On Robust Dirty Paper Coding

Anatoly Khina* Uri Erez*

*Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

May 6th, 2008
1 Background
 - DP Channel
 - Lattice Strategies for DPC / Tomlinson-Harashima Precoding
 - Compound DP Channel

2 Robust DPC - Smart Rx
 - Finite P_S
 - Infinite P_S

3 Robust DPC - Smart Tx and Rx

4 Concluding Remarks and Further Research
Dirty Paper Channel

\[Y = X + S + N \]

\[\frac{1}{n} \sum_{i=1}^{n} x_i^2 \leq P_x \]

- \(S \) - interference, known (causally/noncausally) at Tx with average power \(P_S \).

- \(N \) - AWGN with average power \(P_N \).

Costa: \(S \) known (noncausally) @ Tx \(\rightarrow \) as good as no \(S \)

\[C = \frac{1}{2} \log(1 + \text{SNR}) \]
Applications of Dirty Paper Coding

Model serves as an information-theoretic framework for (known) interference cancellation in:

- ISI channels.
- Information embedding.
- MIMO broadcast channels.

Assumption: Tx knows channel gains.
Remarks

P_S, for time being, is arbitrarily large.

Transmitter

$$X = [v - \alpha S - U] \mod A_\Delta; \quad A_\Delta = \left[-\frac{A}{2}, \frac{A}{2} \right]$$

Receiver

$$Y' = [\alpha Y + U] \mod A_\Delta = [v + N_{\text{eff}}] \mod A_\Delta,$$

$$N_{\text{eff}} = (1 - \alpha)U + \alpha N.$$

Performances

$$\begin{align*}
\text{SNR}_{\text{eff}} &\triangleq \frac{P_X}{P_{N_{\text{eff}}^{\beta}}} \frac{\alpha_{\text{MMSE}}}{\text{SNR+1}} \rightarrow 1 + \text{SNR}. \\
R &\geq \frac{1}{2} \log(\text{SNR}_{\text{eff}}) - \frac{1}{2} \log \frac{2\pi e}{12} = \frac{1}{2} \log(1 + \text{SNR}) - \frac{1}{2} \log \frac{2\pi e}{12}.
\end{align*}$$

- **Causality Loss**
Compound Dirty Paper Channel

Dirty paper channel with perfect channel knowledge:

\[Y = X + S + N \]

SNR \(\triangleq \frac{P_X}{P_N} \)

SIR \(\triangleq \frac{P_X}{P_S} \)
Compound dirty paper channel:

\[Y = X + \frac{S}{\beta} + N \]

- \(\beta \in [1 - \delta, 1 + \delta] \) is known to Rx.
- \(\beta \) constant (non-ergodic) for whole transmission.
- Compound \(\rightarrow \) Achievable rate - worst case over all \(\beta \) values.
Compound Channel Case

Remark
\(\alpha\) is used at both ends (Tx and Rx).

Transmitter Knows \(\beta\)
The problem reduces to classical DPC case (\(\beta \equiv 1\)).

Transmitter Does NOT know \(\beta\)

What is the best strategy?
- To work with \(\alpha_{\text{MMSE}}\) at both ends?
- To work with \(\alpha_{\text{MMSE}}\) at Tx and \(\alpha_{\text{MMSE}}/\beta\) - at Rx?
- Other \(\alpha_T, \alpha_R\) selections?
Naïve Approach → Work as Before

Transmitter

\[X = [v - \alpha S - U] \mod A_\Delta \]

Receiver

\[Y = [\alpha Y + U] \mod A_\Delta = [v + N_{\text{eff}}^\beta] \mod A_\Delta, \]

\[N_{\text{eff}}^\beta = (1 - \alpha)U + \alpha \left(\frac{\beta - 1}{\beta} \right) S + \alpha N. \]

Remark

\[P_S \rightarrow \infty \Rightarrow R = 0 \]

What can we do?
Smart Receiver

Distinguish between α_R ($\alpha @ Rx$) and α_T ($\alpha @ Tx$)

Transmitter

$$X = [v - \alpha_T S - U] \mod A_\Delta.$$

Receiver

$$Y = [\alpha_R Y + U] \mod A_\Delta = [v + N_{\text{eff}}^\beta] \mod A_\Delta,$$

$$N_{\text{eff}}^\beta = (1 - \alpha_R) U + (\alpha_T \beta - \alpha_R) \frac{S}{\beta} + \alpha_R N.$$

Remarks

- $\alpha_R = \alpha_T$ - **Bad!**
- *For time being*, we optimize w.r.t. $\text{SNR}_{\text{eff}}^{\text{wc}}$.

ITW 2008
MMSE Estimation

\[\alpha_{R}^{\text{MMSE}} = \frac{1 + \frac{\alpha_{T}^{\text{MMSE}} \beta}{\text{SIR}}}{1 + \frac{1}{\text{SIR}} + \frac{1}{\text{SNR}}} \]

\[\Rightarrow \text{SNR}_{\text{eff}}^{\text{wc}} = (1 + \text{SNR}) \left(1 + \frac{1}{\text{SNR}} + \frac{1}{\text{SIR}} \right) \frac{1 + \frac{1}{\text{SNR}} + \frac{1}{\text{SIR}}}{\left(1 + \frac{1}{\text{SIR}} + \frac{1}{\text{SNR}} \right) + \frac{\text{SNR}}{\text{SIR}} (1 - \beta)^2} \]

High SNR Limit

- \(\alpha_{T} \rightarrow 1 \).

- \(\alpha_{R}^{\text{MMSE}} = \frac{1 + \frac{\beta}{\text{SIR}}}{1 + \frac{1}{\text{SIR}}} = \frac{\text{SIR} + \beta}{\text{SIR} + 1} \).

- Optimized \(\alpha_{R} \Rightarrow \text{SNR}_{\text{eff}}^{\text{wc}} = \frac{1 + \text{SIR}}{(1 - \beta)^2} \).

- Non-Optimized \(\alpha_{R} \Rightarrow \text{SNR}_{\text{eff}}^{\text{wc}} = \frac{\text{SIR}}{(1 - \beta)^2} \).
Example: \(\text{SIR} = 1 \)

Remark

Even for \(\text{SIR} = 1 \), the gain is 3dB, in the limit of high SNR.
Conclusions

- *In the high SNR regime, the scheme is interference limited due to β.*

- *Ignoring β at Rx is suboptimal and could lead to significant rate losses.*

- *For large S, Rx partially compensates for ignorance of Tx.*

\[
\max SNR^{wc}_{eff} \text{ criterion } \neq \max MI \text{ criterion,} \\
\text{since the effective noise is not Gaussian.}
\]
Random Dirty Paper Strategies

- So far - “Smart Rx”.
- Tx does not know β, but is aware of its ignorance...
- Can Tx do better?

How about Guessing β?

- α_T varies from symbol to symbol.
- Common Randomness: for any α_T, Rx uses optimal α_R as previously.
- Increases (worsens) the MSE.
- Improves the mutual-information.
Motivation

Remark
Concentrate on the case of $P_N = 0$.

Example ($B = 2$)

- $\beta \in \{1 \pm \delta\}$
- $\alpha_T \equiv 1$ minimizes the MSE but achieves a finite rate.
- $P(\alpha_T = 1 - \delta) = P(\alpha_T = 1 + \delta) = 0.5$
 obtains a larger MSE, but achieves infinite rate.
Back to our case of interest...

\[\beta \in [1 - \delta, 1 + \delta] \]

- Optimal distribution of \(\alpha_T \rightarrow \) numerical optimization.

- Lower bounds by specific choices of distribution of \(\alpha \).

- Derived upper bound

\[
\log(1 + \delta) - \log(\delta) + 1.
\]
Robust DPC Performances

\[f(\alpha) \]

\[R \text{ [nats]} = 1 + \delta f(\alpha) \]

\[P(\alpha=1) = 1 \]
Robust DPC Performances

\[f(\alpha) \]

\[R \text{ [nats]} \]

\[\alpha \sim \text{Unif}[\delta/2, \delta/2) \]

\[\Pr(\alpha = 1) = 1 \]
Robust DPC Performances

\[f(\alpha) \]

\[R \text{ [nats]} \]

\[\delta \]

\[V\text{-like} \]

\[\alpha \sim \text{Unif}[-\delta/2, \delta/2) \]

\[P(\alpha=1)=1 \]

ITW 2008
Open Question: How tight is the Upper Bound?
Further Research

- Multidimensional Lattices attain smaller gain than in classical DP channel.

- Finding the Optimal α_T distribution for the robust DPC scheme.

- Quantifying gain at finite-SNR DPC.

- Finding the capacity of the compound DP channel.

- Capacity of the “Fast-Fading” DP channel.
Noisy Performances for SNR = 17dB

\[R \text{ [nats]} = \begin{cases} \alpha & \text{if } \alpha = 1 \\ \alpha = \alpha_{\text{MMSE}} & \text{else} \end{cases} \]

\[\text{Unif}[1-\delta,1+\delta] \]

\[\text{Unif}[\alpha_{\text{MMSE}}(1-\delta),\alpha_{\text{MMSE}}(1+\delta)] \]