## Rematch and Forward: Joint Source-Channel Coding for Communications

### Anatoly Khina Joint work with: Yuval Kochman, Uri Erez, Ram Zamir

Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

February 21st, 2011

Model Definitions UB DF CF AF

## The Parallel Relay Network



- Equal bandwidth (ho=1) Schein and Gallager 2000
- Bandwidth expansion/compression factor:  $\rho \triangleq \frac{BW_{BC}}{BW_{MAC}}$ .

## Definitions

#### Symmetric Case

$$P_1 = P_2 = \cdots = P_M \triangleq P_{MAC}$$

#### Definitions

$$S_{MAC} \triangleq \frac{\sum_{m=1}^{M} P_m}{\sigma_{Z_{MAC}}^2} = \frac{MP_{MAC}}{\sigma_{Z_{MAC}}^2}$$
$$S_{BC} \triangleq \frac{P_{BC}}{\sigma_{Z_{BC}}^2}$$
$$C(S) \triangleq 1/2\log(1+S)$$

For now: Assume equal bandwidths ( $\rho = 1$ ).

æ

## Upper Bounds on Capacity

#### Simple Upper Bounds

- Noiseless BC:  $C \leq C (MS_{MAC})$
- Noiseless MAC:  $C \leq C(MS_{BC})$

#### Improved Upper Bounds

- Schein (Ph.D.) Other cuts.
- Niesen-Diggavi Consider several different cuts, *simultaneously.*

イロト イヨト イヨト イヨト

## Decode-and-Forward

#### Decode and Forward

Encode the message at the relays and decode it again for the MAC.

$$C_{\mathsf{DF}} = \min\left\{C(M\mathsf{S}_{\mathsf{MAC}}), C(\mathsf{S}_{\mathsf{BC}})\right\}$$

#### Remark

Rate must be low enough, such that each relay can decode reliably.

イロト イヨト イヨト イヨト

## Compress-and-Forward

#### Compress and Forward

- Relays digitally compress their analog inputs and transmit them over the MAC.
- Optimal Compression = CEO Approach.

$$C_{CF} \leq C \left( S_{BC} C(S_{MAC}) \right)$$

(see Gastpar & Vetterli, 2005)

#### Remark

Fails to achieve the coherence gain, due to separation.

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Amplify-and-Forward

#### Amplify and Forward

Send the relay inputs up to proper amplification.

$$C_{\rm AF} = C \left( \frac{M S_{\rm MAC} S_{\rm BC}}{S_{\rm MAC} + S_{\rm BC} + 1} \right)$$

#### Remarks

- Accumulates the noise.
- Gains coherence gains in both sections!
- Outperforms CF for all SNRs ( $\rho = 1$ ).

イロト イヨト イヨト イヨト

## Comparsion of Different Strategies

Interpretation of Different Strategies

- **Decode & Forward:** "Channel coding" approach.
- **Compress & Forward:** "Source coding" approach.
- Amplify & Forward: "Joint source-channel coding" approach.

| Strategy                 | A & F        | D & F        | C & F |
|--------------------------|--------------|--------------|-------|
| BC coherence             | $\checkmark$ | Х            | Х     |
| MAC coherence            | $\checkmark$ | $\checkmark$ | Х     |
| avoid noise accumulation | Х            | $\checkmark$ | Х     |

イロト イヨト イヨト

## Colored Problem



## Possible Solutions for Bandwidth Mismatch Case

#### **Possible Solutions**

- C&F and D&F do not exploit the coherence gains.
- A&F does not exploit full bandwidth.

#### Can we exploit both gains simultaneously?

Yes we can!

∜

#### Rematch & Forward

Anatoly Khina RamiFest, February 21st, 2011

・ロト ・回ト ・ヨト

## Joint Source-Channel Coding for Point-to-Point



- Use white **channel** codebook of arbitrary BW.
- Treat *W* as a **source** signal.
- Use **joint source-channel** coding to transmit *W*.
- Treat the reconstruction  $\hat{W}$  as output of white channel.

C = R(D) for MMSE distortion  $\downarrow \downarrow$ Capacity is Achieved

**BW mismatch:** Equivalent SNR  $\approx$  SNR<sup>ho</sup>

## Rematch & Forward - Idea

#### Joint Source-Channel Coding Usage

- White codebook of  $\mathsf{BW}=\mathsf{BW}_{\mathsf{MAC}}.$
- The codebook is not matched to the BC section.

∜

Use optimal JSCC for the first channel section  $(R(D) = C_{BC})$ .

- Reconstruction = Output of white channel with BW<sub>MAC</sub>.
- Apply A&F to reconstructions.

#### Conclusion

JSCC exploits coherence gains for  $BW_{BC} \neq BW_{MAC}$ .

<ロ> <同> <同> <同> < 同>

## reBaccenters & Forward - Scheme

#### Scheme:



#### **Equivalent scheme:**



- 4 同 ト - 4 三 ト

## Maximally Analog Reconstruction Error

#### Problem

Not every JSSC scheme achieves full possible coherence. Errors should be summed non-coherently.

# Need analog (codeword independent) JSCC scheme

Definition (Maximally Analog Reconstruction Error JSCC Scheme)

A JSCC scheme for source with BW<sub>SC</sub> and channel with BW<sub>CH</sub>,

where the unbiased reconstruction error is independent of

the source for all  $f < \min\{BW_{SC}, BW_{CH}\}$ .

Background ho = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expansion

## Maximally Analog Reconstruction Error JSCC Shemes

#### **BW Mismatch**

- Mittal & Phamdo (2002).
- Reznic et al.(2006).

#### **General Colored Case**

- Prabhakaran et al.
- Kochman and Zamir.

## Hybrid Analog-Digital Schemes

## (Mittal & Phamdo, 2002)

### BW Expansion $(\rho > 1)$

- Use "excess BW" to digitally transmit quantized source.
- Use source BW to analogically transmit quantization error.
- Reconstruction error = Channel noise in source BW.

### BW Compression ( $\rho < 1$ )

- Quantize excess BW component of the source.
- Transmit by superposition:

Digital code of quantized component

Channel BW component

## Analog Matching

General Colored (Symmetric) Case

What can we do when noises have arbitrary spectra?

#### Analog Matching

- Can match any BW ratio and noise color.
- Uses time-domain processing.
- Transmits an analog signal modulo-lattice.
   ↓
   Achieves maximally analog estimation error.

・ロト ・回ト ・ヨト

## Performance Example: BW Expansion

For high SNRs:  $C_{\mathsf{CF}} \leq C \left( \mathsf{S}_{\mathsf{BC}}^{\rho} \left( \frac{C(\mathsf{S}_{\mathsf{MAC}})}{\rho} \right)^{\rho} \right)$  $C_{\mathsf{DF}} \cong C \left( \min \left( M \mathsf{S}_{\mathsf{MAC}}, \mathsf{S}_{\mathsf{BC}}^{\rho} \right) \right)$  $C_{\mathsf{AF}} \cong C\Big(M(\mathsf{S}_{\mathsf{MAC}}\|\mathsf{S}_{\mathsf{BC}})\Big)$  $C_{\mathsf{RF}} \cong C\Big(M\left(\mathsf{S}_{\mathsf{MAC}}\|\mathsf{S}_{\mathsf{BC}}^{\rho}\right)\Big)$ where  $a \parallel b \triangleq \frac{ab}{a + b}$ 

R&F outperforms all other strategies for large enough M.

Anatoly Khina RamiFest, February 21st, 2011

Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa

## Performance Example: BW Expansion (M=1)

$$\rho = 3$$
,  $S_{BC} = 10 dB$ 



Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa

## Performance Example: BW Expansion (M=2)

$$\rho = 3$$
,  $S_{BC} = 10 dB$ 



Anatoly Khina RamiFest, February 21st, 2011

Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa

## Performance Example: BW Expansion (M=8)

$$\rho = 3$$
,  $S_{BC} = 10 dB$ 



## Improvement over A&F for ho = 1

#### PSfrag replacements



## Improvement over A&F for ho=1



• R&F-D&F timesharing outperforms any known strategy.

・ロト ・回ト ・ヨト ・ヨト

æ

## Layered Networks

#### Layered Network



・ロト ・回ト ・ヨト ・ヨト

æ

## Layered Networks

#### Not a Layered Network



<ロ> (日) (日) (日) (日) (日)

## Layered Networks

• Rematch and Forward can be applied to "Layered Networks".



## Further Research

- Non-symmetric (different noise spectra) case.
- Extension to MIMO channels.
- Usage of R&F for more complex networks.
- Constructing good JSCC schemes for the MAC section.

# HAPPY BIRTHDAY!

Anatoly Khina RamiFest, February 21st, 2011