Rematch and Forward: Joint Source-Channel Coding for Communications

Anatoly Khina
Joint work with: Yuval Kochman, Uri Erez, Ram Zamir
Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

February 21st, 2011

The Parallel Relay Network

- Equal bandwidth $(\rho=1)$ - Schein and Gallager 2000
- Bandwidth expansion/compression factor: $\rho \triangleq \frac{B W_{B C}}{B W_{M A C}}$.

Definitions

Symmetric Case

$$
P_{1}=P_{2}=\cdots=P_{M} \triangleq P_{\mathrm{MAC}}
$$

Definitions

$$
\begin{aligned}
\mathrm{S}_{\mathrm{MAC}} & \triangleq \frac{\sum_{m=1}^{M} P_{m}}{\sigma_{Z_{\mathrm{MAC}}}^{2}}=\frac{M P_{\mathrm{MAC}}}{\sigma_{Z_{\mathrm{MAC}}}^{2}} \\
\mathrm{~S}_{\mathrm{BC}} & \triangleq \frac{P_{\mathrm{BC}}}{\sigma_{Z_{\mathrm{BC}}}^{2}} \\
C(\mathrm{~S}) & \triangleq 1 / 2 \log (1+S)
\end{aligned}
$$

For now: Assume equal bandwidths $(\rho=1)$.

Upper Bounds on Capacity

Simple Upper Bounds

- Noiseless BC: $C \leq C\left(M S_{M A C}\right)$
- Noiseless MAC: $C \leq C\left(M S_{B C}\right)$

Improved Upper Bounds

- Schein (Ph.D.) - Other cuts.
- Niesen-Diggavi - Consider several different cuts, simultaneously.

Decode-and-Forward

Decode and Forward

Encode the message at the relays and decode it again for the MAC.

$$
C_{\mathrm{DF}}=\min \left\{C\left(M \mathrm{~S}_{\mathrm{MAC}}\right), C\left(\mathrm{~S}_{\mathrm{BC}}\right)\right\}
$$

Remark

Rate must be low enough, such that each relay can decode reliably.

Compress-and-Forward

Compress and Forward

- Relays digitally compress their analog inputs and transmit them over the MAC.
- Optimal Compression $=$ CEO Approach.

$$
c_{\mathrm{CF}} \leq C\left(\mathrm{~S}_{\mathrm{BC}} C\left(\mathrm{~S}_{\mathrm{MAC}}\right)\right)
$$

(see Gastpar \& Vetterli, 2005)

Remark

Fails to achieve the coherence gain, due to separation.

Amplify-and-Forward

Amplify and Forward

Send the relay inputs up to proper amplification.

$$
C_{\mathrm{AF}}=C\left(\frac{M \mathrm{~S}_{\mathrm{MAC}} \mathrm{~S}_{\mathrm{BC}}}{\mathrm{~S}_{\mathrm{MAC}}+\mathrm{S}_{\mathrm{BC}}+1}\right)
$$

Remarks

- Accumulates the noise.
- Gains coherence gains in both sections!
- Outperforms CF for all SNRs $(\rho=1)$.

Comparsion of Different Strategies

Interpretation of Different Strategies

- Decode \& Forward: "Channel coding" approach.
- Compress \& Forward: "Source coding" approach.
- Amplify \& Forward: "Joint source-channel coding" approach.

Strategy	A \& F	D \& F	C \& F
BC coherence	\checkmark	X	X
MAC coherence	\checkmark	\checkmark	X
avoid noise accumulation	X	\checkmark	X

Colored Problem

General Problem: Noises with general color
\Downarrow
Symmetric Case: Noises in each section have the same spectrum
\Downarrow
Interesting Case: Unequal Bandwidths
\square
Bandwidth Expansion/Compression

Possible Solutions for Bandwidth Mismatch Case

Possible Solutions

- C\&F and D\&F do not exploit the coherence gains.
- A\&F does not exploit full bandwidth.

Can we exploit both gains simultaneously?

Yes we can!
\Downarrow
Rematch \& Forward

Joint Source-Channel Coding for Point-to-Point

- Use white channel codebook of arbitrary BW.
- Treat W as a source signal.
- Use joint source-channel coding to transmit W.
- Treat the reconstruction \hat{W} as output of white channel.
$C=R(D)$ for MMSE distortion
\Downarrow
Capacity is Achieved

BW mismatch: Equivalent $\mathrm{SNR} \approx \mathrm{SNR}^{\rho}$

Rematch \& Forward - Idea

Joint Source-Channel Coding Usage

- White codebook of BW $=\mathrm{BW}_{\mathrm{MAC}}$.
- The codebook is not matched to the $B C$ section.
\Downarrow
Use optimal JSCC for the first channel section $\left(R(D)=C_{B C}\right)$.
- Reconstruction $=$ Output of white channel with BW $\mathrm{MAC}^{\text {. }}$
- Apply A\&F to reconstructions.

Conclusion

$J S C C$ exploits coherence gains for $B W_{B C} \neq B W_{M A C}$.

Rematch \& Forward - Scheme

Scheme:

Equivalent scheme:

Maximally Analog Reconstruction Error

Problem

Not every JSSC scheme achieves full possible coherence.
Errors should be summed non-coherently.

\Downarrow
 Need analog (codeword independent) JSCC scheme

Definition (Maximally Analog Reconstruction Error JSCC Scheme)
A JSCC scheme for source with BW ${ }_{S C}$ and channel with BW ${ }_{C H}$, where the unbiased reconstruction error is independent of the source for all $f<\min \left\{B W_{S C}, B W_{C H}\right\}$.

Maximally Analog Reconstruction Error JSCC Shemes

BW Mismatch

- Mittal \& Phamdo (2002).
- Reznic et al.(2006).

General Colored Case

- Prabhakaran et al.
- Kochman and Zamir.

Hybrid Analog-Digital Schemes

(Mittal \& Phamdo, 2002)

BW Expansion $(\rho>1)$

- Use "excess BW" to digitally transmit quantized source.
- Use source BW to analogically transmit quantization error.
- Reconstruction error $=$ Channel noise in source BW.

BW Compression ($\rho<1$)

- Quantize excess BW component of the source.
- Transmit by superposition:

Digital code of quantized component $+$
Channel BW component

Analog Matching

General Colored (Symmetric) Case

What can we do when noises have arbitrary spectra?

Analog Matching

- Can match any BW ratio and noise color.
- Uses time-domain processing.
- Transmits an analog signal modulo-lattice.
\Downarrow
Achieves maximally analog estimation error.

Performance Example: BW Expansion

For high SNRs:

$$
\begin{aligned}
& C_{\mathrm{CF}} \leq C\left(\mathrm{~S}_{\mathrm{BC}}^{\rho}\left(\frac{C\left(\mathrm{~S}_{\mathrm{MAC}}\right)}{\rho}\right)^{\rho}\right) \\
& C_{\mathrm{DF}} \cong C\left(\min \left(M \mathrm{~S}_{\mathrm{MAC}}, \mathrm{~S}_{\mathrm{BC}}^{\rho}\right)\right) \\
& C_{\mathrm{AF}} \cong C\left(M\left(\mathrm{~S}_{\mathrm{MAC}} \| \mathrm{S}_{\mathrm{BC}}\right)\right) \\
& C_{\mathrm{RF}} \cong C\left(M\left(\mathrm{~S}_{\mathrm{MAC}} \| \mathrm{S}_{\mathrm{BC}}^{\rho}\right)\right)
\end{aligned}
$$

$$
\text { where } \quad a \| b \triangleq \frac{a b}{a+b}
$$

R\&F outperforms all other strategies for large enough M.

Performance Example: BW Expansion $(\mathrm{M}=1)$

$$
\rho=3, \quad \mathrm{~S}_{\mathrm{BC}}=10 \mathrm{~dB}
$$

Performance Example: BW Expansion $(\mathrm{M}=2)$

$$
\rho=3, \quad \mathrm{~S}_{\mathrm{BC}}=10 \mathrm{~dB}
$$

Performance Example: BW Expansion $(\mathrm{M}=8)$

$$
\rho=3, \quad \mathrm{~S}_{\mathrm{BC}}=10 \mathrm{~dB}
$$

Improvement over A\&F for $\rho=1$

- Yellow bands - used for R\&F; Cyan bands - used for D\&F.
- For R\&F: $\rho=\frac{\lambda_{B C}}{\lambda_{M A C}}$.

Improvement over A\&F for $\rho=1$

- R\&F-D\&F timesharing outperforms any known strategy.

Layered Networks

Layered Network

Layered Networks

Not a Layered Network

Layered Networks

- Rematch and Forward can be applied to "Layered Networks".

Layer 1

Layer 2

Layer 3

Layer 4

Further Research

- Non-symmetric (different noise spectra) case.
- Extension to MIMO channels.
- Usage of R\&F for more complex networks.
- Constructing good JSCC schemes for the MAC section.

HAPPY BIRTHDA !

