Control with Fixed-Rate Limited Feedback

Anatoly Khina

Joint work with Yorie Nakahira and Babak Hassibi

Caltech, Pasadena, CA, USA

ICSEE 2016
Eilat, Israel
November 17, 2016
Networked Control vs. Traditional Control

Traditional control:

- Observer and controller are co-located.
- Classical systems are hardwired and well crafted.
Networked Control vs. Traditional Control

Observer and controller are not co-located:
- connected through noisy link
- Suitable for new remote applications
 (e.g., remote surgery, self-driving cars)
Linear Quadratic Gaussian Control over Gaussian Channels

Linear quadratic Gaussian (LQG) system

\[x_{t+1} = Ax_t + Bu_t + w_t, \quad w_t \sim \text{i.i.d.} \; \mathcal{N}(0, W) \]
\[y_t = Cx_t + v_t, \quad v_t \sim \text{i.i.d.} \; \mathcal{N}(0, V) \]

Noiseless finite-rate channel of rate \(R \)

Fixed rate: Exactly \(R \) bits are available at every time sample \(t \)

Variable rate: \(R \) bits are available **on average** at every \(t \)

- Transmitter decides on \(R_t \) at every \(t \) s.t. \(\frac{1}{T} \sum_{i=1}^{T} R_t \leq R \)

LQG cost

\[J = \sum_{t=1}^{T} \left[x_t^T Q x_t + u_t^T R u_t \right] + x_{T+1}^T F x_{T+1} \]
Linear Quadratic Gaussian Control over Gaussian Channels

Scalar Linear quadratic Gaussian (LQG) system

\[x_{t+1} = x_t + u_t + w_t, \quad w_t \sim \text{i.i.d. } \mathcal{N}(0, W) \]
\[y_t = x_t + v_t, \quad v_t \sim \text{i.i.d. } \mathcal{N}(0, V) \]

Noiseless finite-rate channel of rate \(R \)

Fixed rate: Exactly \(R \) bits are available at every time sample \(t \)

LQG cost

\[J = \sum_{t=1}^{T} \left[Qx_t^2 + Ru_t^2 \right] + Fx_{T+1}^2 \]
Linear Quadratic Gaussian Control over Gaussian Channels

Scalar LQG system

\[x_{t+1} = x_t + u_t + w_t \]
\[y_t = x_t + v_t \]

Finite-rate noiseless channel

Fixed-rate: \(R \) bits per time \(t \)
Adaptive Fixed-Rate Quantizer

Use an adjusted quantizer to the input p.d.f.
Adaptive Fixed-Rate Quantizer

- Use an adjusted quantizer to the input p.d.f.
- At some point a (rare) event will happen
- Input value outside effective quantization interval
Adaptive Fixed-Rate Quantizer

- Use an adjusted quantizer to the input p.d.f.
- At some point a (rare) event will happen
- Input value outside effective quantization interval
- Next time instant: Input will be even larger!
- Avalanche effect
Use an adjusted quantizer to the input p.d.f.

At some point a (rare) event will happen

Input value outside effective quantization interval

Next time instant: Input will be even larger!

Avalanche effect

To avoid this ⇒ Quantizer needs to be adaptive
Adaptive Optimal Fixed-Rate Quantizer?

- Adaptive uniform quantizer [Yüksel AC’10]
 - Based on Jayant’s adaptive quantizer [Jayant ’73]
 - Similar idea in [Brockett-Liberzon AC’00]: “Zooming in/out”

- Adaptive exponential quantizer [Nair-Evans ’04]

- Both results prove condition on stabilizability: $R > \log \alpha$

- But no cost optimality claims...

- Other notable contributions: [Borkar-Mitter ’97]
 [Tatikonda-Sahai-Mitter AC’04] [Matveev-Savkin ’04]
 [Tsumura-Maciejowski CDC’03], ...

How to optimize cost?
Optimal Quantizer for One Sample

- Let $x \sim \mathcal{N}(0, 1)$
- R bits $\Rightarrow 2^R$ quantization points
- Uniform quantizer is suboptimal
- How to construct an optimal quantizer?
Optimal Quantizer for One Sample

- Let $x \sim \mathcal{N}(0, 1)$
- R bits $\Rightarrow 2^R$ quantization points
- Uniform quantizer is suboptimal
- How to construct an optimal quantizer?

- In general a hard (NP-hard) problem
- Necessary conditions by Lloyd ['57, IT'82] and Max [IT '60]
 - Also known in machine learning as “k-means” clustering
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i\}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \ \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \left\{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \; \forall j \neq i \right\}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

$$\text{Cell } i = \{x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i\}$$

Centroid: Given quant. cells, find optimal reconstruction points

$$\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]$$
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \ \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x|x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \ \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

$$\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}$$

Centroid: Given quant. cells, find optimal reconstruction points

$$\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]$$
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

$$\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}$$

Centroid: Given quant. cells, find optimal reconstruction points

$$\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]$$
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \left\{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \right\} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i] \]

Anatoly Khina, Yorie Nakahira, Babak Hassibi
Caltech
Control with Fixed-Rate Limited Feedback
ICSEE 2016
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

$$\text{Cell } i = \{x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i\}$$

Centroid: Given quant. cells, find optimal reconstruction points

$$\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]$$
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \ \forall j \neq i \}\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i\}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \ \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \quad \forall j \neq i \} \]

Centroid: Given quant. cells, find optimal reconstruction points

\[\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i] \]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x \mid (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x \mid x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E} [x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

Nearest Neighbor: Given reconstruction points, find optimal cells

\[
\text{Cell } i = \{ x | (x - \hat{x}_i)^2 < (x - \hat{x}_j)^2, \forall j \neq i \}
\]

Centroid: Given quant. cells, find optimal reconstruction points

\[
\hat{x}_i = \mathbb{E}[x | x \in \text{Cell } i]
\]
Lloyd-Max Algorithm

- Optimal quantizer necessarily satisfies **Centroid** and **NN**
- But... They are not sufficient in general! 😞
- Lloyd-Max algorithm might converge to a local optimum...
Lloyd-Max Algorithm

- Optimal quantizer necessarily satisfies *Centroid* and *NN*
- But... They are not sufficient in general! 😞
- Lloyd-Max algorithm might converge to a local optimum...
Lloyd-Max Algorithm

When does Lloyd-Max converge to global optimum?
[Fleischer ’64][Trushkin IT’82][Kieffer-Jahns-Obuljen IT’88]

- Conditions for existence of only one local optimum ⇒ Global
- Log-concave distributions satisfy these conditions
- Important special case: Gaussian distribution 😊

- One stage of LQG with finite-rate noiseless channel ✓

What about more stages?
Multi-Stage Control with Finite-Rate Feedback

- First input is Gaussian \Rightarrow Log-concave pdf
- Lloyd-Max quantizer is optimal
Multi-Stage Control with Finite-Rate Feedback

- First input arrives and chooses cell
Multi-Stage Control with Finite-Rate Feedback

- Quantization noise ("error") is determined by the hit cell
Multi-Stage Control with Finite-Rate Feedback

Quantization noise pdf = truncated original pdf normalized
Multi-Stage Control with Finite-Rate Feedback

- Truncated log-concave pdf is log-concave!
Quantization noise is inflated by α (pdf remains log-concave)
Motivation

Multi-stage

Suc. Ref.

Discuss.

Greedy LQG

Multi-Stage Control with Finite-Rate Feedback

Inflated error added to new $w_t \Rightarrow$ Convolution of pdfs
$w_t \sim \mathcal{N}(0, W) \ast \text{log-concave quantization error}$
Convolution of log-concave functions is also log-concave!
Multi-Stage Control with Finite-Rate Feedback

Resulting pdf (in red)
- Depends on cell index chosen in previous stage(s)
- Log-concave

Applying Lloyd-Max quantization in second stage is optimal!

- First-stage pdf (in blue) for comparison
Optimal Greedy Algorithm

- Lloyd-Max quantization minimizes squared error of that stage
- Lloyd-Max quantization = Optimal greedy algorithm
- But... It is not necessarily globally optimal...
- Quantizer used affects pdf of future stages
- Quantizer should be chosen according to the dynamic program
Linear Quadratic Regulator (LQR) Example

- LQR setting with $x_0 \sim \mathcal{N}(0, X)$ and $\alpha = 1$:
 \[
 \begin{cases}
 x_{t+1} = x_t + u_t \\
 y_t = x_t
 \end{cases}
 \]

- Assume for simplicity we are interested in accumulated MMSE:
 \[
 J = \sum_{t=1}^{T} x_t^2 \triangleq \sum_{t=1}^{T} J_t
 \]
 \[
 J_t \triangleq x_t^2
 \]

- In this case, clearly $u_1 = -\hat{x}_0$, $u_2 = -\left(\hat{x}_0 - \hat{x}_0\right)$

- $\{u_t\}$ sequence refines the reconstruction of x_0 at every stage

- This problem is known in IT as successive refinement
Successive Refinement

- Two descriptions of the source x:
 - Description of rate R_1
 - First description of rate R_1 and another description of rate R_2

Successive refinement with encoding/decoding of long blocks
[Equitz-Cover IT’91][Rimoldi IT’94]

- Optimal trade-off $(R_1, R_2) \leftrightarrow (J_1, J_2)$ is known
- J_2 is the same as if $R_1 + R_2$ was given to begin with (no J_1)

- But... Optimal scalar quantizer for J_1 is not optimal for J_2
- Tension between optimizing J_1 and J_2
 \Rightarrow Suboptimality of Lloyd-Max in LQR example [Fu AC’12]
Successive Refinement

Lloyd-Max algorithm with $2^R = 16$ quantization points:
Successive Refinement

Lloyd-Max algorithm with $2^R = 16$ quantization points:

Lloyd-Max algorithm with $2^{R_1} = 4$ quantization points:

Successive Refinement

Lloyd-Max algorithm with $2^R = 16$ quantization points:

Lloyd-Max algorithm ran for each cell with $2^{R_2} = 4$ points:
Optimal Scalar Successive Refinement

Optimal average-stage MMSE of scalar successive refinement
[Dumitrescu-Wu IT’09]

- Generalized Lloyd-Max can be constructed [Brunk-Farvardin ’96]
- Converges to **optimal average-stage MMSE**
- Extends Trushkin’s conditions to successive refinement setting
- Conditions are satisfied for log-concave pdfs

LQR for $\alpha \neq 1$

- $J = J_1 + \alpha^2 J_2 + \cdots + \alpha^{2(T-1)} J_t$
- Adequate generalized LM algorithm can be constructed
- Converges to optimal weighted MSE J for log-concave pdfs
Future Research: Optimal Quantization for LQG

- We saw how to construct optimal quantizers for LQR
- How to construct optimal quantizers for LQG control?
- Input pdf at every stage is log-concave
- Variant of generalized Lloyd-Max quantization will be optimal
- What variant to use would be dictated by dynamic program
- How to construct a good low-complexity scheme?
Complementary Results
Assume a large number of points

Overload noise (noise outside dynamic range) is negligible

Quantization points “can” be approximated by continuous pdf

Optimal quantization points distribution $\propto f_X^{1/3}$

Optimal distortion $= \frac{1}{12N^2} \| f_X \|_{1/3}$

Under these assumptions, successively refinable (no tensions between J_1 and J_2)