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Networked Control vs. Traditional Control

Traditional control:

Observer and controller are co-located.

Classical systems are hardwired and well crafted
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Networked Control vs. Traditional Control

Networked control:
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Observer and controller are not co-located:
connected through noisy link

Suitable for new remote applications
(e.g., remote surgery, self-driving cars)
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Linear Quadratic Gaussian Control over Gaussian Channels

Linear quadratic Gaussian (LQG) system

x t+1 = Ax t + But + w t , w t ∼ i.i.d. N (0,W)

y t = Cx t + v t , v t ∼ i.i.d. N (0,V)

Noiseless finite-rate channel of rate R

Fixed rate: Exactly R bits are available at every time sample t

Variable rate: R bits are available on average at every t

Transmitter decides on Rt at every t s.t. 1
T

∑T
i=1 Rt ≤ R

LQG cost

J =
T∑
t=1

[
xT
t Qx t + uT

t Rut

]
+ xT

T+1FxT+1
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Linear Quadratic Gaussian Control over Gaussian Channels

Scalar Linear quadratic Gaussian (LQG) system

xt+1 = xt + ut + wt , wt ∼ i.i.d. N (0,W )

yt = xt + vt , vt ∼ i.i.d. N (0,V )

Noiseless finite-rate channel of rate R

Fixed rate: Exactly R bits are available at every time sample t

LQG cost

J =
T∑
t=1

[
Qx2t + Ru2t

]
+ Fx2T+1
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Linear Quadratic Gaussian Control over Gaussian Channels

Scalar LQG system

xt+1 = xt + ut + wt

yt = xt + vt

Finite-rate noiseless channel

Fixed-rate: R bits per time t

Plant
xt+1 = αxt + wt + ut

vt

wt

Controller/
Receiver

Observer/
Transmitter

Channel

yt

R

ut

xt
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Adaptive Fixed-Rate Quantizer

Use an adjusted quantizer to the input p.d.f.

At some point a (rare) event will happen

Input value outside effective quantization interval

Next time instant: Input will be even larger!

Avalanche effect

To avoid this ⇒ Quantizer needs to be adaptive
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Adaptive Optimal Fixed-Rate Quantizer?

Adaptive uniform quantizer [Yüksel AC’10]

Based on Jayant’s adaptive quantizer [Jayant ’73]

Similar idea in [Brockett-Liberzon AC’00]: “Zooming in/out”

Adaptive exponential quantizer [Nair-Evans ’04]

Both results prove condition on stabilizability: R > logα

But no cost optimality claims...

Other notable contributions: [Borkar-Mitter ’97]

[Tatikonda-Sahai-Mitter AC’04] [Matveev-Savkin ’04]

[Tsumura-Maciejowski CDC’03], ...

How to optimize cost?

Anatoly Khina, Yorie Nakahira, Babak Hassibi Caltech Control with Fixed-Rate Limited Feedback ICSEE 2016



Motivation Model 1 stage Multi-stage Suc. Ref. Discuss. Lloyd-Max When optimal?

Optimal Quantizer for One Sample

Let x ∼ N (0, 1)

R bits ⇒ 2R quantization points

Uniform quantizer is suboptimal

How to construct an optimal quantizer?

In general a hard (NP-hard) problem

Necessary conditions by Lloyd [’57, IT’82] and Max [IT ’60]

Also known in machine learning as “k-means” clustering
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Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

Cell i =
{
x
∣∣(x − x̂i )

2 < (x − x̂j)
2, ∀j 6= i

}
Centroid: Given quant. cells, find optimal reconstruction points

x̂i = E [x |x ∈ Cell i ]
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Lloyd-Max Algorithm

Optimal quantizer necessarily satisfies Centroid and NN

But... They are not sufficient in general! /
Lloyd-Max algorithm might converge to a local optimum...
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Lloyd-Max Algorithm

When does Lloyd-Max converge to global optimum?
[Fleischer ’64][Trushkin IT’82][Kieffer-Jahns-Obuljen IT’88]

Conditions for existence of only one local optimum ⇒ Global

Log-concave distributions satisfy these conditions

Important special case: Gaussian distribution ,

One stage of LQG with finite-rate noiseless channel X

What about more stages?
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Multi-Stage Control with Finite-Rate Feedback

First input is Gaussian ⇒ Log-concave pdf

Lloyd-Max quantizer is optimal
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Multi-Stage Control with Finite-Rate Feedback

First input arrives and chooses cell
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Multi-Stage Control with Finite-Rate Feedback

Quantization noise (“error”) is determined by the hit cell
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Multi-Stage Control with Finite-Rate Feedback

Quantization noise pdf = truncated original pdf normalized
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Multi-Stage Control with Finite-Rate Feedback

Truncated log-concave pdf is log-concave!
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Multi-Stage Control with Finite-Rate Feedback

Quantization noise is inflated by α (pdf remains log-concave)
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Multi-Stage Control with Finite-Rate Feedback

Inflated error added to new wt ⇒ Convolution of pdfs
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Multi-Stage Control with Finite-Rate Feedback

wt ∼ N (0,W ) ∗ log-concave quantization error
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Multi-Stage Control with Finite-Rate Feedback

Convolution of log-concave functions is also log-concave!
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Multi-Stage Control with Finite-Rate Feedback

Resulting pdf (in red)

Depends on cell index chosen in previous stage(s)

Log-concave

Applying Lloyd-Max quantization in second stage is optimal!

First-stage pdf (in blue) for comparison
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Optimal Greedy Algorithm

Lloyd-Max quantization minimizes squared error of that stage

Lloyd-Max quantization = Optimal greedy algorithm

But... It is not necessarily globally optimal...

Quantizer used affects pdf of future stages

Quantizer should be chosen according to the dynamic program
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Linear Quadratic Regulator (LQR) Example

LQR setting with x0 ∼ N (0,X ) and α = 1:{
xt+1 = xt + ut

yt = xt

Assume for simplicity we are interested in accumulated MMSE:

J =
T∑
t=1

x2t ,
T∑
t=1

Jt

Jt , x2t

In this case, clearly u1 = −x̂0, u2 = −
(
x̂0 − x̂0

)
{ut} sequence refines the reconstruction of x0 at every stage

This problem is known in IT as successive refinement

Anatoly Khina, Yorie Nakahira, Babak Hassibi Caltech Control with Fixed-Rate Limited Feedback ICSEE 2016



Motivation Model 1 stage Multi-stage Suc. Ref. Discuss. J1 ↔ J2 tension Generalized Lloyd-Max

Successive Refinement

Two descriptions of the source x :

Description of rate R1

First description of rate R1 and another description of rate R2

Successive refinement with encoding/decoding of long blocks
[Equitz-Cover IT’91][Rimoldi IT’94]

Optimal trade-off (R1,R2)↔ (J1, J2) is known

J2 is the same as if R1 + R2 was given to begin with (no J1)

But... Optimal scalar quantizer for J1 is not optimal for J2

Tension between optimizing J1 and J2

⇒ Suboptimality of Lloyd-Max in LQR example [Fu AC’12]
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Successive Refinement

Lloyd-Max algorithm with 2R = 16 quantization points:
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Successive Refinement

Lloyd-Max algorithm with 2R = 16 quantization points:

Lloyd-Max algorithm with 2R1 = 4 quantization points:
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Successive Refinement

Lloyd-Max algorithm with 2R = 16 quantization points:

Lloyd-Max algorithm ran for each cell with 2R2 = 4 points:
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Optimal Scalar Successive Refinement

Optimal average-stage MMSE of scalar successive refinement
[Dumitrescu-Wu IT’09]

Generalized Lloyd-Max can be constructed [Brunk-Farvardin ’96]

Converges to optimal average-stage MMSE

Extends Trushkin’s conditions to successive refinement setting

Conditions are satisfied for log-concave pdfs

LQR for α 6= 1

J = J1 + α2J2 + · · ·+ α2(T−1)Jt

Adequate generalized LM algorithm can be constructed

Converges to optimal weighted MSE J for log-concave pdfs
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Future Research: Optimal Quantization for LQG

We saw how to construct optimal quantizers for LQR

How to construct optimal quantizers for LQG control?

Input pdf at every stage is log-concave

Variant of generalized Lloyd-Max quantization will be optimal

What variant to use would be dictated by dynamic program

How to construct a good low-complexity scheme?
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Complementary Results
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High Resolution: Bennett’s (Approx.) Optimal Quantizer

Assume a large number of points

Overload noise (noise outside dynamic range) is negligible

Quantization points “can” be approximated by continuous pdf

Optimal quantization points distribution ∝ f
1/3
X

Optimal distortion = 1
12N2 ‖fX‖1/3

Under these assumptions, successively refinable
(no tensions between J1 and J2)
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