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Dirty Paper Channel

Y = X + S + N

DecoderEncoder
X Yv v̂

1
n

∑ n
i=1 x2

i ≤ PX

NS

S - interference, known (causally/noncausally) at Tx
with average power PS .

N - AWGN with average power PN .

Costa: S known (noncausally) @ Tx → as good as no S

C = 1
2 log(1 + SNR)
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Applications of Dirty Paper Coding

Model serves as an information-theoretic framework for (known)
interference cancellation in:

ISI channels.

Information embedding.

MIMO broadcast channels.

Assumption: Tx knows channel gains.
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Lattice Strategies / Tomlinson-Harashima Precoding

Remarks

PS , for time being, is arbitrarily large.

Transmitter

X = [v − αS − U] mod AΔ ; AΔ =
[−Δ

2 , Δ
2

]

Receiver

Y ′ = [αY + U] mod AΔ = [v + Neff] mod AΔ,

Neff = (1 − α)U + αN.

Performances

SNReff � PX
P

N
β
eff

αMMSE� SNR
SNR+1−−−−−−−−→ 1 + SNR.

R ≥ 1
2 log(SNReff) − 1

2 log 2πe
12 = 1

2 log(1 + SNR) −

Causality Loss︷ ︸︸ ︷
1

2
log

2πe

12
.
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Compound Dirty Paper Channel

Dirty paper channel with perfect channel knowledge:

Y = X + S + N S
β

DecoderEncoder
X Yv v̂

1
n

∑ n
i=1 x2

i ≤ PX

NS

SNR � PX
PN

β ∈ [1 − δ, 1 + δ] is known to Rx.

SIR � PX
PS

β constant (non-ergodic) for whole transmission.
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Compound Dirty Paper Channel

Compound dirty paper channel:

Y = X + S
β + N

DecoderEncoder
X Yv v̂

1
n

∑ n
i=1 x2

i ≤ PX

NS

1
β

β ∈ [1 − δ, 1 + δ] is known to Rx.

β constant (non-ergodic) for whole transmission.

Compound → Achievable rate - worst case over all β values.
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Compound Channel Case

Remark

α is used at both ends (Tx and Rx).

Transmitter Knows β

The problem reduces to classical DPC case (β ≡ 1).

Transmitter Does NOT know β

What is the best strategy?

To work with αMMSE at both ends?

To work with αMMSE at Tx and αMMSE/β - at Rx?

Other αT, αR selections?
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Näıve Approach → Work as Before

Transmitter

X = [v − αS − U] mod AΔ

Receiver

Y = [αY + U] mod AΔ = [v + Nβ
eff] mod AΔ,

Nβ
eff = (1 − α)U + α

(β − 1)

β
S + αN.

Remark

PS → ∞ ⇒ R = 0

What can we do?
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Smart Receiver

Distinguish between αR (α @ Rx) and αT (α @ Tx)

Transmitter

X = [v − αTS − U] mod AΔ.

Receiver

Y = [αRY + U] mod AΔ = [v + Nβ
eff] mod AΔ,

Nβ
eff = (1 − αR)U + (αTβ − αR)

S

β
+ αRN.

Remarks

αR = αT - Bad!

For time being, we optimize w.r.t. SNRwc
eff .

z ITW 2008



Background Smart Rx Smart Tx and Rx Further Research Scheme Performances Moral

MMSE Estimation

αR
MMSE =

1 + αT
MMSEβ
SIR

1 + 1
SIR + 1

SNR

⇒ SNRwc
eff = (1 + SNR)

1 + 1
SNR + 1

SIR(
1 + 1

SIR + 1
SNR

)
+ SNR

SIR (1 − β)2
︸ ︷︷ ︸

compound loss

High SNR Limit

αT → 1.

αR
MMSE =

1+ β
SIR

1+ 1
SIR

= SIR+β
SIR+1 .

Optimized αR ⇒ SNRwc
eff = 1+SIR

(1−β)2
.

Non-Optimized αR ⇒ SNRwc
eff = SIR

(1−β)2
.
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Example: SIR = 1

0 5 10 15 20 25 30
0

5

10

15

20

25

SNR [dB]

S
IN

R
 [

d
B

]

 

 

Ignoring β
MMSE Estimation

Remark

Even for SIR = 1, the gain is 3dB, in the limit of high SNR.
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Moral

Conclusions

In the high SNR regime, the scheme is interference limited
due to β.

Ignoring β at Rx is suboptimal and could lead to significant
rate losses.

For large S, Rx partially compensates for ignorance of Tx.

max SNRwc
eff criterion �= max MI criterion,

since the effective noise is not Gaussian.

z ITW 2008



Background Smart Rx Smart Tx and Rx Further Research Achievable Rates Upper Bound

Random Dirty Paper Strategies

So far - “Smart Rx”.

Tx does not know β, but is aware of its ignorance...

Can Tx do better?

How about Guessing β?

αT varies from symbol to symbol.

Common Randomness: for any αT, Rx uses optimal αR

as previously.

Increases (worsens) the MSE.

Improves the mutual-information.
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Motivation

Remark

Concentrate on the case of PN = 0.

Example (B = 2)

β ∈ {1 ± δ}
αT ≡ 1 minimizes the MSE but achieves a finite rate.

P(αT = 1 − δ) = P(αT = 1 + δ) = 0.5
obtains a larger MSE, but achieves infinite rate.
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Back to our case of interest...

β ∈ [1 − δ, 1 + δ]

Optimal distribution of αT → numerical optimization.

Lower bounds by specific choices of distribution of α.

Derived upper bound

log(1 + δ) − log(δ) + 1.
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Robust DPC Performances
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Robust DPC Performances
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Robust DPC Performances
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V−like
α~Unif[−δ/2, δ/2)
P(α=1)=1

1 + δ1 − δ

f (α)

α1
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Upper Bound
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Upper−bound
V−like
α~Unif[−δ/2, δ/2)
P(α=1)=1

Open Question: How tight is the Upper Bound?
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Further Research

Multidimensional Lattices attain smaller gain than in classical
DP channel.

Finding the Optimal αT distribution for the robust DPC
scheme.

Quantifying gain at finite-SNR DPC.

Finding the capacity of the compound DP channel.

Capacity of the “Fast-Fading” DP channel.
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Noisy Performances for SNR = 17dB
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