbf{H}_{i} \mathbf{C}_{\boldsymbol{X}} \mathbf{H}_{i}^{\dagger}\right|
$$

- Optimization over covariance matrices $\mathbf{C}_{\boldsymbol{X}}$ satisfying the power constraint

High SNR (and Square Matrices)

- Optimal covariance is (approximately) white: $\mathbf{C}_{\boldsymbol{x}} \approx \mathbf{I}$

$$
C_{\mathrm{WI}} \approx 2 \min _{i=1, \ldots, K} \log \left|\mathbf{H}_{i}\right|
$$

MIMO Multicast (Closed Loop): State of the Art

Summary: Multicast is (Almost) Everywhere...

Part II

MIMO Point-to-Point Schemes

MIMO Unicast

Capacity

$$
C=\log \left|\mathbf{I}+\mathbf{H C} \boldsymbol{X}_{\boldsymbol{X}} \mathbf{H}^{\dagger}\right|
$$

- But how is this rate achieved in practice?

What Do We Mean by Practical?

Capacity is achieved

Black box approach: Reduce MIMO to SISO

- "Off-the-shelf" standard encoders and decoders
- Any fixed-rate SISO AWGN codes
- Simple signal processing:
- linear operations (+modulo)
- Successive interference cancellation (SIC)
- Or modulo arithmetic instead of SIC
- Gap-to-capacity dictated by gap-to-capacity of SISO codes

Singular-Value Decomposition (SVD) Scheme [Telatar '99]

- $\mathbf{H}=\mathbf{Q} \mathbf{D} \boldsymbol{V}^{\dagger}$
- \mathbf{Q} and \boldsymbol{V} - unitary
- Tx applies \boldsymbol{V} and Rx applies \mathbf{Q}^{\dagger}
- $\mathbf{D}=\left(\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N}\end{array}\right) \Rightarrow \begin{gathered}y_{1}=d_{1} x_{1}+z_{1} \\ y_{2}=d_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}=d_{N} x_{N}+z_{N}\end{gathered}$
- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply water-filling on $\left\{x_{1}, \ldots, x_{N}\right\}: \boldsymbol{x}=\boldsymbol{V W} \boldsymbol{c}$

SVD-based scheme for a given input covariance \mathbf{C}_{X}

- $\mathbf{H C}_{x}^{1 / 2}=\mathbf{Q D} \boldsymbol{V}^{\dagger}$
- \mathbf{Q} and \boldsymbol{V} - unitary; $\mathbf{C}_{\boldsymbol{x}}^{1 / 2}$ - any matrix \mathbf{B} s.t. $\mathbf{B B}^{\dagger}=\mathbf{C}_{\boldsymbol{x}}$
- Tx applies $C_{X}^{1 / 2} \boldsymbol{V}$ and Rx applies \mathbf{Q}
- $\mathbf{D}=\left(\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N}\end{array}\right) \Rightarrow \begin{gathered} \\ y_{1}=d_{1} x_{1}+z_{1} \\ y_{2}=d_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}=d_{N} x_{N}+z_{N}\end{gathered}$
- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply filling on $\left\{x_{1}, \ldots, x_{n}\right\}: x=V W \in x=C_{x}^{1 / 2} V c$

Singular-Value Decomposition (SVD) Scheme [Telatar '99]

- SVD scheme with given $\mathbf{C}_{\boldsymbol{x}}$ achieves : $R=\log \left|\mathbf{I}_{N}+\mathbf{H C}_{\boldsymbol{x}} \mathbf{H}^{\dagger}\right|$
- Attains capacity for optimal choice of $\mathbf{C}_{\boldsymbol{x}}$
- Can be used to attain capacity for other covariance constraint scenarios (e.g., individual power constraints)

QRD-based: Zero-forcing VBLAST / GDFE [Foschini '96]

- Based on QR decomposition (QRD)
- $\mathbf{H}=\mathbf{Q} \boldsymbol{T}$
- Q - unitary; \boldsymbol{T} - triangular
- Rx applies \mathbf{Q}^{\dagger} (no SP is required by Tx)
- $\boldsymbol{T}=\left(\begin{array}{ccccc}t_{1} & * & * & \cdots & * \\ 0 & t_{2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & * \\ 0 & 0 & \cdots & 0 & t_{N}\end{array}\right) \quad \Rightarrow \quad \begin{gathered}y_{1}^{\text {eff }}=t_{1} x_{1}+z_{1} \\ y_{2}^{\text {eff }}=t_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}^{\text {eff }}=t_{N} x_{N}+z_{N}\end{gathered}$
- Off-diagonal elements are canceled via successive interference cancellation (SIC)

QRD-based: Zero-forcing VBLAST / GDFE [Foschini '96]

- Based on QR decomposition (QRD)
- $\mathbf{H}=\mathbf{Q} \boldsymbol{T}$
- Q - unitary; \boldsymbol{T} - triangular
- Rx applies \mathbf{Q}^{\dagger} (no SP is required by Tx)
- $\boldsymbol{T}=\left(\begin{array}{ccccc}t_{1} & * & * & \cdots & * \\ 0 & t_{2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & * \\ 0 & 0 & \cdots & 0 & t_{N}\end{array}\right) \quad \Rightarrow \quad \begin{gathered}y_{1}^{\text {eff }}=t_{1} x_{1}+z_{1} \\ y_{2}^{\text {eff }}=t_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}^{\text {eff }}=t_{N} x_{N}+z_{N}\end{gathered}$
- Off-diagonal elements are canceled via successive interference cancellation (SIC)

QRD-based: Zero-forcing VBLAST / GDFE [Foschini '96]

- Based on QR decomposition (QRD)
- $\mathbf{H}=\mathbf{Q} \boldsymbol{T}$
- Q - unitary; \boldsymbol{T} - triangular
- Rx applies \mathbf{Q}^{\dagger} (no SP is required by Tx)
- $\boldsymbol{T}=\left(\begin{array}{ccccc}t_{1} & * & * & \cdots & 0 \\ 0 & t_{2} & * & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & 0 \\ 0 & 0 & \cdots & 0 & t_{N}\end{array}\right) \quad \Rightarrow \quad \begin{gathered}y_{1}^{\text {eff }}=t_{1} x_{1}+z_{1} \\ y_{2}^{\text {eff }}=t_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}^{\text {eff }}=t_{N} x_{N}+z_{N}\end{gathered}$
- Off-diagonal elements are canceled via successive interference cancellation (SIC)

QRD-based: Zero-forcing VBLAST / GDFE [Foschini '96]

- Based on QR decomposition (QRD)
- $\mathbf{H}=\mathbf{Q} \boldsymbol{T}$
- Q - unitary; \boldsymbol{T} - triangular
- Rx applies \mathbf{Q}^{\dagger} (no SP is required by Tx)
- $\boldsymbol{T}=\left(\begin{array}{ccccc}t_{1} & * & * & \cdots & 0 \\ 0 & t_{2} & * & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & 0 \\ 0 & 0 & \cdots & 0 & t_{N}\end{array}\right) \quad \Rightarrow \quad \begin{gathered}y_{1}^{\text {eff }}=t_{1} x_{1}+z_{1} \\ y_{2}^{\text {eff }}=t_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}^{\text {eff }}=t_{N} x_{N}+z_{N}\end{gathered}$
- Off-diagonal elements are canceled via successive interference cancellation (SIC)

MMSE-VBLAST for a given covariance \mathbf{C}_{X} [Hassibi '00]

$\cdot\left[\begin{array}{c}\mathbf{H C}_{\boldsymbol{X}}^{1 / 2} \\ \mathbf{I}_{N}\end{array}\right]=\mathbf{Q T}$

- \mathbf{Q} - unitary; $\tilde{\mathbf{Q}}-N \times N$ submatrix of \mathbf{Q}
- Rx applies $\tilde{\mathbf{Q}}^{\dagger}$ (no SP is required by Tx)
- $\tilde{\mathbf{Q}}^{\dagger}$ contains Wiener-filtering ("FFE")
- Effective noise has channel noise and "ISI" components
- Effective SNRs satisfy: $t_{i}^{2}=1+$ SNR $_{i}$

$$
\log \left(t_{i}^{2}\right)=\log \left(1+\mathrm{SNR}_{i}\right)=I\left(c_{i} ; \boldsymbol{y} \mid c_{i+1}^{N}\right)
$$

- Off-diagonal elements above diagonal canceled via SIC

MMSE-VBLAST for a given covariance \mathbf{C}_{x}

- For square invertible \mathbf{H}, ZF-VBLAST achieves: $R=\left|\mathbf{H H}^{\dagger}\right|$ (Using $\mathbf{C}_{\boldsymbol{x}}$ at the transmitter achieves: $R=\left|\mathbf{H C} \mathbf{X}_{\boldsymbol{X}} \mathbf{H}^{\dagger}\right|$)
- MMSE-VBLAST achieves: $R=\left|\mathbf{I}_{N}+\mathbf{H C}_{\boldsymbol{X}} \mathbf{H}^{\dagger}\right|$

Canonical channel matrix

$$
\left[\begin{array}{c}
\mathbf{H C}_{\boldsymbol{x}}^{1 / 2} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}\left[\begin{array}{c}
\mathbf{H}^{\mathrm{eff}} \\
\mathbf{0}
\end{array}\right]
$$

- Canonical channel matrix $\mathbf{H}^{\text {eff }}$ is square and invertible
- Analagous to the canonical system response of [Cioffi-Dudevoir-Eyuboglu-Forney '95]
- Treating square invertible matrices suffices!

MMSE-VBLAST with precoding for a given covariance \mathbf{C}_{X}

- $\mathbf{H}^{\mathrm{eff}}=\mathbf{Q} \boldsymbol{T} \boldsymbol{V}^{\dagger}$
- V can be used to design diagonal values \Leftrightarrow design SNRs

MMSE-VBLAST with precoding for a given covariance \mathbf{C}_{X}

- $\mathbf{H}^{\mathrm{eff}}=\mathbf{Q} \boldsymbol{T} \boldsymbol{V}^{\dagger}$
- V can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST

Choosing \boldsymbol{V} of the SVD of $\mathbf{H}^{\text {eff }} \Rightarrow$ SVD scheme (no SIC needed)

MMSE-VBLAST with precoding for a given covariance \mathbf{C}_{X}

- $\mathbf{H}^{\mathrm{eff}}=\mathbf{Q} \boldsymbol{T} \boldsymbol{V}^{\dagger}$
- V can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST

Choosing \boldsymbol{V} of the SVD of $\mathbf{H}^{\text {eff }} \Rightarrow$ SVD scheme (no SIC needed)

- What about other choices of \boldsymbol{V} ?

Generalized Triangular Decomposition (GTD)

 [Jiang-Hager-Li '08][Zhang-Wong]- \boldsymbol{T} is upper-triangular

$$
\mathbf{H}^{\mathrm{eff}}=\mathbf{Q} \boldsymbol{T} \boldsymbol{V}^{\dagger}=\mathbf{Q}\left(\begin{array}{cccc}
t_{1} & * & \cdots & * \\
0 & t_{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & t_{N}
\end{array}\right) \boldsymbol{V}^{\dagger}
$$

- Desired diagonal: $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{N}\right) \rightarrow$ Ordered vector: $\tilde{\boldsymbol{t}}$
- Ordered singular-value vector: $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)$
- Weyl's condition: $\boldsymbol{\sigma} \succeq \boldsymbol{t}$

$$
\begin{array}{ll}
\prod_{i=1}^{\ell} \sigma_{i} \geq \prod_{i=1}^{\ell}\left|\tilde{t}_{i}\right| & \ell=1, \ldots, N \\
\prod_{i=1}^{N} \sigma_{i}=\prod_{i=1}^{N}\left|\tilde{t}_{i}\right| & (\ell=N)
\end{array}
$$

QR Interpretation

$\mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{ll}a_{x} & b_{x} \\ a_{y} & b_{y}\end{array}\right]=\mathbf{Q} \boldsymbol{T} \Leftrightarrow \boldsymbol{T}=\mathbf{Q}^{\dagger} \mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{cc}\cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell}\end{array}\right]\left[\begin{array}{ll}a_{x} & b_{x} \\ a_{y} & b_{y}\end{array}\right]$

QR Interpretation

$\mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right]=\mathbf{Q} \boldsymbol{T} \Leftrightarrow \boldsymbol{T}=\mathbf{Q}^{\dagger} \mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{cc}\cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell}\end{array}\right]\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right]$

QR Interpretation

$\mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right]=\mathbf{Q} \boldsymbol{T} \Leftrightarrow \boldsymbol{T}=\mathbf{Q}^{\dagger} \mathbf{H}^{\mathrm{eff}}=\left[\begin{array}{cc}\cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell}\end{array}\right]\left[\begin{array}{ll}1.5 & 1 \\ 0.5 & 1\end{array}\right]$

GTD Interpretation

$\mathbf{Q}^{\dagger} \mathbf{H}^{\mathrm{eff}} \boldsymbol{V}=\left[\begin{array}{cc}\cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell}\end{array}\right]\left[\begin{array}{ll}a_{x} & b_{x} \\ a_{y} & b_{y}\end{array}\right]\left[\begin{array}{cc}\cos \theta_{r} & -\sin \theta_{r} \\ \sin \theta_{r} & \cos \theta_{r}\end{array}\right]$

GTD Interpretation

$\mathbf{Q}^{\dagger} \mathbf{H}^{\mathrm{eff}} \boldsymbol{V}=\left[\begin{array}{cc}\cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell}\end{array}\right]\left[\begin{array}{ll}a_{x} \cos \theta_{r}+b_{x} \sin \theta_{r} & a_{x} \cos \left(\theta_{r}+\frac{\pi}{2}\right)+b_{x} \sin \left(\theta_{r}+\frac{\pi}{2}\right) \\ a_{y} \cos \theta_{r}+b_{y} \sin \theta_{r} & a_{y} \cos \left(\theta_{r}+\frac{\pi}{2}\right)+b_{y} \sin \left(\theta_{r}+\frac{\pi}{2}\right)\end{array}\right]$

SVD Interpretation

- The SVD corresponds to the longest and shortest vectors/diagonal elements
- These vectors are necessarily orthogonal

Geometric Mean Decomposition (GMD)

[Kosowski-Smoktunowicz '99][Zhang-Kav̌̌ić-Wong '05][Jiang-Hager-Li '05]

$$
\mathbf{H}^{\mathrm{eff}}=\mathbf{Q} \boldsymbol{T} \boldsymbol{V}^{\dagger}=\mathbf{Q}\left(\begin{array}{cccc}
t & * & \cdots & * \\
0 & t & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & t
\end{array}\right) \boldsymbol{V}^{\dagger}
$$

- Constant diagonal: $t=\sqrt[N]{\prod_{i=1}^{N} \sigma_{i}}$
- Geometric mean of singular values
- Always possible!
- AM-GM inequality \Rightarrow Weyl's condition is always satisfied

$$
\prod^{\ell} \sigma_{i} \geq|t|^{\ell} \quad \ell=1, \ldots, N
$$

Geometric Mean Decomposition (GMD)
 [Kosowski-Smoktunowicz '99][Zhang-Kavčić-Wong '05][Jiang-Hager-Li '05]

Geometric Mean Decomposition (GMD)
 [Kosowski-Smoktunowicz '99][Zhang-Kavčić-Wong '05][Jiang-Hager-Li '05]

Geometric Mean Decomposition (GMD)
 [Kosowski-Smoktunowicz '99][Zhang-Kavčić-Wong '05][Jiang-Hager-Li '05]

GMD-based Scheme
 [Zhang-Kavčić-Wong IT'05][Jiang-Hager-Li SP'05]

- All sub-channels have the same SNR
- No need for bit-loading
- The same codebook can be used over all sub-channels
- Again, a DPC variant can be constructed

Part III

MIMO Multicast via Joint Matrix Decompositions

Gaussian MIMO Multicast

- $x-N \times 1$ input vector of power $N \cdot 1$
- \boldsymbol{y}_{i} - Output vector of user i
- \mathbf{H}_{i} - Channel matrix to user i
- z_{i} - White Gaussian noise vector $\sim \mathcal{C N}(\mathbf{0}, \mathbf{I})$
- "Closed loop" (Full channel knowledge everywhere)

Goal: As in the Point-to-Point Setting...

Capacity is achieved

Black box approach: Reduce MIMO to SISO

- "Off-the-shelf" standard encoders and decoders
- Any fixed-rate SISO AWGN codes
- Simple signal processing:
- linear operations (+modulo)
- Successive interference cancellation (SIC)
- Or modulo arithmetic instead of SIC
- Gap-to-capacity dictated by gap-to-capacity of SISO codes

Generalization of SVD-based Scheme?

$$
\begin{aligned}
& \mathbf{H}_{1}^{\text {eff }}=\mathbf{Q}_{1} \mathbf{D}_{1} \boldsymbol{V}_{1}^{\dagger} \\
& \mathbf{H}_{2}^{\mathrm{eff}}=\mathbf{Q}_{2} \mathbf{D}_{2} \boldsymbol{V}_{2}^{\dagger}
\end{aligned}
$$

- Precoding matrix \boldsymbol{V}_{i} depends on the channel matrix $\mathbf{H}_{i}^{\text {eff }}$
- But \boldsymbol{V} is shared by all users!
- Cannot be used for multi-user case

Diagonal Matrices

Even if all matrices are diagonal \Rightarrow Bottleneck problem!

Generalization of QR-based Scheme?

$$
\begin{aligned}
& \mathbf{H}_{1}^{\mathrm{eff}}=\mathbf{Q}_{1} \boldsymbol{T}_{1} \\
& \mathbf{H}_{2}^{\mathrm{eff}}=\mathbf{Q}_{2} \boldsymbol{T}_{2}
\end{aligned}
$$

- \boldsymbol{T}_{i} depends on \mathbf{H}_{i}
- $\operatorname{diag}\left(\boldsymbol{T}_{1}\right) \neq \operatorname{diag}\left(\boldsymbol{T}_{2}\right) \Rightarrow$ different sub-channel gains!

Bottleneck problem

- Info. Theory: $\sum_{j=1}^{N} \log \left|T_{1 ; j j}\right|^{2}=\sum_{j=1}^{N} \log \left|T_{2 ; j j}\right|^{2} \checkmark$
-Comm.: $R_{j}=\log \left|\min \left\{T_{1 ; j j}, T_{2 ; j j}\right\}\right|^{2}$
- Can we have equal diagonals?

Bottleneck Problem

P2P:

$$
\begin{array}{ll}
\quad \mathbf{H}_{1}^{\text {eff }}=\left(\begin{array}{cc}
2 & * \\
0 & 6
\end{array}\right) & \mathbf{H}_{2}^{\text {eff }}=\left(\begin{array}{cc}
3 & * \\
0 & 4
\end{array}\right) \\
R_{1 ; 1}=\log \left(2^{2}\right), R_{1 ; 2}=\log \left(6^{2}\right) & R_{2 ; 1}=\log \left(3^{2}\right), R_{2 ; 2}=\log \left(4^{2}\right) \\
C_{1}=R_{1 ; 1}+R_{1 ; 2}=\log \left(12^{2}\right) & C_{2}=R_{2 ; 1}+R_{2 ; 2}=\log \left(12^{2}\right)
\end{array}
$$

Multicast:

$R_{1}=\log \left(\min \left\{2^{2}, 3^{2}\right\}\right)=\log \left(2^{2}\right)$
$R_{2}=\log \left(\min \left\{6^{2}, 4^{2}\right\}\right)=\log \left(4^{2}\right)$
$R^{\text {multicast }}=R_{1}+R_{2}=\log (64)<\log (144)=\log \left(12^{2}\right)=C^{\text {multicast }}$

Example: Degrees-of-Freedom Mismatch

$$
\left.\left.\begin{array}{rl}
\mathbf{H}_{1} & =\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right],
\end{array} \mathbf{H}_{2}=\left[\begin{array}{cc}
\sqrt{99} & 0
\end{array}\right]\right] \text { (} \begin{array}{cc}
\sqrt{10} & 0 \\
0 & \sqrt{10}
\end{array}\right], \quad ~ \mathbf{H}_{2}^{\mathrm{eff}}=\left[\begin{array}{cc}
10 & 0 \\
0 & 1
\end{array}\right]
$$

- $C_{1}^{\mathrm{WI}}=2 \log \left(1+3^{2}\right)=\log \left(1+(\sqrt{99})^{2}\right)=C_{2}^{\mathrm{WI}}$

Example: Degrees-of-Freedom Mismatch

Best practical existing schemes for the example at high SNR:

- Time-sharing: 50% of capacity $\left(=\frac{1}{\text { No. of users }}\right)$
- Single-stream beamforming: 50% of capacity $\left(=\frac{\text { used DoF }}{\text { total DoF }}\right)$
- Alamouti coding: 50% of capacity $\left(=\frac{\text { used DoF }}{\text { total DoF }}\right)$

None of these schemes approaches capacity!

- For more users/antennas \rightarrow achievable rate goes down

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only $\mathbf{Q} .$.

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only $\mathbf{Q} .$.

What else can the \boldsymbol{V} serve for?

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only $\mathbf{Q} .$.

What else can the \boldsymbol{V} serve for?

- Can \boldsymbol{V} help in QR case to achieve equal diagonals?

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only \mathbf{Q}..

What else can the \boldsymbol{V} serve for?

- Can \boldsymbol{V} help in QR case to achieve equal diagonals?
- YES!

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only \mathbf{Q}..

What else can the \boldsymbol{V} serve for?

- Can \boldsymbol{V} help in QR case to achieve equal diagonals?
- YES!

Idea

- SVD uses both \mathbf{Q} and \boldsymbol{V} but tries to diagonalize
- But triangularization suffices
- QR uses only \mathbf{Q}..

What else can the \boldsymbol{V} serve for?

- Can \boldsymbol{V} help in QR case to achieve equal diagonals?
- YES!
> "The worst form of inequality is to try to make unequal things equal." -Aristotle

Joint Triangularization

Theorem [Kh.-Kochman-Erez SP'12]

- $\mathbf{H}_{1}^{\mathrm{eff}}$ and $\mathbf{H}_{2}^{\text {eff }}-N \times N$ matrices
- $\mathbf{H}_{1}^{\text {eff }}$ and $\mathbf{H}_{2}^{\text {eff }}$ can be jointly decomposed as:

$$
\begin{aligned}
& \mathbf{H}_{1}^{\mathrm{eff}}=\mathbf{Q}_{1} \boldsymbol{T}_{1} \boldsymbol{V}^{\dagger} \\
& \mathbf{H}_{2}^{\mathrm{eff}}=\mathbf{Q}_{2} \boldsymbol{T}_{2} \boldsymbol{V}^{\dagger}
\end{aligned}
$$

where

- $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \boldsymbol{V}$ - Unitary
- $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$ - Upper-triangular
- $\mu\left(\mathbf{H}_{1}^{\text {eff }}, \mathbf{H}_{2}^{\text {eff }}\right)$ - Generalized singular values vector
- If and only if $\operatorname{diag}\left(\boldsymbol{T}_{1}\right) / \operatorname{diag}\left(\boldsymbol{T}_{2}\right) \preceq \mu\left(\mathbf{H}_{1}^{\text {eff }}, \mathbf{H}_{2}^{\text {eff }}\right)$

Joint Triangularization

Special case: Joint Equi-Diagonal Triangularization (JET)

- $\mathbf{H}_{1}^{\mathrm{eff}}$ and $\mathbf{H}_{2}^{\text {eff }}-N \times N$ matrices
- $\operatorname{det}\left(\mathbf{H}_{1}^{\text {eff }}\right)=\operatorname{det}\left(\mathbf{H}_{2}^{\text {eff }}\right)$
- $\mathbf{H}_{1}^{\text {eff }}$ and $\mathbf{H}_{2}^{\text {eff }}$ can be jointly decomposed as:

$$
\begin{aligned}
& \mathbf{H}_{1}^{\mathrm{eff}}=\mathbf{Q}_{1} \boldsymbol{T}_{1} \boldsymbol{V}^{\dagger} \\
& \mathbf{H}_{2}^{\mathrm{eff}}=\mathbf{Q}_{2} \boldsymbol{T}_{2} \boldsymbol{V}^{\dagger}
\end{aligned}
$$

where

- $\mathbf{Q}_{1}, \mathbf{Q}_{2}, \boldsymbol{V}$ - Unitary
- $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$ - Upper-triangular
- $\operatorname{diag}\left(\boldsymbol{T}_{1}\right)=\operatorname{diag}\left(\boldsymbol{T}_{2}\right)$

Joint Triangularization

Proof idea

GTD condtion on diagonal \rightarrow condition on ratio of 2 diagonals

Block-triangular version

- Generalizes to a block-triangular variant:

Desired ratios between the block determinants

- Necessary and sufficient conditions

JET Interpretation

$$
H_{1}=\left[\begin{array}{ll}
1.5 & 1 \\
0.5 & 1
\end{array}\right]
$$

$$
H_{2}=\left[\begin{array}{cc}
2 & -2 \\
-0.5 & 1
\end{array}\right]
$$

JET Interpretation

$$
H_{1}=\left[\begin{array}{ll}
1.5 & 1 \\
0.5 & 1
\end{array}\right]
$$

$$
H_{2}=\left[\begin{array}{cc}
2 & -2 \\
-0.5 & 1
\end{array}\right]
$$

JET Interpretation

JET Interpretation

JET Interpretation

Bottleneck Problem

$$
\begin{aligned}
& \mathbf{H}_{1}^{\text {eff }}=\left[\begin{array}{ll}
2 & 3 \\
0 & 6
\end{array}\right]=\overbrace{\left[\begin{array}{cc}
0.238 & 0.971 \\
-0.971 & 0.238
\end{array}\right]}^{\mathbf{Q}_{1}} \overbrace{\left[\begin{array}{cc}
2.522 & -4.472 \\
0 & 4.758
\end{array}\right]}^{\boldsymbol{T}_{1}} \overbrace{\left[\begin{array}{cc}
0.913 & -0.408 \\
0.408 & 0.913
\end{array}\right]}^{\boldsymbol{V}^{\dagger}} \\
& \mathbf{H}_{2}^{\text {eff }}=\left[\begin{array}{ll}
3 & 2 \\
0 & 4
\end{array}\right]=\overbrace{\left[\begin{array}{cc}
0.762 & 0.647 \\
-0.647 & 0.762
\end{array}\right]}^{\boldsymbol{Q}_{\left[\begin{array}{cc}
2.522 & -0.039 \\
0 & 4.758
\end{array}\right]}^{\boldsymbol{Q}_{2}} \overbrace{\left[\begin{array}{cc}
0.913 & -0.408 \\
0.408 & 0.913
\end{array}\right]}^{\boldsymbol{V}^{\dagger}}}=
\end{aligned}
$$

- $\operatorname{diag}\left(\boldsymbol{T}_{1}\right)=\operatorname{diag}\left(\boldsymbol{T}_{2}\right)=\left[\begin{array}{ll}2.522 & 4.758\end{array}\right]$
- $\mathbf{Q}_{1}^{\dagger} \mathbf{Q}_{1}=\mathbf{Q}_{2}^{\dagger} \mathbf{Q}_{2}=\boldsymbol{V}^{\dagger} \boldsymbol{V}=\mathbf{I}_{2}$

Degrees-of-Freedom Mismatch Example

Matrix \boldsymbol{V} is applied to $\left[\begin{array}{l}\mathbf{H}_{i} \\ \mathbf{I}_{N}\end{array}\right]$ (MMSE variant):

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathbf{H}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 3 \\
1 & 0 \\
0 & 1
\end{array}\right]=\overbrace{\left[\begin{array}{rr}
0.286 & -0.905 \\
0.905 & 0.286 \\
0.095 & -0.301 \\
0.301 & 0.095
\end{array}\right]}^{\overbrace{\left[\begin{array}{rr}
\sqrt{10} & 0 \\
0 & \sqrt{10}
\end{array}\right]}^{\mathbf{Q}_{1}} \overbrace{\left[\begin{array}{rr}
0.302 & 0.954 \\
-0.954 & 0.302
\end{array}\right]}^{\boldsymbol{T}_{1}}} \begin{array}{l}
\boldsymbol{v}^{\dagger} \\
{\left[\begin{array}{l}
\mathbf{H}_{2} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{99} & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]=\overbrace{\left[\begin{array}{rr}
0.949 & -0.300 \\
0.905 & -0.030 \\
0.302 & 0.954
\end{array}\right]}^{\mathbf{Q}_{2}} \overbrace{\left[\begin{array}{rr}
\sqrt{10} & -9 \\
0 & \sqrt{10}
\end{array}\right]}^{\boldsymbol{T}_{2}} \overbrace{\left[\begin{array}{rr}
0.302 & 0.954 \\
-0.954 & 0.302
\end{array}\right]}^{\boldsymbol{v}^{\dagger}}}
\end{array} .=\begin{array}{ll}
\boldsymbol{T}_{2}
\end{array}}
\end{gathered}
$$

- $\mathbf{Q}_{1}^{\dagger} \mathbf{Q}_{1}=\mathbf{Q}_{2}^{\dagger} \mathbf{Q}_{2}=\boldsymbol{V}^{\dagger} \boldsymbol{V}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- $\operatorname{diag}\left(\boldsymbol{T}_{1}\right)=\operatorname{diag}\left(\boldsymbol{T}_{2}\right)=\left[\begin{array}{ll}\sqrt{10} & \sqrt{10}\end{array}\right]^{T}$
\Downarrow
Parallel SISO channels with equal gains for both users!

Part IV

Multiple Users

Multiple Users

Problem

- We have used \boldsymbol{V} to triangularize two matrices
- What to do for more??

Is 2 just a bit more than 1 ?
 Or... Is 2 a simplified ∞ ?

- How one buys more degrees of freedom?
- And at what price?

Multiple Users

Problem

- We have used \boldsymbol{V} to triangularize two matrices
- What to do for more??

Is 2 just a bit more than 1?
 Or... Is 2 a simplified ∞ ?

- How one buys more degrees of freedom?
- And at what price?

Space-Time Coding to the Rescue!

K-user JET/GMD via Space-Time Coding [Kh.-Hitron-Livni-Erez IT '15]

Main Idea

Create more degrees of freedom using space-time modulation

- Original channel: $\boldsymbol{y}_{\boldsymbol{i}}=\mathbf{H}_{i} \boldsymbol{x}+\boldsymbol{z}_{\boldsymbol{i}}$

$$
\underbrace{\boldsymbol{x}_{i}^{(1)}\left|\boldsymbol{x}_{i}^{(2)}\right| \cdots \mid \boldsymbol{x}_{i}^{(L)}}_{\mathcal{X}} \rightarrow \mathbf{H}_{i} \rightarrow \stackrel{z_{i}^{(j)}}{\stackrel{\downarrow}{\oplus}} \rightarrow \underbrace{\boldsymbol{y}_{i}^{(1)}\left|\boldsymbol{y}_{i}^{(2)}\right| \cdots \mid \boldsymbol{y}_{i}^{(L)}}_{\mathcal{Y}_{i}}
$$

- Time extended channel: $\mathcal{Y}_{i}=\mathcal{H}_{i} \mathcal{X}+\mathcal{Z}_{i}$
- $\mathcal{X}, \mathcal{Y}_{i}, \mathcal{Z}_{i}$: vectors of length $N \cdot L$
- \mathcal{H}_{i} : matrix of size $N L \times N L$

K-user JET/GMD via Space-Time Coding

 [Kh.-Hitron-Livni-Erez IT '15]$$
\mathbf{H}_{i}^{\mathrm{eff}}=\mathbf{Q}_{i} \boldsymbol{T}_{i} \boldsymbol{V}^{\dagger} \quad \mathbf{X}
$$

- Bunch two channel uses together:

- \mathcal{H}_{i} have a block-diagonal structure
- Use general $\mathcal{Q}_{i}, \mathcal{V}$ (not block-diagonal):

$$
\overbrace{\left(\begin{array}{cc}
\mathbf{H}_{i}^{\text {eff }} & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{i}^{\text {eff }}
\end{array}\right)}^{\mathcal{H}_{i}}=\left(\mathcal{Q}_{i}\right)\left(T_{i}\right)(\mathcal{V})^{\dagger}
$$

- Exploiting off-diagonal 0s enables JET/GMD of more users!

Multiple Users: K-User JET

- $K-G M D \Leftrightarrow(K+1)$-JET
- But $K-G M D$ for $K>1$ is not possible in general $)^{-}$

2-GMD for 2×2 matrices [Kh.-Hitron-Livni-Erez IT '15]

2-GMD of the 2×2 matrices H_{1} and H_{2} is possible if and only if

$$
\begin{aligned}
& F\left(\mathbf{H}_{1}^{\text {eff } \dagger} \mathbf{H}_{1}^{\text {eff }}-\mathbf{I}, \mathbf{H}_{2}^{\text {eff } \dagger} \mathbf{H}_{2}^{\text {eff }}-\mathbf{I}\right) \geq 0 \\
& F\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \triangleq\left|\mathbf{A}_{1} \operatorname{adj}\left(\mathbf{A}_{2}\right)-\mathbf{A}_{2} \operatorname{adj}\left(\mathbf{A}_{1}\right)\right|
\end{aligned}
$$

Another special case

Diagonal permuted matrices [Presented in the sequel]

Space-Time Coding Structure

Theorem: K-GMD [Kh.-Hitron-Livni-Erez IT '15]

- Any number of users K
- Any number of antennas at each node
- Joint constant-diagonal triangularization of K matrices
- Process jointly $\#$ symbols $\geq N^{K-1}$
- Prefix-suffix loss of $\left(N^{K-1}-1\right)$ scalar code entries total
- Numerical evidence: Can be improved!

K-JET

For joint equal-diagonal (constant) triangularization:

- Process jointly \#symbols $\geq N^{K-2}$
- Prefix-suffix loss of $\left(N^{K-2}-1\right)$ symbols total

Demonstration of 3-JET for 2×2 Matrices

Step 1: Construct time-extended matrices
$\left.\begin{array}{rl}\mathcal{H}_{1}=\left(\begin{array}{cccc}\mathbf{H}_{1}^{\text {eff }} & 0 & 0 & 0 \\ 0 & \mathbf{H}_{1}^{\text {eff }} & 0 & 0 \\ 0 & 0 & \mathbf{H}_{1}^{\text {eff }} & 0 \\ 0 & 0 & 0 & \mathbf{H}_{1}^{\text {eff }}\end{array}\right) & \mathcal{H}_{2}=\left(\begin{array}{ccc}\mathbf{H}_{2}^{\text {eff }} & 0 & 0 \\ 0 & \mathbf{H}_{2}^{\text {eff }} & 0 \\ 0 & 0 & 0 \\ 0 & \mathbf{H}_{2}^{\text {eff }} & 0 \\ 0 & 0 & 0\end{array}\right) \\ \mathcal{H}_{3}^{\text {eff }}\end{array}\right)$

Demonstration of 3-JET for 2×2 Matrices

Step 2: blockwise JET for H_{1} and H_{2}

$$
\begin{aligned}
& \left(\begin{array}{cc|cccccc}
\left.\begin{array}{cc|cccc}
r_{1} & * & 0 & 0 & 0 & 0 \\
0 & r_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1} & * & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & r_{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & r_{1} & * \\
0 & 0 & 0 & 0 & 0 & r_{2}
\end{array}\right) 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{1} & * \\
& 0 & r_{2}
\end{array}\right) \\
& \left(\begin{array}{cc|cccccc}
\hline r_{1} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
0 & r_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1} & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & r_{1} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2} \\
\end{array}\right) \\
& \left(\begin{array}{cc|cccccc}
\begin{array}{ccccccc}
s_{1} & * & 0 & 0 & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & s_{1} & * & 0 & 0 & 0 \\
0 & 0 & 0 & s_{2} & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & s_{1} & * & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & s_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & s_{1} \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} s_{2} \\
& & & &
\end{array}\right)
\end{aligned}
$$

Demonstration of 3-JET for 2×2 Matrices

Step 2: "off-by-one" blockwise JET

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
r_{1} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
\cline { 2 - 8 } & r_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1} & * & * & 0 & 0 & 0 \\
0 & 0 & 0 & r_{2} & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & r_{1} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}
\end{array}\right) \\
& \left(\right) \\
& \left(\begin{array}{cccccccc}
s_{1} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & * & s_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & s_{1} & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & s_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & s_{1} & * & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & s_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & s_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & s_{2}
\end{array}\right)
\end{aligned}
$$

Demonstration of 3-JET for 2×2 Matrices

Step 2: "off-by-one" blockwise JET

$$
\left(\begin{array}{cccccccc}
r_{1} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & t_{2} & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & t_{1} & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t_{2} & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & t_{1} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & t_{2} & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & t_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}
\end{array}\right) \quad\left(\begin{array}{cccccccccc}
r_{1} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & t_{2} & * & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & t_{1} & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t_{2} & * & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & t_{1} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & t_{2} & * & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & t_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}
\end{array}\right)
$$

Demonstration of 3-JET for 2×2 Matrices

Step 4: Extract middle matrices using \mathcal{O}

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
* & * & * & * & * & * & * & * \\
0 & t_{1} & * & * & * & * & * & * \\
0 & 0 & t_{2} & * & * & * & * & * \\
0 & 0 & 0 & t_{1} & * & * & * & * \\
0 & 0 & 0 & 0 & t_{2} & * & * & * \\
0 & 0 & 0 & 0 & 0 & t_{1} & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & t_{2} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right) \\
& \left(\begin{array}{cccccccc}
\not \approx & * & * & * & * & * & * & * \\
0 & t_{1} & * & * & * & * & * & * \\
0 & 0 & t_{2} & * & * & * & * & * \\
0 & 0 & 0 & t_{1} & * & * & * & * \\
0 & 0 & 0 & 0 & t_{2} & * & * & * \\
0 & 0 & 0 & 0 & 0 & t_{1} & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & t_{2} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & S_{2}
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
* & * & * & * & * & * & * & * \\
0 & t_{1} & * & * & * & * & * & * \\
0 & 0 & t_{2} & * & * & * & * & * \\
0 & 0 & 0 & t_{1} & * & * & * & * \\
0 & 0 & 0 & 0 & t_{2} & * & * & * \\
0 & 0 & 0 & 0 & 0 & t_{1} & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & t_{2} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

$$
\mathcal{O}^{\dagger}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Extract: $\mathcal{O}^{\dagger} T_{i} \mathcal{O}$

Demonstration of 3-GMD for 2×2 Matrices

Step 1: Construct time-extended matrices

Demonstration of 3-GMD for 2×2 Matrices

Step 2: blockwise GMD for H_{1}

$$
\begin{aligned}
& \left(\right)
\end{aligned}
$$

Demonstration of 3-GMD for 2×2 Matrices

Step 3: Perform GMD on in \mathcal{H}_{2}

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
1 & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccccccc}
r_{1}^{2} & * & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & r_{2}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1}^{2} & * & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{2}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & r_{1}^{2} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{1}^{2} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{2}
\end{array}\right) \\
& \left(\begin{array}{ccccccc}
r_{1}^{3} & * & 0 & 0 & 0 & 0 & 0 \\
0 & r_{2}^{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1}^{3} & * & 0 & 0 & 0 \\
0 & 0 & 0 & r_{2}^{3} & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & r_{1}^{3} & * & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2}^{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & r_{1}^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 \\
1 & 0 \\
0 & 1
\end{array}\right)=\boldsymbol{V}^{\dagger}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \boldsymbol{V}
\end{aligned}
$$

Demonstration of 3-GMD for 2×2 Matrices

Step 4: Perform the same GMD on in \mathcal{H}_{2}

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
1 & * & 0 & 0 & * & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & * & 0 & 0 \\
0 & 0 & 1 & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccccccccc}
r_{1}^{2} & * & 0 & 0 & * & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & * & * & 0 & 0 \\
0 & 0 & r_{1}^{2} & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{2}
\end{array}\right) \\
& \left(\begin{array}{cccccccc}
r_{1}^{3} & * & 0 & 0 & * & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 & * & * & 0 & 0 \\
0 & 0 & r_{1}^{3} & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & d_{2} & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & d_{1} & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2}^{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & & \\
& d_{1} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{3}
\end{array}\right)
\end{aligned}
$$

Demonstration of 3-GMD for 2×2 Matrices

Step 5: Perform GMD on in \mathcal{H}_{3}

$$
\left.\begin{array}{l}
\left(\begin{array}{cccccccc}
1 & * & 0 & 0 & * & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & * & 0 & 0 \\
0 & 0 & 1 & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccccccc}
r_{1}^{2} & * & 0 & 0 & * & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & * & * & 0 & 0 \\
0 & 0 & r_{1}^{2} & * & 0 & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 1 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & r_{2}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{2}
\end{array}\right) \\
\left(\begin{array}{ccccccc}
r_{1}^{3} & * & 0 & 0 & * & 0 & 0 \\
0 & d_{2} & 0 & 0 & * & * & 0 \\
0 \\
0 & 0 & r_{1}^{3} & * & 0 & 0 & * \\
0 & 0 & 0 & d_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & d_{1} & * & 0 \\
0 & & & & & & \\
0 & 0 & 0 & 0 & 0 & r_{2}^{3} & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & d_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} r_{2}^{3}\right.
\end{array}\right)
$$

Demonstration of 3-GMD for 2×2 Matrices

Step 6: Extract middle matrices using \mathcal{O}

$$
\left(\begin{array}{cccccccc}
* * & * & 0 & * & * & 0 & 0 & 0 \\
0 & \not / 2 & 0 & * & * & * & 0 & 0 \\
0 & 0 & \not * & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & * & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \not \not / 1 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & * / 2
\end{array}\right)
$$

approach capacity when $L \rightarrow \infty$

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
\mathcal{*} & * & 0 & * & * & 0 & 0 & 0 \\
0 & \mathcal{K} & 0 & 0 & 0 & * & 0 & 0 \\
0 & 0 & \mathcal{X} & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & * & 0 & * \\
0 & 0 & 0 & 0 & 1 & * & 0 & * \\
0 & 0 & 0 & 0 & 0 & \mathcal{X} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathcal{A} & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \not \approx
\end{array}\right) \\
& \left(\begin{array}{cccccccc}
* * & * & 0 & * & * & 0 & 0 & 0 \\
0 & * & 0 & * & * & * & 0 & 0 \\
0 & 0 & * & * & * & 0 & * & 0 \\
0 & 0 & 0 & 1 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 12 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \not z 2
\end{array}\right) \\
& \mathcal{O}^{\dagger}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \\
& \mathcal{O}^{\dagger} T_{i}^{(3)} \mathcal{O}=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Part V

Applications

Anatoly Khina (Tel Aviv University) Joint matrix decompositions for Gaussian networks

Summary: Multicast is (Almost) Everywhere...

Gaussian Rateless (Incremental Redundancy) Coding

$$
y=\alpha x+z
$$

- α is unknown at $\mathbf{T x}$ but is known at $\mathbf{R x}$
- Rx sends NACKs/ACKs until it is able to recover the message
- Assume α can take only a finite number of values: $\alpha_{1}, \alpha_{2}, \ldots$
- Can be represented as a MIMO multicast problem [Kh.-Kochman-Erez-Wornell ITW'11]

Example $\alpha \in\left\{\alpha_{1}, \alpha_{2}\right\}, \alpha_{1}>\alpha_{2}$

- $C_{1}=2 C_{2}$
- Effective matrices: $\mathbf{H}_{1}=\left(\begin{array}{ll}\alpha_{1} & 0\end{array}\right), \mathbf{H}_{2}=\left(\begin{array}{cc}\alpha_{2} & 0 \\ 0 & \alpha_{2}\end{array}\right)$
- Coincides with the solution of [Erez-Trott-Wornell IT'12]
- Works for MIMO channels $\mathbf{H}_{1}, \mathbf{H}_{2}$ (replacing α_{1}, α_{2})

Half-Duplex Relay

- Half-duplex: Relay can receive or transmit but not both
- Decode-and-forward implementation: "rateless relay"

Effective Matrices [Kh.-Kochman-Erez-Wornell ITW'11]

$$
\mathcal{H}_{\text {rel }}=\left[\begin{array}{ll}
\sqrt{P_{1}} h_{t, \text { rel }} & 0
\end{array}\right], \mathcal{H}_{r}=\left[\begin{array}{cc}
\sqrt{P_{1}} h_{t, r} & 0 \\
0 & \sqrt{P_{2}} h_{t, r}+\sqrt{P_{\mathrm{rel}}} h_{\mathrm{rel}, r}
\end{array}\right]
$$

Full-Duplex Relay

- Full-duplex: Relay can receive and transmit simultaneously
- Decode-and-forward implementation (previous works): Special code constructions.
- But... "Off-the-shelf" codes suffice!

Effective Matrices [Kh.-Ordentlich-Erez-Kochman-Wornell ITW'12]

$$
\mathcal{H}_{\text {rel }}=\sqrt{2}\left(\begin{array}{ll}
\sqrt{1-\rho^{2}} h_{t, \text { rel }} & 0
\end{array}\right), \quad \mathcal{H}_{r}=\sqrt{2}\left(\begin{array}{cc}
\sqrt{1-\rho^{2}} h_{t, r} & 0 \\
0 & \frac{\rho h_{t, r}+h_{\text {rel }, r}}{\sqrt{\left(1-\rho^{2}\right) h_{t, r}^{2} p+1}}
\end{array}\right)
$$

Dirty MIMO Multiple-Access Channel (New Achievable)

SISO capacity region at high SNR [Philosof-Erez-Zamir-Khisti IT'11]

$$
R_{1}+R_{2} \leq \log \min \left\{\left|h_{1}\right|^{2},\left|h_{2}\right|^{2}\right\}
$$

- Sum capacity limited by minimum of individual capacity
- Best for balanced powers!

MIMO capacity region at high SNR

$$
R_{1}+R_{2} \leq \log \min \left\{\left|H_{1}\right|^{2},\left|H_{2}\right|^{2}\right\}
$$

MIMO Two-Way Relay (New Achievable) [Kh.-Kochman-Erez ISIT'11]

- Two nodes want to exchange messages via a relay

Node 1

(a) MAC Phase

(b) Broadcast Phase

MAC Phase

- Apply JET to \mathbf{H}_{1} and \mathbf{H}_{2} (roles of \boldsymbol{V} and \mathbf{Q} switched)
- Use dirty-paper coding to pre-cancel off-diagonal elements (Replaces successive interference cancellation of broadcast)

Broadcast (Multicast!) Phase

- Use proposed multicast scheme

Parallel MIMO Relay Network

- Tx conveys message to $R x$ via parallel relays

Decode-and-Forward

- BC (multicast!) phase: Use proposed multicast scheme
- MAC phase: Equivalent to MIMO-P2P with individual power constraints

Decode-and-Forward + Amplify-and-Forward

Can be constructed for specific cases (under generalized Weyl's condition)

MIMO Multicast of a Gaussian Source (New Achievable)

 [Kh.-Kochman-Erez SP'12]

- s - Scalar white Gaussian source of power P_{s}.
- Separation does not hold!
- Different triangularization is needed
- Combine with hybrid digital-analog scheme [Kh.-Kochman-Erez SP'12]

Hybrid digital-analog scheme

- $\left(N_{t}-1\right)$ sub-channels with equal diagonal values:

Transmit digital message $=$ quantized source

- Last gain differs: Transmit analog quantization error
- Decomposition possible under a "generalized Weyl condition"
- When decomposition is possible: New achievable distortion!
- For 2 transmit-antennas: Optimum performance!

MIMO Multicast of a Gaussian Source (New Achievable)

 [Kh.-Kochman-Erez SP'12]Example: 2×2 diagonal channels

$$
\mathbf{H}_{1}^{\mathrm{eff}}=\left[\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \beta_{1}
\end{array}\right], \quad \mathbf{H}_{2}^{\mathrm{eff}}=\left[\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \beta_{2}
\end{array}\right]
$$

MIMO Multicast of a Gaussian Source (New Achievable)

 [Kh.-Kochman-Erez SP'12]Example: 2×2 diagonal channels

$$
\mathbf{H}_{1}^{\mathrm{eff}}=\left[\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \beta_{1}
\end{array}\right], \quad \mathbf{H}_{2}^{\mathrm{eff}}=\left[\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \beta_{2}
\end{array}\right]
$$

Channel Model: Gaussian MIMO Wiretap Channel

$\boldsymbol{y}_{B}=\mathbf{H}_{B} \boldsymbol{x}+\boldsymbol{z}_{B}$
$\boldsymbol{y}_{E}=\mathbf{H}_{E} \boldsymbol{x}+\boldsymbol{z}_{E}$

- $\boldsymbol{x}-N \times 1$ input vector of power P
- $\boldsymbol{y}_{B}, \boldsymbol{y}_{E}-N_{B} \times 1, N_{E} \times 1$ received vectors
- $\mathbf{H}_{B}, \mathbf{H}_{E}-N_{B} \times N, N_{E} \times N$ channel matrices
- $\boldsymbol{z}_{B} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{B}}\right), \boldsymbol{z}_{E} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{E}}\right)$ - noise vectors
- "Closed loop" (full channel knowledge everywhere)

Capacity

Gaussian SISO channel capacity [Leung-Yan-Cheong, Hellman '78]

$$
C_{S}\left(h_{B}, h_{E}\right)=[\overbrace{\log \left(1+\left|h_{B}\right|^{2} P\right)}^{I\left(X_{i} Y_{B}\right)}-\overbrace{\log \left(1+\left|h_{E}\right|^{2} P\right)}^{I\left(X_{i} Y_{E}\right)}]_{+}
$$

Gaussian MIMO channel capacity [Khisti,Wornell '10][Oggier,Hassibi '11]

$$
C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{E}\right)=\max _{C_{\boldsymbol{X}}:}[\overbrace{\log \left|\mathbf{1}+\mathbf{H}_{B} C_{\boldsymbol{X}} \mathbf{H}_{B}^{\dagger}\right|}^{I\left(\boldsymbol{x} \boldsymbol{\boldsymbol { y } _ { B }}\right)}-\overbrace{\log \left|\mathbf{1}+\mathbf{H}_{E} C_{\boldsymbol{X}} \mathbf{H}_{E}^{\dagger}\right|}^{I\left(\boldsymbol{x}: \boldsymbol{y}_{E}\right)}]
$$

- Maximization over $C_{\boldsymbol{X}}$ satisfying power constraint: $\operatorname{tr}\left\{C_{\boldsymbol{X}}\right\} \leq P$
- Power constraint can be replaced with covariance constraint [Liu-Shamai '09]

Scheme for General SNR [Kh.-Kochman-Khisti ISIT'14]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} C_{\boldsymbol{X}}^{1 / 2} \boldsymbol{V}_{A} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{C} C_{\boldsymbol{X}}^{1 / 2} \boldsymbol{V}_{A} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{C} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}^{\boldsymbol{T}_{C}}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs $\left(b_{i}^{2}-1, e_{i}^{2}-1\right)$
- \boldsymbol{V}_{A} of Charlie's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- \boldsymbol{V}_{A} of Bob's SVD \Rightarrow No need for V-BLAST
- $\operatorname{diag}\left\{\boldsymbol{T}_{B}\right\}, \operatorname{diag}\left\{\boldsymbol{T}_{E}\right\}$ are const. \Rightarrow Same code over all channels

Scheme for General SNR [Kh.-Kochman-Khisti ISIT'14]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} C_{\boldsymbol{X}}^{1 / 2} \boldsymbol{V}_{A} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}^{\boldsymbol{T}_{B}^{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{C} C_{\boldsymbol{X}}^{1 / 2} \boldsymbol{V}_{A} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{C} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}^{\boldsymbol{T}_{C}}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs $\left(b_{i}^{2}-1, e_{i}^{2}-1\right)$

Genie-aided secrecy-proof

- Charlie tries to recover messages sequentially (from last to first)
- For the recovery of message i all previous messages are revealed

Wiretap Capacity under an Input Covariance Constraint

- $\mathbf{C}_{\boldsymbol{x}} \preceq \overline{\mathbf{C}}_{\boldsymbol{x}}$

Theorem [Bustin-Liu-Poor-Shamai '09]

Let $\mu_{i}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right)$ be the GSVs of $G\left(\mathbf{H}_{B}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right), G\left(\mathbf{H}_{C}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right)$.
Then,

$$
C\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right)=\sum_{i=1}^{N_{A}}\left[\log \mu_{i}^{2}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right)\right]^{+}
$$

- Proof in [Bustin et al. '09] uses heavy tools such as channel enhancement and I-MMSE connection

Alternative simple proof [Kh.-Kochman-Khisti, submitted ISIT'15]
(1) The GSVD majorizes all other joint triangularizations
(2) Apply GSVD and take all GSVs >1

Model: Confidential Gaussian MIMO Broadcast

Bob: M_{B}, M_{G}
$\boldsymbol{y}_{B}=\mathbf{H}_{B} \boldsymbol{x}_{A}+\boldsymbol{z}_{B}$
$\boldsymbol{y}_{C}=\mathbf{H}_{C} \boldsymbol{x}_{A}+\boldsymbol{z}_{C}$

- M_{B} - message intended for Bob kept secret from Charlie
- M_{C} - message intended for Charlie kept secret from Bob

Capacity-Achieving Confidential MIMO Broadcast

Covariance constraint [Liu-Liu-Poor-Shamai IT'10]

- No tension between users
- Both users achieve optimal wiretap capacities simultaneously!
- Again, proof uses heavy machinery...

$$
\left[\begin{array}{c}
\mathbf{H}_{B} \overline{\mathbf{C}}_{\boldsymbol{X}}^{1 / 2} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{B}\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right) \boldsymbol{V}_{A}^{\dagger}, \quad\left[\begin{array}{c}
\mathbf{H}_{C} \overline{\mathbf{C}}_{\boldsymbol{X}}^{1 / 2} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{C}\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N}
\end{array}\right) \boldsymbol{V}_{A}^{\dagger}
$$

- Choosing directions of $b_{i}>c_{i}$ is optimal for Bob
- But... Choosing directions of $b_{i}<c_{i}$ is optimal for Charlie!

> Allocate $b_{i}>c_{i}$ to Bob
> Allocate $b_{i}<c_{i}$ to Charlie

Capacity-Achieving Confidential MIMO Broadcast

Covariance constraint [Liu-Liu-Poor-Shamai IT'10]

- No tension between users
- Both users achieve optimal wiretap capacities simultaneously!
- Again, proof uses heavy machinery...

$$
\left[\begin{array}{c}
\mathbf{H}_{B} \overline{\mathbf{C}}_{\boldsymbol{X}}^{1 / 2} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{B}\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right) \boldsymbol{V}_{A}^{\dagger}, \quad\left[\begin{array}{c}
\mathbf{H}_{C} \overline{\mathbf{C}}_{\boldsymbol{X}}^{1 / 2} \\
\mathbf{I}_{N}
\end{array}\right]=\mathbf{Q}_{C}\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N}
\end{array}\right) \boldsymbol{V}_{A}^{\dagger}
$$

Alternative simple proof [Kh.-Kochman-Khisti, submitted ISIT'15]

- Apply GSVD
- Send information to Bob over sub-channels with $b_{i}>c_{i}$
- Send information to Charlie over sub-channels with $c_{i}>b_{i}$

Gaussian Permuted Parallel Channels

- General channels: [Willems, Gorokhov IT'08][Hof, Sason, Shamai ITW'10]

- Gains $\left\{\alpha_{i}\right\}$ are known
- Order of gains is not known at Tx, but known at Rx

Equivalent Problem

Be optimal for all permutation-orders simultaneously.

Gaussian Permuted Parallel Channels

Special case of MIMO multicast problem!

N ! effective channel matrices:

$$
\mathbf{H}_{i} \triangleq\left(\begin{array}{cccc}
\alpha_{\pi_{i}(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_{i}(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_{i}(N)}
\end{array}\right), \quad \begin{aligned}
& \boldsymbol{\pi}_{i} \in S_{N} \\
& i=1, \ldots, N!
\end{aligned}
$$

Optimal precoding matrices [Hitron-Kh.-Erez ISIT'12]

- 2 gains: Hadamard/DFT; 1 real channel use
- 3 gains: DFT; 1 complex channel use $\Rightarrow 2$ real uses
- 4 gains: Quaternion-based matrix; 1 quater. $\Rightarrow 2$ complex uses
- $N>4$ gain: •••?

Part VI

Summary

Summary: Multicast is (Almost) Everywhere...

Even now, me talking to you...

Part VII

Supplementary

Wiretap under Cov. Constraint: Alternative Proof Outline

- W.l.o.g., $\mathbf{C}_{\boldsymbol{x}} \preceq \overline{\mathbf{C}}_{\boldsymbol{x}}$ can be written as

$$
\mathbf{C}_{\boldsymbol{x}}=\overline{\mathbf{C}}_{\boldsymbol{x}}^{1 / 2} \boldsymbol{V}_{A} \mathbf{D} \boldsymbol{V}_{A}^{\dagger} \overline{\mathbf{C}}_{\boldsymbol{x}}^{\dagger / 2}
$$

where \mathbf{D} is non-negative diagonal with all elements ≤ 1

- For any \boldsymbol{V}_{A},

$$
I\left(\mathbf{H}_{B}, \mathbf{C}_{\boldsymbol{x}}\right)-I\left(\mathbf{H}_{C}, \mathbf{C}_{\boldsymbol{x}}\right)=\sum_{i=1}^{N} \log \frac{b_{i}^{2}}{c_{i}^{2}}
$$

- Optimal \mathbf{D} for a given \boldsymbol{V}_{A} : truncation

$$
C_{B}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \overline{\mathbf{C}}_{\boldsymbol{x}}\right)=\max _{\boldsymbol{V}}^{A} \sum_{i=1}^{N}\left[\log \frac{b_{i}^{2}}{c_{i}^{2}}\right]^{+}
$$

- By multiplicative majorization of joint triangularization [Khina, Kochman, Erez SP'12], \boldsymbol{V}_{A} of the GSVD is optimal

