Rematch and Forward: Joint Source-Channel Coding for Communications

Anatoly Khina
Joint work with: Yuval Kochman, Uri Erez, Ram Zamir

Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

February 21st, 2011
Equal bandwidth ($\rho = 1$) - Schein and Gallager 2000

Bandwidth expansion/compression factor: $\rho \triangleq \frac{\text{BW}_{BC}}{\text{BW}_{MAC}}$.

- Equal bandwidth ($\rho = 1$) - Schein and Gallager 2000
- Bandwidth expansion/compression factor: $\rho \triangleq \frac{\text{BW}_{BC}}{\text{BW}_{MAC}}$.

Anatoly Khina
RamiFest, February 21st, 2011
Symmetric Case

\[P_1 = P_2 = \cdots = P_M \triangleq P_{MAC} \]

Definitions

\[S_{MAC} \triangleq \frac{\sum_{m=1}^{M} P_m}{\sigma^2 Z_{MAC}} = \frac{MP_{MAC}}{\sigma^2 Z_{MAC}} \]

\[S_{BC} \triangleq \frac{P_{BC}}{\sigma^2 Z_{BC}} \]

\[C(S) \triangleq \frac{1}{2} \log(1 + S) \]

For now: Assume equal bandwidths \((\rho = 1)\).
Upper Bounds on Capacity

Simple Upper Bounds

- **Noiseless BC**: $C \leq C(MS_{MAC})$
- **Noiseless MAC**: $C \leq C(MS_{BC})$

Improved Upper Bounds

- Schein (Ph.D.) – Other cuts.
- Niesen-Diggavi – Consider several different cuts, *simultaneously.*
Decode-and-Forward

Encode the message at the relays and decode it again for the MAC.

\[C_{DF} = \min \left\{ C(MS_{MAC}), C(S_{BC}) \right\} \]

Remark

Rate must be low enough, such that each relay can decode reliably.
Compress-and-Forward

Compress and Forward

- Relays digitally compress their analog inputs and transmit them over the MAC.
- Optimal Compression = CEO Approach.

$$C_{CF} \leq C\left(S_{BC} C(S_{MAC})\right)$$

(see Gastpar & Vetterli, 2005)

Remark

Fails to achieve the coherence gain, due to separation.
Amplify-and-Forward

Amplify and Forward

Send the relay inputs up to proper amplification.

\[C_{AF} = C \left(\frac{MS_{MAC}S_{BC}}{S_{MAC} + S_{BC} + 1} \right) \]

Remarks

- Accumulates the noise.
- **Gains coherence gains in both sections!**
- Outperforms CF for all SNRs \((\rho = 1)\).
Comparison of Different Strategies

Interpretation of Different Strategies

- **Decode & Forward**: “Channel coding” approach.
- **Compress & Forward**: “Source coding” approach.
- **Amplify & Forward**: “Joint source-channel coding” approach.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>A & F</th>
<th>D & F</th>
<th>C & F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC coherence</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MAC coherence</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>avoid noise accumulation</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
</tbody>
</table>
Colored Problem

General Problem: Noises with general color

Symmetric Case: Noises in each section have the same spectrum

Interesting Case: Unequal Bandwidths

Bandwidth Expansion/Compression
Possible Solutions for Bandwidth Mismatch Case

Possible Solutions

- C&F and D&F do not exploit the coherence gains.
- A&F does not exploit full bandwidth.

Can we exploit both gains simultaneously?

Yes we can!

Rematch & Forward
Joint Source-Channel Coding for Point-to-Point

- Use white channel codebook of arbitrary BW.
- Treat W as a source signal.
- Use joint source-channel coding to transmit W.
- Treat the reconstruction \hat{W} as output of white channel.

$C = R(D)$ for MMSE distortion

Capacity is Achieved

BW mismatch: Equivalent SNR $\approx \text{SNR}^\rho$
Rematch & Forward - Idea

Joint Source-Channel Coding Usage

- White codebook of $BW = BW_{MAC}$.
- The codebook is not matched to the BC section.
 \[\downarrow \]
 Use optimal JSCC for the first channel section ($R(D) = C_{BC}$).
- Reconstruction = Output of white channel with BW_{MAC}.
- Apply A&F to reconstructions.

Conclusion

JSCC exploits coherence gains for $BW_{BC} \neq BW_{MAC}$.
Rematch & Forward - Scheme

Scheme:

![Scheme Diagram]

Equivalent scheme:

![Equivalent Scheme Diagram]
Maximally Analog Reconstruction Error

Problem

Not every JSSC scheme achieves full possible coherence. Errors should be summed non-coherently.

\[\Downarrow \]

Need analog (codeword independent) JSCC scheme

Definition (Maximally Analog Reconstruction Error JSCC Scheme)

A JSCC scheme for source with \(BW_{SC} \) and channel with \(BW_{CH} \), where the unbiased reconstruction error is independent of the source for all \(f < \min\{BW_{SC}, BW_{CH}\} \).
Maximally Analog Reconstruction Error JSCC Schemes

BW Mismatch
- Reznic et al. (2006).

General Colored Case
- Prabakaran et al.
- Kochman and Zamir.
Hybrid Analog-Digital Schemes

(Mittal & Phamdo, 2002)

BW Expansion ($\rho > 1$)
- Use “excess BW” to digitally transmit quantized source.
- Use source BW to analogically transmit quantization error.
- Reconstruction error = Channel noise in source BW.

BW Compression ($\rho < 1$)
- Quantize excess BW component of the source.
- Transmit by superposition:
 - Digital code of quantized component
 - Channel BW component
Analog Matching

General Colored (Symmetric) Case

What can we do when noises have arbitrary spectra?

Analog Matching

- Can match *any BW ratio and noise color*.
- Uses time-domain processing.
- Transmits an analog signal modulo-lattice.

\[\downarrow \]

Achieves maximally analog estimation error.
Performance Example: BW Expansion

For high SNRs:

\[
C_{CF} \leq C \left(S_{BC}^{\rho} \left(\frac{C(S_{MAC})}{\rho} \right)^{\rho} \right)
\]

\[
C_{DF} \approx C \left(\min \left(MS_{MAC}, S_{BC}^{\rho} \right) \right)
\]

\[
C_{AF} \approx C \left(M(S_{MAC} \| S_{BC}) \right)
\]

\[
C_{RF} \approx C \left(M(S_{MAC} \| S_{BC}^{\rho}) \right)
\]

where \(a \| b \triangleq \frac{ab}{a + b} \)

R&F outperforms all other strategies for large enough \(M \).

Anatoly Khina
RamiFest, February 21st, 2011
Performance Example: BW Expansion (M=1)

\[\rho = 3, \quad S_{BC} = 10\text{dB} \]
Performance Example: BW Expansion (M=2)

\[\rho = 3, \quad S_{BC} = 10\text{dB} \]
Performance Example: BW Expansion (M=8)

\[\rho = 3, \quad S_{BC} = 10\text{dB} \]
Improvement over A&F for $\rho = 1$

- Yellow bands - used for R&F; Cyan bands - used for D&F.
- For R&F: $\rho = \frac{\lambda_{BC}}{\lambda_{MAC}}$.
Improvement over A&F for $\rho = 1$

- R&F-D&F timesharing outperforms any known strategy.
Layered Networks

Layered Network
Not a Layered Network
Rematch and Forward can be applied to "Layered Networks"
Further Research

- Non-symmetric (different noise spectra) case.
- Extension to MIMO channels.
- Usage of R&F for more complex networks.
- Constructing good JSCC schemes for the MAC section.
HAPPY BIRTHDAY!