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Model: Source Multicasting over MIMO Channels
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@ s — Scalar white Gaussian source of power Ps.

x — Channel input vector of length N; of power Pi.

Y1, Yo — Output vectors of lengths Nﬁl), NSZ).

z1, zo — AWGN vectors of lengths Nﬁi) and entries of power 1.

Hy, H> — Channel matrices of dimensions Nﬁi) x N;.
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Model: Source Multicasting over MIMO Channels

@ Signal-to-distortion ratio: SDR; £ Var(S;)/Var(5; — S;).

Point-to-point (single user) — “Digital scheme” (Shannon '48)

@ Quantize source.
@ Send index digitally using a channel code.

o Optimal: Minimum distortion < Maximum SDR.

Find optimal SDR trade-off for two users.
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SISO Digital Scheme Analog Scheme

Special Case: Source Multicasting over SISO Channels

Scalar Case:
yi=hx+z
Yo =hox+ 2.
@ Signal-to-noise ratio:  SNR; £ |h;|?P.

@ Optimal “individual” performance: SDR; = 1 + SNR;.
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SISO Digital Scheme Analog Scheme

Special Case: Source Multicasting over SISO Channels

51,5, ... bits X1, X2, X3, ...

—— »{ Quantizer———Y] Channel Encoder ——3»

Digital Transmission

@ Quantize source.
@ Send (multicast) digital index to both users.

@ Cannot be simultaneously optimal for both users!
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SISO Digital Scheme Analog Scheme

Special Case: Source Multicasting over SISO Channels

Analog transmission (Goblick '61)
o Adjust power: Multiply source samples by /Py /Ps.

@ Transmit (analog) source samples.
@ Perform MMSE estimation at Rx.
@ Achieves optimum for both channels simultaneously:

SDR; =1+ SNR4
SDR> =1 + SNR»
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Back to MIMO...
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uB

Upper Bound on Signal-to-Distortion Ratios

An outer bound on the achievable SDR-pairs is given by the union
over all covariance matrices Cx, satisfying the power constraint on:

SDR; < ‘I+H1CXH1T‘ :

SDR; < ‘/ + HQCXHzT‘ .

Is this bound achievable for certain cases? )
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Const. Diag.

Constant-Diagonal Channel Matrices

0 M 0 0 h 0
H]_— 7H2_ .
0 0 - M 0 0 - h

Simultaneous optimality: SDR; = (1 + SNR;))V, i = 1,2.

Single Antenna: N =1

@ Optimum achieved by analog transmission.

@ Digital solution is suboptimal!

Multiple Antennas: N > 1

@ Analog solution cannot exploit all degrees of freedom.

@ Simultaneous optimality impossible (Reznic et al. '06).

@ Some hybrid digital-analog (HDA) schemes offer tradeoffs.
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2 X2 UB Lucky Cases Transformation Opt. Region

2 x 2 Diagonal Channel Matrices

For simplicity, concentrate on 2 x 2 diagonal high-SNR case.
(2 x 2 Diagonal Matrices / Two parallel channels) J

a; 0 ap 0
H - y H =
' <0 A1 > 2 (0 B2 >
@ Upper bound: The union over power allocation parameter
0<~y<1of

SDR; < (1 + oz,?fyPX> (1 +B7(1 - v)Px), =12

@ High-SNR limit (P > 1):

2P 2P 2
SDR; < 2% OiPx (P N g
2 2 2
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UB Lucky Cases Transformation Opt. Region

“Lucky” Cases

Equal capacity - a%ﬁf = a%ﬂ%

Digital solution:

@ Quantize source.

@ Use channel code to convey quantization index to both users.

@ Optimal since channels of same “quality” (capacity).

One gain equal (e.g. 81 = 52)
Hybrid Digital-Analog (HDA) solution (Mittal & Phamdo):

@ Quantize source.

@ Use channel code to convey quantization index over channel
of same gain.

@ Transmit quantization error over other band in an analog
manner.
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UB Lucky Cases Transformation Opt. Region

“Lucky” Cases

log |51/ 52|
Digital A
HDA

HD§|0g o1/ o
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2 X2 UB Lucky Cases Transformation Opt. Region

Solution by Transformation (1)

Equivalent parallel channels representation:

Vil a;i 0 X1 zi1 | .
' = + T, i=1,2
[Yi:2} [0 Bi}{@] [Ziﬁ]
—_——— ——— —— ——

Y H; X r 4

where x; and x; are i.i.d. of power P/2 each.

Orthogonal transformation

@ Apply an orthogonal matrix V at Tx: X = Vx.
o Apply orthogonal matrices U; at Rx-i: §; = Uy;.

@ upper bound and power stay the same!
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2 X2 UB Lucky Cases Transformation Opt. Region

Solution by Transformation (2)

Equivalent channel adequate for HDA transmission:
@ Need one of the diagonal gains equal for the digital element.

@ Do not need a diagonal matrix: Triangular suffices.

Theorem: existence of transformation

Iff a2 > a3 and 32 < /33, or vice versa, then:

ap 0 | a a T 2 T
[0 61]—"1[0 b]v 5 RV
ap 0 | a o T a T
[0 52]—U2[0 b]V = URV

where Uz, U,V are orthogonal matrices.
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2 X2 UB Lucky Cases Transformation Opt. Region

Solution by Transformation (3)

By applying V at Tx and U,-T at Rx, equivalent BC channel:

~ [ }71;1 a G X1 21;1
Yi=| -~ = 0 b + | .

L Y1;2 | L 11X ] | Z1;2 |
. il [a e@l[x] |21
y2 - ~ - 0 b + =

L Y2;2 | i 1L X ] | 222 |

Due to orthogonality:
212 _ 2732
® arb® = ajpy.

® Z; have the same statistics as z;.
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2 X2 UB Lucky Cases Transformation Opt. Region

Solution by Transformation (4)

Interference

~ N ~
Yiir= aixx -+ Ci X2 + Zzia

Vio= 0-x1 + b x> + Zis

Optimal transmission over equivalent channel

@ Quantize and send digital channel code over second channel.
@ Send analog quantization error over first channel.
@ Interference cancelation: ;.1 — ¢cixo = ajx1 + Zj.1.

@ Optimal reconstruction as in HDA for parallel channels with
one equal band.
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UB Lucky Cases Transformation Opt. Region

Optimality Region

log |81/ 52|
HDA
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2 X2 UB Lucky Cases Transformation Opt. Region

Optimality Region

log |81/ 52|
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Generalizations
Generalizations

@ Optimality for general SNR under the same condition.

@ MIMO (non-diagonal) channel: optimality under the same
condition, applied to the generalized singular values.

Higher dimension

o (N — 1) digital sub-channels, one analog.

o Explicit condition on singular values - a generalized form of
Weyl's condition used in the GTD (Jiang et al.).

@ Results carry over to colored/ISI channels
(diagonal matrix < filter in frequency domain)

@ Special case of “Network Modulation”:
Joint decomposition of channel matrices for MIMO network
problems.
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