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Arbitrarily Permuted Parallel Channels
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Statistics of all channels {pi (y |x)} are known

Order of channels is known only to Rx (but not to Tx!)

Equivalent to compound channel / multicast problem

⇓
capacity is known

Schemes: [Willems, Gorokhov ’08][Hof, Sason, Shamai ’10]
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Arbitrarily Permuted Gaussian Parallel Channels
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zj – AWGN CN (0, 1)

Power constraints: E[x2j ] ≤ 1

Motivation

Frequency bins in OFDM.
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Practical Scheme

Goal

Construct a practical capacity-approaching scheme:

Capacity-achieving

practical = use only:

“off-the-shelf” fixed-SNR SISO AWGN codes

Standard (“black box”) encoding/decoding

Signal processing
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Equivalent Channel/Scenario Representations

Gaussian Parallel Channels

yj = αjxπ(j) + zj , zj ∼ CN (0, 1) , E
[
x2j
]
≤ 1

Equivalent MIMO multicast channel with matrices:

Hi =








α
πi (1) 0 · · · 0

0 α
πi (2) · · · 0

...
...

. . .
...

0 0 · · · α
πi (K)








;
πi ∈ SK
i = 1, . . . ,K !

Capacity of equivalent compound channel:

C =
K∑

j=1

log
(

1 + |αj |2
)
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“Bottleneck” Problem

Channel matrices:

Hi =








α
πi (1) 0 · · · 0

0 α
πi (2) · · · 0

...
...

. . .
...

0 0 · · · α
πi (K)








;
πi ∈ SK
i = 1, . . . ,K !

Näıve approach

Use SISO coding and decoding over each SISO sub-channel

Rate limited to the minimum gain of all users!
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“Bottleneck” Problem

Näıve approach

Use SISO coding and decoding over each SISO sub-channel

Rate limited to the minimum gain of all users!

Example

H1 =

(
1 0
0 2

)

, H2 =

(
2 0
0 1

)

Gains of first sub-channel to both users = 1, 2

R1 = log(1 + min{12, 22}) = log(1 + 1)

Gains of second sub-channel to both users = 2, 1

⇒ R2 = log(1 + min{12, 22}) = log(1 + 1)

C = log(1 + 12) + log(1 + 22) > R1 + R2

Ayal Hitron, Anatoly Khina, Uri Erez (TAU) Transmission over Arbitrarily Parallel Gaussian Channels



Diagonal Form → Triangular Form

Idea

Apply unitary operation on the right (@Tx)

⇒ power constraints unchanged

Apply (different) unitary operations on the left (@Rx)

⇒ noise statistics unchanged

Shape diagonals to be the same for all users

Problem

Cannot be achieved for diagonal matrices...

But... Triangular form suffices!
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Diagonal Form → Triangular Form

Joint Equi-Diagonal Triangularization (JET)

U
†
i HiV = Ti =








t1 ∗ · · · ∗
0 t2 · · · ∗
...

...
. . .

...
0 0 · · · tK








diag(T1) = diag(T2) = · · · = diag(Tk) = · · · .

Example for K = 2

ỹ1 = [T ]11x1 +

Interference
︷ ︸︸ ︷

[T ]12x2 + z̃1

ỹ2 = 0 x1 + [T ]22x2 + z̃2
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Diagonal Form → Triangular Form

Previously known results for general matrices

Possible for K=2 matrices [Khina, Kochman, Erez ’12]

Not possible for more...

We have K ! matrices!

But... The matrices are of special strucure!
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Equivalence to Cholesky Decomposition

Joint Equi-Diagonal Triangularization (JET)

U
†
i HiV = Ti =








t1 ∗ · · · ∗
0 t2 · · · ∗
...

...
. . .

...
0 0 · · · tK








JET Revisited – Cholesky Decomposition

T
†
i Ti = V †H

†
i�

��UU†HiV = V †H
†
i HiV

Goal: Look for V which provides Cholesky decompositions of
V †H

†
i HiV with equal diagonals for all users
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Space Only: K = 2 Parallel Channels

Joint Equidiagonal Triangularization for K = 2

H
†
1H1 =

(
a 0
0 b

)

, H
†
2H2 =

(
b 0
0 a

)

V †H
†
i HiV = T

†
i Ti , Ti =

(
t1 ∗
0 t2

)

V = Hadamard Matrix

V =
1√
2

(
1 1
1 −1

)

t21 =
a + b

2
, t21t

2
2 = ab

Precoding does not depend on a, b (but the rates do)

Real-valued precoding matrix suffices
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Space Only: K = 3 Parallel Channels

Joint Equidiagonal Triangularization for K = 3

H
†
1H1 =





a 0 0
0 b 0
0 0 c





V †H
†
i HiV = T

†
i Ti , Ti =





t1 ∗ ∗
0 t2 ∗
0 0 t3





DFT Matrix

V =
1√
3





1 1 1

1 e j
2π
3 e−j 2π3

1 e−j 2π3 e j
2π
3





t21 =
a+ b + c

3
, t21 t

2
2 =

ab + ac + bc

3
, t21 t

2
2 t

2
3 = abc

Again precoding does not depend on a, b, c

Complex-valued precoding matrix
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Space Only for K = 4 Parallel Channels?

Joint Equidiagonal Triangularization for K = 4

H
†
1H1 =







a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d







V †H
†
i HiV = T

†
i Ti , Ti =







t1 ∗ ∗ ∗
0 t2 ∗ ∗
0 0 t3 ∗
0 0 0 t4







Problem

FFT matrix does not work

Hadamard matrix does not work either

No other real/complex unitary V applies, in general
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Space–Time

K = 2

Hadamard Matrix

2× 2 Real-Valued: R2 → R
2

K = 3

FFT Matrix

3× 3 Complex-valued: C3 → C
3

Can be materialized via R
6 → R

6:

(a + ib) ⇐⇒
(

a −b

b a

)

Space–Time Coding

1 complex channel use materialized by 2 real channel uses
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Space–Time Coding Structure

Ti = U
†
i HiV X

Bunch two channel uses together:

Ti
︷ ︸︸ ︷
(

Ti 0
0 Ti

)

=

U
†
i

︷ ︸︸ ︷(

U
†
i 0

0 U
†
i

)
Hi

︷ ︸︸ ︷
(

Hi 0
0 Hi

)

V
︷ ︸︸ ︷
(

V 0
0 V

)

X

Hi have a block-diagonal structure

Use general Ui , V (not block-diagonal):

Ti=
(Ui

)†

Hi
︷ ︸︸ ︷
(

Hi 0
0 Hi

) (V)

X

Exploit block-diagonal structure of time-extended channels Hi
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K = 4 Parallel Channels

Difficulty

Search for 8× 8 complex matrix becomes hard

Instead, restrict search to special structure

“Natural” time-extension representation of real → complex

“Natural” time-extension of complex → quaternion
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Quaternions [Hamilton 1844]

q =a + bi + c j + dk

a, b, c , d ∈ R

i2 = j2 = k2 = −1 , ij = k , jk = i , ki = j

Quaternions over reals

q = a + bi + c j + dk

m






a −b −c −d

b a −d c

c d a −b

d −c b a







a, b, c , d ∈ R

Quaternions over complex

q =

z1
︷ ︸︸ ︷

(a + bi)+j

z2
︷ ︸︸ ︷

(c − d i) = z1 + jz2

m
(

z1 −z∗2
z2 z∗1

)

z1, z2 ∈ C
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Quaternions [Hamilton 1844]

Why Quaternions?

Associative:
q1(q2q3) = (q1q2)q3

Exists an inner product:

(u, v) =

n∑

i=1

u∗i vi

(a + bi + c j + dk)∗ , a − bi− c j− dk

⇒ Gram-Schmidt is possible

Also possible: QR and Cholesky decompositions

All the desired properties of the complex

(but not cummutative!)
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Space–Time via Quaternions for K = 4

Equi-diagonal Triangularization over Quaternions

H
†
1H1 =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









V
†
H

†
i HiV = T

†
i Ti , Ti =









t1 ∗ ∗ ∗

0 t2 ∗ ∗

0 0 t3 ∗

0 0 0 t4









The solution (up to degrees of freedom...)

V =
1

2









1 1 1 1
1 x i iy
1 z −1 −z

1 y −i −ix









x =
1

3
(−1−2i−

√
2j+

√
2k) , y =

1

3
(−1+2i−

√
2j−

√
2k) , z =

1

3
(−1+2

√
2j)
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Space–Time via Quaternions for K = 4

Equi-diagonal Triangularization over Quaternions

H
†
1H1 =









a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d









V
†
H

†
i HiV = T

†
i Ti , Ti =









t1 ∗ ∗ ∗

0 t2 ∗ ∗

0 0 t3 ∗

0 0 0 t4









The diagonal values

t21 =
A+ B + C + D

4
, t21 t

2
2 =

AB + AC + AD + BC + BD + CD

6
,

t21 t
2
2 t

2
3 =

ABC + ABD + ACD + BCD

4
, t21 t

2
2 t

2
3 t

2
4 = ABCD
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Space–Time for K > 4

K = 5 and K = 6

There exist quaternion solutions!

Coefficients found numerically (unlike in K = 4 case)

K ≥ 7

Problem becomes computationally hard

Bigger structures might be needed
(Clifford/cyclic-division algebras?)
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