Transmission over Arbitrarily Permutated Parallel Gaussian Channels

Anatoly Khina

Joint work with Ayal Hitron and Uri Erez

Tel Aviv University

ISIT 2012
MIT, Cambridge, MA
July 6
Arbitrarily Permuted Parallel Channels

Statistics of all channels \(\{p_i(y|x)\} \) are known

Order of channels is known only to Rx (but not to Tx!)

Equivalent to **compound channel / multicast problem**

\[\downarrow \]

capacity is known

Schemes: [Willems, Gorokhov '08][Hof, Sason, Shamai '10]
Arbitrarily Permuted **Gaussian** Parallel Channels

\[x_1, x_2, \ldots, x_K \]

\[z_1, z_2, \ldots, z_K \]

- \(z_j \) – AWGN \(\mathcal{CN}(0, 1) \)
- Power constraints: \(\mathbb{E}[x_j^2] \leq 1 \)

Motivation

Frequency bins in OFDM.
Goal

Construct a practical capacity-approaching scheme:

- Capacity-achieving

- **practical** = use only:
 - “off-the-shelf” fixed-SNR SISO AWGN codes
 - Standard ("black box") encoding/decoding
 - Signal processing
Equivalent Channel/Scenario Representations

Gaussian Parallel Channels

\[y_j = \alpha_j x_{\pi(j)} + z_j, \quad z_j \sim \mathcal{CN}(0, 1), \quad \mathbb{E}[x_j^2] \leq 1 \]

- Equivalent MIMO multicast channel with matrices:

\[
H_i = \begin{pmatrix}
\alpha_{\pi_i(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_i(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_i(K)}
\end{pmatrix}; \quad \pi_i \in S_K \\
i = 1, \ldots, K!
\]

- Capacity of equivalent compound channel:

\[
C = \sum_{j=1}^{K} \log \left(1 + |\alpha_j|^2 \right)
\]
“Bottleneck” Problem

Channel matrices:

\[H_i = \begin{pmatrix}
\alpha_{\pi_i(1)} & 0 & \cdots & 0 \\
0 & \alpha_{\pi_i(2)} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{\pi_i(K)}
\end{pmatrix} ; \quad \pi_i \in S_K
\]

\[i = 1, \ldots, K! \]

Naïve approach

- Use SISO coding and decoding over each SISO sub-channel
- Rate limited to the minimum gain of all users!
“Bottleneck” Problem

Naïve approach

- Use SISO coding and decoding over each SISO sub-channel
- Rate limited to the minimum gain of all users!

Example

\[
H_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad H_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}
\]

- Gains of first sub-channel to both users = 1, 2
- \(R_1 = \log(1 + \min\{1^2, 2^2\}) = \log(1 + 1) \)
- Gains of second sub-channel to both users = 2, 1
- \(R_2 = \log(1 + \min\{1^2, 2^2\}) = \log(1 + 1) \)
- \(C = \log(1 + 1^2) + \log(1 + 2^2) > R_1 + R_2 \)
Diagonal Form → Triangular Form

Idea
- Apply unitary operation on the right (@Tx)
 ⇒ power constraints unchanged
- Apply (different) unitary operations on the left (@Rx)
 ⇒ noise statistics unchanged
- Shape diagonals to be the same for all users

Problem
- Cannot be achieved for diagonal matrices...
- But... Triangular form suffices!
Joint Equi-Diagonal Triangularization (JET)

\[U_i^\dagger H_i V = T_i = \begin{pmatrix}
 t_1 & * & \cdots & * \\
 0 & t_2 & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & t_K
\end{pmatrix} \]

\[\text{diag}(T_1) = \text{diag}(T_2) = \cdots = \text{diag}(T_k) = \cdots. \]

Example for \(K = 2 \)

\[\tilde{y}_1 = [T]_{11} x_1 + [T]_{12} x_2 + \tilde{z}_1 \]
\[\tilde{y}_2 = 0 x_1 + [T]_{22} x_2 + \tilde{z}_2 \]
Previously known results for general matrices

- Possible for $K=2$ matrices [Khina, Kochman, Erez ’12]
- Not possible for more...
- We have $K!$ matrices!
- But... The matrices are of special structure!
Equivalence to Cholesky Decomposition

Joint Equi-Diagonal Triangularization (JET)

\[U_i^\dagger H_i V = T_i = \begin{pmatrix} t_1 & * & \cdots & * \\ 0 & t_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_K \end{pmatrix} \]

JET Revisited – Cholesky Decomposition

\[T_i^\dagger T_i = V^\dagger H_i^\dagger U U^\dagger H_i V = V^\dagger H_i^\dagger H_i V \]

Goal: Look for \(V \) which provides Cholesky decompositions of \(V^\dagger H_i^\dagger H_i V \) with equal diagonals for all users
Joint Equidiagonal Triangularization for $K = 2$

$H_1^\dagger H_1 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $H_2^\dagger H_2 = \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix}$

$V^\dagger H_i^\dagger H_i V = T_i^\dagger T_i$, $T_i = \begin{pmatrix} t_1 & * \\ 0 & t_2 \end{pmatrix}$

$V =$ Hadamard Matrix

$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$t_1^2 = \frac{a + b}{2}$, $t_1^2 t_2^2 = ab$

- Precoding does not depend on a, b (but the rates do)
- Real-valued precoding matrix suffices
Space Only: $K = 3$ Parallel Channels

Joint Equidiagonal Triangularization for $K = 3$

\[
H_1^\dagger H_1 = \begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}
\]

\[
V^\dagger H_i^\dagger H_i V = T_i^\dagger T_i, \quad T_i = \begin{pmatrix}
t_1 & * & * \\
0 & t_2 & * \\
0 & 0 & t_3
\end{pmatrix}
\]

DFT Matrix

\[
V = \frac{1}{\sqrt{3}} \begin{pmatrix}
1 & 1 & 1 \\
e^{j\frac{2\pi}{3}} & e^{j\frac{2\pi}{3}} & e^{-j\frac{2\pi}{3}} \\
e^{-j\frac{2\pi}{3}} & e^{-j\frac{2\pi}{3}} & e^{j\frac{2\pi}{3}}
\end{pmatrix}
\]

\[
t_1^2 = \frac{a + b + c}{3}, \quad t_1^2 t_2^2 = \frac{ab + ac + bc}{3}, \quad t_1^2 t_2^2 t_3^2 = abc
\]

- Again precoding does not depend on a, b, c
- Complex-valued precoding matrix
Space Only for $K = 4$ Parallel Channels?

Joint Equidiagonal Triangularization for $K = 4$

$$H_1^\dagger H_1 = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$$

$$V^\dagger H_i^\dagger H_i V = T_i^\dagger T_i, \quad T_i = \begin{pmatrix} t_1 & * & * & * \\ 0 & t_2 & * & * \\ 0 & 0 & t_3 & * \\ 0 & 0 & 0 & t_4 \end{pmatrix}$$

Problem

- FFT matrix does not work
- Hadamard matrix does not work either
- No other real/complex unitary V applies, in general
Space–Time Coding

- **1 complex channel use** materialized by **2 real channel uses**
Space–Time Coding Structure

\[T_i = U_i^\dagger H_i V \]

- Bunch two channel uses together:

\[
\begin{bmatrix}
 T_i \\
 0 & T_i
\end{bmatrix} = \begin{bmatrix}
 U_i^\dagger \\
 0 & U_i^\dagger
\end{bmatrix} \begin{bmatrix}
 H_i \\
 0 & H_i
\end{bmatrix} \begin{bmatrix}
 V \\
 0 & V
\end{bmatrix}
\]

- \(H_i \) have a block-diagonal structure
- Use general \(U_i, V \) (not block-diagonal):

\[
T_i = (U_i)^\dagger \begin{bmatrix}
 \mathcal{H}_i \\
 0 & \mathcal{H}_i
\end{bmatrix} V
\]

- Exploit block-diagonal structure of time-extended channels \(\mathcal{H}_i \)
$K = 4$ Parallel Channels

Difficulty

- Search for 8×8 complex matrix becomes hard
- Instead, restrict search to special structure
- “Natural” time-extension representation of $\text{real} \rightarrow \text{complex}$
- “Natural” time-extension of $\text{complex} \rightarrow \text{quaternion}$
Quaternions [Hamilton 1844]

\[q = a + bi + cj + dk \]
\[a, b, c, d \in \mathbb{R} \]

\[i^2 = j^2 = k^2 = -1, \quad ij = k, \quad jk = i, \quad ki = j \]

Quaternions over reals

\[q = a + bi + cj + dk \]
\[\begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \]
\[a, b, c, d \in \mathbb{R} \]

Quaternions over complex

\[q = (a + bi) + j(c - di) = z_1 + jz_2 \]
\[\begin{pmatrix} z_1 & -z_2^* \\ z_2 & z_1^* \end{pmatrix} \]
\[z_1, z_2 \in \mathbb{C} \]
Quaternions [Hamilton 1844]

Why Quaternions?

- Associative:
 \[q_1(q_2q_3) = (q_1q_2)q_3 \]

- Exists an inner product:
 \[(u, v) = \sum_{i=1}^{n} u_i^* v_i \]

- \((a + bi + cj + dk)^* \triangleq a - bi - cj - dk\)

- \(\Rightarrow\) Gram-Schmidt is possible

- Also possible: QR and Cholesky decompositions

- All the desired properties of the complex

- (but not commutative!)
Space–Time via Quaternions for $K = 4$

Equi-diagonal Triangularization over Quaternions

$$H_1^\dagger H_1 = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix}$$

$$V^\dagger H_i^\dagger H_i V = T_i^\dagger T_i, \quad T_i = \begin{pmatrix} t_1 & * & * & * \\ 0 & t_2 & * & * \\ 0 & 0 & t_3 & * \\ 0 & 0 & 0 & t_4 \end{pmatrix}$$

The solution (up to degrees of freedom...)

$$V = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & x & i & iy \\ 1 & z & -1 & -z \\ 1 & y & -i & -ix \end{pmatrix}$$

$$x = \frac{1}{3}(-1 - 2i - \sqrt{2}j + \sqrt{2}k), \quad y = \frac{1}{3}(-1 + 2i - \sqrt{2}j - \sqrt{2}k), \quad z = \frac{1}{3}(-1 + 2\sqrt{2}j)$$
Equi-diagonal Triangularization over Quaternions

\[H_1^\dagger H_1 = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \]

\[V^\dagger H_i^\dagger H_i V = T_i^\dagger T_i \], \quad T_i = \begin{pmatrix} t_1 & * & * & * \\ 0 & t_2 & * & * \\ 0 & 0 & t_3 & * \\ 0 & 0 & 0 & t_4 \end{pmatrix} \]

The diagonal values

\[t_1^2 = \frac{A + B + C + D}{4} \], \quad t_1^2 t_2^2 = \frac{AB + AC + AD + BC + BD + CD}{6} \]

\[t_1^2 t_2^2 t_3^2 = \frac{ABC + ABD + ACD + BCD}{4} \], \quad t_1^2 t_2^2 t_3^2 t_4^2 = ABCD \]
Space–Time for $K > 4$

$K = 5$ and $K = 6$
- There exist quaternion solutions!
- Coefficients found numerically (unlike in $K = 4$ case)

$K \geq 7$
- Problem becomes computationally hard
- Bigger structures might be needed (Clifford/cyclic-division algebras?)