On Robust Dirty Paper Coding

Anatoly Khina* Uri Erez*

*Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel

May 6th, 2008

Background

- DP Channel
- Lattice Strategies for DPC / Tomlinson-Harashima Precoding
- Compound DP Channel

2 Robust DPC - Smart Rx

- Finite P_S
- Infinite P_S

Robust DPC - Smart Tx and Rx

Concluding Remarks and Further Research

Dirty Paper Channel

$$Y = X + S + N$$

- S interference, known (causally/noncausally) at Tx with average power P_S .
- N AWGN with average power P_N .

Costa: S known (noncausally) @ Tx \rightarrow as good as no S $C = \frac{1}{2} \log(1 + \text{SNR})$ Background Smart Rx Smart Tx and Rx Further Research DP Channel THP Compound DP Channel

Applications of Dirty Paper Coding

Model serves as an information-theoretic framework for (known) interference cancellation in:

- ISI channels.
- Information embedding.
- MIMO broadcast channels.

Assumption: Tx knows channel gains.

z

Lattice Strategies / Tomlinson-Harashima Precoding

Remarks

 $P_{\rm S}$, for time being, is arbitrarily large.

Transmitter

$$X = [v - \alpha S - U] \mod A_{\Delta}$$
; $A_{\Delta} = \left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$

Receiver

$$Y' = [\alpha Y + U] \mod \mathcal{A}_{\Delta} = [v + N_{\text{eff}}] \mod \mathcal{A}_{\Delta},$$
$$N_{\text{eff}} = (1 - \alpha)U + \alpha N.$$

Performances

$$\begin{aligned} \mathsf{SNR}_{\mathrm{eff}} &\triangleq \frac{P_{X}}{P_{N_{\mathrm{eff}}^{\beta}}} \xrightarrow{\alpha_{\mathrm{MMSE}} \triangleq \frac{\mathsf{SNR}}{\mathsf{SNR}+1}} 1 + \mathsf{SNR}. \\ R &\geq \frac{1}{2} \log(\mathsf{SNR}_{\mathrm{eff}}) - \frac{1}{2} \log \frac{2\pi \mathrm{e}}{12} = \frac{1}{2} \log(1 + \mathsf{SNR}) - \overbrace{\frac{1}{2} \log \frac{2\pi \mathrm{e}}{12}}^{\mathsf{Causality Loss}}. \end{aligned}$$

Compound Dirty Paper Channel

Dirty paper channel with perfect channel knowledge:

$$Y = X + S + N$$

• SNR
$$\triangleq \frac{P_X}{P_N}$$

• SIR
$$\triangleq \frac{P_X}{P_S}$$

Compound Dirty Paper Channel

Compound dirty paper channel:

$$Y = X + \frac{S}{\beta} + N$$

- $\beta \in [1 \delta, 1 + \delta]$ is known to Rx.
- β constant (non-ergodic) for whole transmission.
- Compound \rightarrow Achievable rate worst case over all β values.

Compound Channel Case

Remark

 α is used at both ends (Tx and Rx).

Transmitter Knows β

The problem reduces to classical DPC case ($\beta \equiv 1$).

Transmitter Does NOT know β

What is the best strategy?

- To work with $\alpha_{\rm MMSE}$ at both ends?
- To work with $lpha_{
 m MMSE}$ at Tx and $lpha_{
 m MMSE}/eta$ at Rx?
- Other α_{T} , α_{R} selections?

Naïve Approach \rightarrow Work as Before

Transmitter

$$X = [v - \alpha S - U] \mod \mathcal{A}_{\Delta}$$

Receiver

$$egin{aligned} Y &= [lpha Y + U] \ \mathrm{mod} \ \mathcal{A}_\Delta &= [v + N_{\mathrm{eff}}^eta] \ \mathrm{mod} \ \mathcal{A}_\Delta, \ \mathcal{N}_{\mathrm{eff}}^eta &= (1 - lpha) U + lpha rac{(eta - 1)}{eta} S + lpha N. \end{aligned}$$

Remark

$$P_S \rightarrow \infty \Rightarrow R = 0$$

What can we do?

・ロト ・回ト ・ヨト ・ヨトー

æ

Smart Receiver

Distinguish between α_R ($\alpha @ Rx$) and α_T ($\alpha @ Tx$)

Transmitter

$$X = [v - \alpha_{\mathsf{T}} S - U] \mod \mathcal{A}_{\Delta}.$$

Receiver

$$\begin{aligned} \mathbf{Y} &= [\alpha_{\mathsf{R}}\mathbf{Y} + U] \mod \mathcal{A}_{\Delta} = [\mathbf{v} + N_{\mathsf{eff}}^{\beta}] \mod \mathcal{A}_{\Delta}, \\ N_{\mathsf{eff}}^{\beta} &= (1 - \alpha_{\mathsf{R}})U + (\alpha_{\mathsf{T}}\beta - \alpha_{\mathsf{R}})\frac{S}{\beta} + \alpha_{\mathsf{R}}N. \end{aligned}$$

Remarks

- $\alpha_{\mathsf{R}} = \alpha_{\mathsf{T}} \mathsf{Bad!}$
- For time being, we optimize w.r.t. SNR^{wc}_{eff}.

MMSE Estimation

$$\begin{split} \alpha_{\mathsf{R}}^{\mathrm{MMSE}} &= \frac{1 + \frac{\alpha_{\mathrm{T}}^{\mathrm{MMSE}}\beta}{\mathsf{SIR}}}{1 + \frac{1}{\mathsf{SIR}} + \frac{1}{\mathsf{SNR}}} \\ \Rightarrow \mathsf{SNR}_{\mathrm{eff}}^{\mathsf{wc}} &= (1 + \mathsf{SNR}) \underbrace{\frac{1 + \frac{1}{\mathsf{SNR}} + \frac{1}{\mathsf{SIR}}}{(1 + \frac{1}{\mathsf{SIR}} + \frac{1}{\mathsf{SNR}}) + \frac{\mathsf{SNR}}{\mathsf{SIR}}(1 - \beta)^2}_{\mathsf{compound loss}}} \end{split}$$

High SNR Limit

•
$$\alpha_{\mathsf{T}} \to 1$$
.

•
$$\alpha_{\mathsf{R}}^{\mathsf{MMSE}} = \frac{1 + \frac{\beta}{\mathsf{SIR}}}{1 + \frac{1}{\mathsf{SIR}}} = \frac{\mathsf{SIR} + \beta}{\mathsf{SIR} + 1}.$$

- Optimized $\alpha_{\mathsf{R}} \Rightarrow \mathsf{SNR}_{\mathrm{eff}}^{\mathsf{wc}} = \frac{1+\mathsf{SIR}}{(1-\beta)^2}$.
- Non-Optimized $\alpha_{\mathsf{R}} \Rightarrow \mathsf{SNR}_{\mathrm{eff}}^{\mathsf{wc}} = \frac{\mathsf{SIR}}{(1-\beta)^2}$.

Scheme Performances Moral

・ロト ・回ト ・ヨト

* 王

æ

Example: SIR = 1

Even for SIR = 1, the gain is 3dB, in the limit of high SNR.

z

Moral

Conclusions

- In the high SNR regime, the scheme is interference limited due to β.
- Ignoring β at Rx is suboptimal and could lead to significant rate losses.
- For large S, Rx partially compensates for ignorance of Tx.

max SNR^{wc}_{eff} criterion \neq max MI criterion,

since the effective noise is not Gaussian.

Random Dirty Paper Strategies

- So far "Smart Rx".
- Tx does not know β , but is aware of its ignorance...
- Can Tx do better?

How about Guessing β ?

- α_{T} varies from symbol to symbol.
- Common Randomness: for any α_{T} , Rx uses optimal α_{R} as previously.
- Increases (worsens) the MSE.
- Improves the mutual-information.

・ロト ・回ト ・ヨト

æ

< ∃ ►

Motivation

Remark

Concentrate on the case of $P_N = 0$.

Example ($\mathcal{B} = 2$)

- $\beta \in \{1 \pm \delta\}$
- $\alpha_T \equiv 1$ minimizes the MSE but achieves a *finite rate*.

•
$$P(\alpha_T = 1 - \delta) = P(\alpha_T = 1 + \delta) = 0.5$$

obtains a *larger MSE*, but achieves *infinite rate*.

Back to our case of interest...

$\beta \in [1-\delta,1+\delta]$

 \bullet Optimal distribution of $\alpha_{\mathcal{T}} \rightarrow$ numerical optimization.

• Lower bounds by specific choices of distribution of α .

Derived upper bound

$$\log(1+\delta) - \log(\delta) + 1.$$

<ロ> <同> <同> <三>

< ≣ ▶

2

Robust DPC Performances

z ITW 2008

Robust DPC Performances

Robust DPC Performances

z

Achievable Rates Upper Bound

Upper Bound

Open Question: How tight is the Upper Bound?

Further Research

- Multidimensional Lattices attain smaller gain than in classical DP channel.
- Finding the Optimal α_{T} distribution for the robust DPC scheme.
- Quantifying gain at finite-SNR DPC.
- Finding the capacity of the compound DP channel.
- Capacity of the "Fast-Fading" DP channel.

Noisy Performances for SNR = 17 dB

< ≣⇒

æ