# Transmission over <br> Arbitrarily Permuted Parallel Gaussian Channels 

Anatoly Khina

## Joint work with Ayal Hitron and Uri Erez

Tel Aviv University
ISIT 2012
MIT, Cambridge, MA
July 6

## Arbitrarily Permuted Parallel Channels



- Statistics of all channels $\left\{p_{i}(y \mid x)\right\}$ are known
- Order of channels is known only to $\mathbf{R x}$ (but not to Tx!)
- Equivalent to compound channel / multicast problem $\Downarrow$ capacity is known
- Schemes: [Willems, Gorokhov '08][Hof, Sason, Shamai '10]


## Arbitrarily Permuted Gaussian Parallel Channels



- $z_{j}-\operatorname{AWGN} \mathcal{C N}(0,1)$
- Power constraints: $\mathbb{E}\left[x_{j}^{2}\right] \leq 1$


## Motivation

Frequency bins in OFDM.

## Practical Scheme

## Goal

Construct a practical capacity-approaching scheme:

- Capacity-achieving
- practical = use only:
- "off-the-shelf" fixed-SNR SISO AWGN codes
- Standard ("black box") encoding/decoding
- Signal processing


## Equivalent Channel/Scenario Representations

## Gaussian Parallel Channels

$$
y_{j}=\alpha_{j} x_{\pi(j)}+z_{j}, \quad z_{j} \sim \mathcal{C N}(0,1), \quad \mathbb{E}\left[x_{j}^{2}\right] \leq 1
$$

- Equivalent MIMO multicast channel with matrices:

$$
H_{i}=\left(\begin{array}{cccc}
\alpha_{\pi_{i}(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_{i}(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_{i}(K)}
\end{array}\right) ; \quad \begin{aligned}
& \pi_{i} \in S_{K} \\
& i=1, \ldots, K!
\end{aligned}
$$

- Capacity of equivalent compound channel:

$$
C=\sum_{j=1}^{K} \log \left(1+\left|\alpha_{j}\right|^{2}\right)
$$

## "Bottleneck" Problem

Channel matrices:

$$
H_{i}=\left(\begin{array}{cccc}
\alpha_{\pi_{i}(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_{i}(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_{i}(K)}
\end{array}\right) ; \quad \begin{aligned}
& \pi_{i} \in S_{K} \\
& i=1, \ldots, K!
\end{aligned}
$$

## Naïve approach

- Use SISO coding and decoding over each SISO sub-channel
- Rate limited to the minimum gain of all users!


## "Bottleneck" Problem

## Naïve approach

- Use SISO coding and decoding over each SISO sub-channel
- Rate limited to the minimum gain of all users!


## Example

$$
H_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), H_{2}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

- Gains of first sub-channel to both users $=1,2$
- $R_{1}=\log \left(1+\min \left\{1^{2}, 2^{2}\right\}\right)=\log (1+1)$
- Gains of second sub-channel to both users $=2,1$
- $\Rightarrow R_{2}=\log \left(1+\min \left\{1^{2}, 2^{2}\right\}\right)=\log (1+1)$
- $C=\log \left(1+1^{2}\right)+\log \left(1+2^{2}\right)>R_{1}+R_{2}$


## Diagonal Form $\rightarrow$ Triangular Form

## Idea

- Apply unitary operation on the right (@Tx)
$\Rightarrow$ power constraints unchanged
- Apply (different) unitary operations on the left (@Rx)
$\Rightarrow$ noise statistics unchanged
- Shape diagonals to be the same for all users


## Problem

- Cannot be achieved for diagonal matrices...
- But... Triangular form suffices!


## Diagonal Form $\rightarrow$ Triangular Form

## Joint Equi-Diagonal Triangularization (JET)

$$
\begin{gathered}
U_{i}^{\dagger} H_{i} V=T_{i}=\left(\begin{array}{cccc}
t_{1} & * & \cdots & * \\
0 & t_{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & t_{K}
\end{array}\right) \\
\operatorname{diag}\left(T_{1}\right)=\operatorname{diag}\left(T_{2}\right)=\cdots=\operatorname{diag}\left(T_{k}\right)=\cdots
\end{gathered}
$$

Example for $K=2$

$$
\begin{aligned}
& \tilde{y}_{1}=[T]_{11} x_{1}+\overbrace{[T]_{12} x_{2}}^{\text {Interference }}+\tilde{z}_{1} \\
& \tilde{y}_{2}=0 x_{1}+[T]_{22} x_{2}+\tilde{z}_{2}
\end{aligned}
$$

## Diagonal Form $\rightarrow$ Triangular Form

## Previously known results for general matrices

- Possible for K=2 matrices [Khina, Kochman, Erez '12]
- Not possible for more...
- We have K! matrices!
- But... The matrices are of special strucure!


## Equivalence to Cholesky Decomposition

## Joint Equi-Diagonal Triangularization (JET)

$$
U_{i}^{\dagger} H_{i} V=T_{i}=\left(\begin{array}{cccc}
t_{1} & * & \cdots & * \\
0 & t_{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & t_{K}
\end{array}\right)
$$

## JET Revisited - Cholesky Decomposition

$$
T_{i}^{\dagger} T_{i}=V^{\dagger} H_{i}^{\dagger} \varphi \ddots^{\dagger} H_{i} V=V^{\dagger} H_{i}^{\dagger} H_{i} V
$$

- Goal: Look for $V$ which provides Cholesky decompositions of $V^{\dagger} H_{i}^{\dagger} H_{i} V$ with equal diagonals for all users


## Space Only: $K=2$ Parallel Channels

## Joint Equidiagonal Triangularization for $K=2$

$$
\begin{array}{cc}
H_{1}^{\dagger} H_{1}=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), & H_{2}^{\dagger} H_{2}=\left(\begin{array}{cc}
b & 0 \\
0 & a
\end{array}\right) \\
V^{\dagger} H_{i}^{\dagger} H_{i} V=T_{i}^{\dagger} T_{i}, & T_{i}=\left(\begin{array}{cc}
t_{1} & * \\
0 & t_{2}
\end{array}\right)
\end{array}
$$

## $V=$ Hadamard Matrix

$$
\begin{gathered}
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
t_{1}^{2}=\frac{a+b}{2}, \quad t_{1}^{2} t_{2}^{2}=a b
\end{gathered}
$$

- Precoding does not depend on $a, b$ (but the rates do)
- Real-valued precoding matrix suffices


## Space Only: K=3 Parallel Channels

## Joint Equidiagonal Triangularization for $K=3$

$$
\begin{aligned}
H_{1}^{\dagger} H_{1} & =\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right) \\
V^{\dagger} H_{i}^{\dagger} H_{i} V & =T_{i}^{\dagger} T_{i}, \quad T_{i}=\left(\begin{array}{ccc}
t_{1} & * & * \\
0 & t_{2} & * \\
0 & 0 & t_{3}
\end{array}\right)
\end{aligned}
$$

DFT Matrix

$$
\begin{gathered}
V=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & e^{j \frac{2 \pi}{3}} & e^{-j \frac{2 \pi}{3}} \\
1 & e^{-j \frac{2 \pi}{3}} & e^{j \frac{j \pi}{3}}
\end{array}\right) \\
t_{1}^{2}=\frac{a+b+c}{3}, \quad t_{1}^{2} t_{2}^{2}=\frac{a b+a c+b c}{3}, \quad t_{1}^{2} t_{2}^{2} t_{3}^{2}=a b c
\end{gathered}
$$

- Again precoding does not depend on $a, b, c$
- Complex-valued precoding matrix


## Space Only for $K=4$ Parallel Channels?

## Joint Equidiagonal Triangularization for $K=4$

$$
\begin{gathered}
H_{1}^{\dagger} H_{1}=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \\
V^{\dagger} H_{i}^{\dagger} H_{i} V=T_{i}^{\dagger} T_{i}, \quad T_{i}=\left(\begin{array}{cccc}
t_{1} & * & * & * \\
0 & t_{2} & * & * \\
0 & 0 & t_{3} & * \\
0 & 0 & 0 & t_{4}
\end{array}\right)
\end{gathered}
$$

## Problem

- FFT matrix does not work
- Hadamard matrix does not work either
- No other real/complex unitary $V$ applies, in general


## Space-Time

$K=2$

- Hadamard Matrix
- $2 \times 2$ Real-Valued: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$K=3$
- FFT Matrix
- $3 \times 3$ Complex-valued: $\mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$
- Can be materialized via $\mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$ :

$$
(a+i b) \Longleftrightarrow\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

## Space-Time Coding

- 1 complex channel use materialized by 2 real channel uses


## Space-Time Coding Structure

$$
T_{i}=U_{i}^{\dagger} H_{i} V
$$

- Bunch two channel uses together:

- $\mathcal{H}_{i}$ have a block-diagonal structure
- Use general $\mathcal{U}_{i}, \mathcal{V}$ (not block-diagonal):

$$
T_{i=}=\left(\mathcal{U}_{i}\right)^{\dagger} \overbrace{\left(\begin{array}{cc}
H_{i} & \mathbf{0} \\
\mathbf{0} & H_{i}
\end{array}\right)}^{\mathcal{H}_{i}}(V)
$$

- Exploit block-diagonal structure of time-extended channels $\mathcal{H}_{i}$


## K = 4 Parallel Channels

## Difficulty

- Search for $8 \times 8$ complex matrix becomes hard
- Instead, restrict search to special structure
- "Natural" time-extension representation of real $\rightarrow$ complex
- "Natural" time-extension of complex $\rightarrow$ quaternion


## Quaternions [Hamilton 1844]

$$
\begin{gathered}
q=a+b i+c j+d k \\
a, b, c, d \in \mathbb{R} \\
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \quad \mathrm{i}=\mathrm{k}, \quad \mathrm{jk}=\mathrm{i}, \quad \mathrm{ki}=\mathrm{j}
\end{gathered}
$$

## Quaternions over reals

$$
q=a+b i+c j+d k
$$

$$
\Uparrow
$$

$$
\left(\begin{array}{cccc}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

$$
a, b, c, d \in \mathbb{R}
$$

Quaternions over complex

$$
q=\overbrace{(a+b i)}^{z_{1}}+\overbrace{(c-d \mathrm{i})}^{z_{2}}=z_{1}+\mathrm{j} z_{2}
$$

$$
\mathfrak{i}
$$

$$
\begin{array}{r}
\left(\begin{array}{cc}
z_{1} & -z_{2}^{*} \\
z_{2} & z_{1}^{*}
\end{array}\right) \\
z_{1}, z_{2} \in \mathbb{C}
\end{array}
$$

## Quaternions [Hamilton 1844]

## Why Quaternions?

- Associative:

$$
q_{1}\left(q_{2} q_{3}\right)=\left(q_{1} q_{2}\right) q_{3}
$$

- Exists an inner product:

$$
\begin{gathered}
(u, v)=\sum_{i=1}^{n} u_{i}^{*} v_{i} \\
(a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k})^{*} \triangleq a-b \mathrm{i}-c \mathrm{j}-d \mathrm{k}
\end{gathered}
$$

- $\Rightarrow$ Gram-Schmidt is possible
- Also possible: QR and Cholesky decompositions
- All the desired properties of the complex
- (but not cummutative!)


## Space-Time via Quaternions for $K=4$

## Equi-diagonal Triangularization over Quaternions

$$
\begin{gathered}
H_{1}^{\dagger} H_{1}=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \\
V^{\dagger} H_{i}^{\dagger} H_{i} V=T_{i}^{\dagger} T_{i}, \quad T_{i}=\left(\begin{array}{cccc}
t_{1} & * & * & * \\
0 & t_{2} & * & * \\
0 & 0 & t_{3} & * \\
0 & 0 & 0 & t_{4}
\end{array}\right)
\end{gathered}
$$

The solution (up to degrees of freedom...)

$$
V=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & x & \mathrm{i} & \mathrm{iy} \\
1 & z & -1 & -z \\
1 & y & -\mathrm{i} & -\mathrm{ix}
\end{array}\right)
$$

$x=\frac{1}{3}(-1-2 i-\sqrt{2} j+\sqrt{2} k), \quad y=\frac{1}{3}(-1+2 i-\sqrt{2} j-\sqrt{2} k), \quad z=\frac{1}{3}(-1+2 \sqrt{2} j)$

## Space-Time via Quaternions for $K=4$

## Equi-diagonal Triangularization over Quaternions

$$
\begin{gathered}
H_{1}^{\dagger} H_{1}=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right) \\
V^{\dagger} H_{i}^{\dagger} H_{i} V=T_{i}^{\dagger} T_{i}, \quad T_{i}=\left(\begin{array}{cccc}
t_{1} & * & * & * \\
0 & t_{2} & * & * \\
0 & 0 & t_{3} & * \\
0 & 0 & 0 & t_{4}
\end{array}\right)
\end{gathered}
$$

## The diagonal values

$$
\begin{gathered}
t_{1}^{2}=\frac{A+B+C+D}{4}, \quad t_{1}^{2} t_{2}^{2}=\frac{A B+A C+A D+B C+B D+C D}{6}, \\
t_{1}^{2} t_{2}^{2} t_{3}^{2}=\frac{A B C+A B D+A C D+B C D}{4}, \quad t_{1}^{2} t_{2}^{2} t_{3}^{2} t_{4}^{2}=A B C D
\end{gathered}
$$

## Space-Time for $K>4$

## $K=5$ and $K=6$

- There exist quaternion solutions!
- Coefficients found numerically (unlike in $K=4$ case)


## $K \geq 7$

- Problem becomes computationally hard
- Bigger structures might be needed (Clifford/cyclic-division algebras?)

