Rematch and Forward: Joint Source/Channel Coding for Communications

Yuval Kochman, Anatoly Khina, Uri Erez, Ram Zamir

Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

December 5th, 2008

Model Definitions

r 🖓

The Parallel Relay Network

Bandwidth expansion/compression factor: ρ ≜ BW_{BC}/BW_{MAC}.
 ρ = 1 - Schein Gallager (2000).

Definitions

Symmetric Case

$$P_1 = P_2 = \cdots = P_M \triangleq P_{MAC}$$

Definitions

$$S_{MAC} \triangleq \frac{\sum_{m=1}^{M} P_m}{\sigma_{Z_{MAC}}^2} = \frac{MP_{MAC}}{\sigma_{Z_{MAC}}^2}$$
$$S_{BC} \triangleq \frac{P_{BC}}{\sigma_{Z_{BC}}^2}$$

Simple Upper Bounds on Capacity

- Noiseless BC: $C \leq \frac{1}{2} \log (1 + MS_{MAC})$
- Noiseless MAC: $C \leq \frac{\rho}{2} \log (1 + MS_{BC})$

Strategies for $\rho = 1$

Strategies

- **Decode & Forward:** Decode the message at the relays and encode it again for the MAC.
- **Compress & Forward:** Relays digitally compress their inputs and transmit them over the MAC.
- Amplify & Forward: Send relay inputs adjusted to MAC Power.

Strategy	A & F	D & F	C & F
BC coherence	\checkmark	Х	Х
MAC coherence	\checkmark	\checkmark	Х
avoid noise accumulation	Х	\checkmark	Х

Colored Problem

- General Problem: Noises with general color.
- Symmetric Case: Noises in each section have the same spectrum.
- Interesting Case: Unequal Bandwidths
 ↓
 Bandwidth Expansion/Compression.

< 🗇 🕨

Possible Solutions

Possible Solutions

- C&F and D&F do not exploit the coherence gains.
- A&F does not exploit full bandwidth.

Can we exploit both gains simultaneously? ↓ Rematch & Forward

Joint Source-Channel Coding for Point-to-Point

- Use white **channel** codebook of arbitrary BW.
- Treat *W* as a **source** signal.
- Use **joint source-channel** coding to transmit *W*.
- Treat the reconstruction \hat{W} as output of white channel.

C = R(D) for MMSE distortion $\downarrow \downarrow$ Capacity is Achieved

BW mismatch: Equivalent SNR \approx SNR^{ho}

< </>
</>
</>
</l>

Rematch & Forward

Joint Source-Channel Coding Usage

- White codebook of $BW = BW_{MAC}$.
- The codebook is not matched to the BC section.

∜

Use optimal JSCC for the first channel section $(R(D) = C_{BC})$.

- Reconstruction = Output of white channel with BW_{MAC}.
- Apply A&F to reconstructions.

Conclusion

JSCC exploits coherence gains for $BW_{BC} \neq BW_{MAC}$.

Maximally Analog Reconstruction Error

Maximally Analog Reconstruction Error JSCC Shemes

BW Mismatch

- Mittal & Phamdo (2002).
- Reznic et al.(2006).

General Colored Case

- Prabhakaran et al.
- Kochman and Zamir.

Sol. JSC for P2P R&F Max. Analog

Performance Example: BW Expansion (M=1)

$$\rho = 3$$
, $S_{BC} = 10 dB$

Sol. JSC for P2P R&F Max. Analog

æ

Performance Example: BW Expansion (M=2)

$$\rho = 3$$
, $S_{BC} = 10 dB$

Sol. JSC for P2P R&F Max. Analog

Performance Example: BW Expansion (M=8)

 $\rho = 3$, $S_{BC} = 10 dB$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∢ 臣 ≯

Layered Networks

Layered Network

.≣⇒

Layered Networks

Not a Layered Network

Layered Networks

• Rematch and Forward can be applied to "Layered Networks".

< 🗇 🕨

Further Research

- Non-symmetric (different noise spectra) case.
- Extension to MIMO channels.
- Usage of R&F for more complex networks.
- Constructing good JSCC schemes for the MAC section.