Rate-Cost Tradeoffs over Lossy Channels

Anatoly Khina, Caltech

Joint work with Victoria Kostina and Babak Hassibi, Caltech Ashish Khisti, University of Toronto

Asilomar 2017 Pacific Grove, CA, USA October 31, 2017

Motivation Model Track Track Erasures Variable-Length

Networked Control vs. Traditional Control

- Observer and controller are co-located
- Classical systems are hardwired and well crafted

A 3 >

< 🗇 > < 🖃 >

Motivation Model Track Track Erasures Variable-Length

Traditional vs. networked control

Networked Control vs. Traditional Control

Networked control: $w_t \rightarrow Plant$ $w_t \rightarrow c_t$ $x_t \rightarrow c_t$ Controller $\hat{x}_{t|t}$ Channel

- Observer and controller are not co-located: connected through noisy link
- Suitable for new remote applications (e.g., remote surgery, self-driving cars)

∃ >

A (1) > (1) > (1)

Track of Gauss-Markov Processes over a Noiseless Channel

イロン 不同と 不同と 不同と

Motivation Model Track Track Erasures Variable-Length

Traditional vs. networked control

Track of Gauss-Markov Processes over a Noiseless Channel

▲ □ ► ▲ □ ►

< ≣ >

Track of Gauss-Markov Processes over a Noiseless Channel

イロト イヨト イヨト イヨト

э

Linear Quadratic Gaussian Control over Noiseless Channels

Linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{u}_t + \mathbf{w}_t, & \mathbf{w}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, \mathbf{W}\right) \\ \mathbf{y}_t &= \mathbf{C}\mathbf{x}_t + \mathbf{v}_t, & \mathbf{v}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, \mathbf{V}\right) \end{aligned}$$

Noiseless finite-rate channel of rate r

Fixed rate: Exactly *r* bits are available at every time sample *t* **Variable rate:** *r* bits are available **on average** at every *t*

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$

Noiseless finite-rate channel of rate r

Fixed rate: Exactly *r* bits are available at every time sample *t* **Variable rate:** *r* bits are available **on average** at every *t*

∃ >

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1 \\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$

Random-rate budget

At time t: Exactly r_t bits are given.

< 🗇 > < 🖃 >

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$

Packet erasures with instantaneous acknowledgments (ACKs)

[Minero et al. AC'09]: Erasure + ACK $\iff r_t = 0$

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1 \\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$

Packet erasures with delayed acknowledgments (ACKs)

More tricky... We'll get back to it later...

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$

LQG cost

$$\bar{J}_{\mathcal{T}} = \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}-1} \left(\mathsf{Q}_{t} x_{t}^{2} + \mathsf{R}_{t} u_{t}^{2}\right) + \mathsf{Q}_{\mathcal{T}} x_{\mathcal{T}}^{2}\right]$$

Image: A (1)

Asilomar 2017

・ 同 ト ・ ヨ ト ・ ヨ ト

The Control–Estimation Separation Principle

Control-estimation separation for networked control systems [Fischer AC'82][Tatikonda-Sahai-Mitter AC'04]

• Optimal control action:
$$u_t = -K_t \hat{x}_t$$

• LQR coefficients:
$$\begin{cases} K_t = \frac{\alpha L_{t+1}}{R_t + L_{t+1}}, & K_T = 0, \\ L_t = Q_t + \alpha R_t K_t, & L_{T+1} = 0 \end{cases}$$

• MMSE estimate:
$$\hat{x}_t = \mathbb{E}[x_t | f^t]$$

• Optimal cost:
$$\bar{J}_T^* = \frac{1}{T} \sum_{t=1}^{I} (WL_t + \alpha K_t L_{t+1} D_t^*)$$

•
$$D_t = \mathbb{E}\left[\left(x_t - \hat{x}_t\right)^2\right]$$

- Past u_t known to all \Rightarrow Same $\{D_t\}$ for all control actions $\{u_t\}$
- Control-estimation separation extends to networked control

Motivation Model Track Track Erasures Variable-Length Single-track

Track of Gauss-Markov Processes over a Noiseless Channel

A. Khina, V. Kostina, B. Hassibi, A. Khisti Rate–Cost Tradeoffs over Lossy Channels Asilomar 2017

A ■

Track of Gauss-Markov Processes over a Noiseless Channel

• Problem reduces to that of tracking (without control)

∃ >

Multi-Track of Gauss-Markov Processes over a Noiseless Channel

Multi-track

Several processes are tracked and controlled over a shared channel.

• N — Number of tracked processes.

A 3 >

< 🗇 > < 🖃 >

Motivation Model Track Track Erasures Variable-Length

Single-track Multi-track Converse Direct

(Multi-)Track: Impossibility

Lower bound

- Given rates R_1, \ldots, R_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) 2^{-2R_t}$$
$$D_0^* = 0$$

Inductive proof sketch

- Condition on previously received packets
- \bullet Shannon's lower bound \Rightarrow Entropy-power calculations
- Entropy-power inequality \Rightarrow Separates w_t from $\alpha(x_t \hat{x}_t)$
- Jensen's inequality + simple IT inequalities

イロン イヨン イヨン イヨン

э

Motivation Model Track Track Erasures Variable-Length C Sing

Single-track Multi-track Converse Direct

(Multi-)Track: Impossibility

Lower bound

- Random rates r_1, \ldots, r_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Proof adjustment

- Condition on rates
- Take expectation at the end

・ロン ・回 と ・ 回 と ・ 回 と

Motivation Model Track Track Erasures Variable-Length (Single

Single-track Multi-track Converse Direct

(Multi-)Track: Impossibility

Lower bound

- Random rates r_1, \ldots, r_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Track vs. Multi-track

- Holds for any number of tracked processes N
- Applies for single-process tracking

イロン イヨン イヨン イヨン

Upper bound

- Any $\epsilon > 0$ and large enough N
- Given rates R_1, \ldots, R_T
- $D_t \leq D_t^* + \epsilon$ where

$$D_t^* = (\alpha^2 D_{t-1}^* + W) 2^{-2R_t}$$

 $D_0^* = 0$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Upper bound

- Any $\epsilon > 0$ and large enough N
- Random rates r_1, \ldots, r_T
- $D_t \leq D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

・ 回 と く ヨ と く ヨ と

Optimal multi-track for large N

- The upper and lower bounds coincide for large N
- Optimal distortions:

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

- Optimal performance achieved by greedy quantization
- No tension between optimizing D_{t_1} and D_{t_2}

< 🗇 > < 🖃 >

Optimal multi-track for large N

- The upper and lower bounds coincide for large N
- Optimal distortions:

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Steady-state distortion

$$D_{\infty}^{*} \triangleq \lim_{t \to \infty} D_{t}^{*} = \frac{W\mathbb{E}\left[2^{-2r_{1}}\right]}{1 - \alpha^{2}\mathbb{E}\left[2^{-2r_{1}}\right]}$$

• Recovers the data-rate theorem from Massimo's talk:

$$\alpha^2 \mathbb{E}\left[2^{-2r_1}\right] < 1$$

• Or in the deterministic case: $R > \log \alpha$

・ロン ・回と ・ヨン ・ヨン

DPCM scheme

Observer at time t

• Generates the prediction error

$$\tilde{\boldsymbol{x}}_t \triangleq \boldsymbol{x}_t - \alpha \hat{\boldsymbol{x}}_{t-1}$$

• Quantizes the error:

 $\hat{\tilde{\boldsymbol{x}}}_t = Q_t(\tilde{\boldsymbol{x}}_t)$

- Sends the quantization index
- Generates next estimate: $\hat{\mathbf{x}}_t = \alpha \hat{\mathbf{x}}_{t-1} + \hat{\tilde{\mathbf{x}}}_t$

State estimator at time t

- Receives quantization index
- Recovers $\hat{\tilde{x}}_t$
- Generates an estimate of **x**_t:

$$\hat{\boldsymbol{x}}_t = \alpha \hat{\boldsymbol{x}}_{t-1} + \hat{\tilde{\boldsymbol{x}}}_t$$

ヘロン 人間 とうほう 人間 とう

Random rates

Algorithm is greedy \Rightarrow Does not need to know rates in advance

Asilomar 2017

- ∢ ⊒ →

Packet Erasures with Instantaneous Feedback

One packet per one state frame

• I.i.d. packet erasures:
$$b_t = \left\{ egin{array}{ccc} 1 & {
m w.p.} & eta & (arrived) \\ 0 & {
m w.p.} & 1 - eta & (erased) \end{array}
ight.$$

• Instantaneous feedback \Rightarrow Random-rate budget scenario

• I.i.d. rates
$$r_t = Rb_t = egin{cases} R, & ext{w.p. } eta \ 0, & ext{w.p. } 1-eta \ 0, \end{cases}$$

Packet Erasures with Instantaneous Feedback

Multiple packets per one state frame

- I.i.d. $\mathscr{B}er(\beta)$ packet erasures
- K packets each of rate R/K
- $b_t \sim \mathscr{B}in(K,\beta)$ Number of successful packet arrivals
- Instantaneous feedback \Rightarrow Random-rate budget scenario
- I.i.d. rates $r_t = R b_t / K$

・ 同・ ・ ヨ・

• E •

Packet Erasures with Instantaneous Feedback

Steady-state distortion

$$D_{\infty}^{*} \triangleq \lim_{t \to \infty} D_{t}^{*} = rac{W\mathbb{E}\left[2^{-2r_{1}}
ight]}{1 - lpha^{2}\mathbb{E}\left[2^{-2r_{1}}
ight]}$$

Are more packets necessarily better?

- $\bullet\,$ More packets $\Rightarrow\,$ Higher chance to convey with non-zero rate
- Less packets \Rightarrow Higher chance to send full rate R
- How to choose the optimal K?

• Choose K that optimizes
$$\mathbb{E}\left[2^{-2r_t}
ight]$$
 w.r.t. $b_t\sim \mathscr{B}in(K,eta)$

・ 同・ ・ ヨ・

Motivation Model Track Track Erasures Variable-Length Single packet Multi-packet Delayed ACKs

Packet Erasures with Instantaneous Feedback

A. Khina, V. Kostina, B. Hassibi, A. Khisti Rate-Cost Tradeoffs over Lossy Channels Asilomar 2017

Packet Erasures with Delayed Feedback

Delay by one time unit

Observer at time *t*:

- Does not know whether the last packet arrived or not (b_{t-1})
- Knows whether all preceding packets arrived or not (b^{t-2})

Idea

At time t, treat packet of time t - 1 as

- Side-information that may be known at the state estimator
- Side-information that is known at the observer

(D) (A) (A) (A) (A)

Packet Erasures with Delayed Feedback

(Fig. from the lectures notes of El Gamal & Kim)

Image: A image: A

イロト イヨト イヨト イヨト

3

Packet Erasures with Delayed Feedback

Rate-distortion region [Kaspi IT'94 ('80)]

- Gaussian case explicitly solved by [Perron et al. ISIT'06]
- Availability of SI @ Tx improves performance!
 - Does not help when SI always available @ Rx (Wyner–Ziv)
 - Does not help in when no SI available @ Rx
- SI@Tx \Rightarrow (anti-)correlate guantization noise and prediction error

Packet Erasures with Delayed Feedback

• $\beta = 0.5, \alpha = 0.7, R = 2, W = 1$

A. Khina, V. Kostina, B. Hassibi, A. Khisti

Rate-Cost Tradeoffs over Lossy Channels

Asilomar 2017

æ

• Back to tracking a *single* process

Fixed-length coding

Exactly R bits are available at time t.

Variable-length coding

R bits are available *on average* at time *t*.

• Rx decides on bit allocation depending on the source value

< **₩** ► < **⇒** ►

Entropy-Coded Dithered Quantization (ECDQ) [Ziv'85][Zamir-Feder'96]

- Quantize x using an infinite grid of step size Δ
- Apply entropy-coding to resulting bits

Improvement 1: Add uniform random dither *z* modulo Δ :

 $[x+z] \mod \Delta$

• Makes quantization error uniform and independent of x

Improvement 2: Linear pre- and post-processing

• Essentially applies MMSE estimation

ECDQ performance [Zamir-Feder IT'96]

- Source power X
- R bits on average

$$R \leq rac{1}{2}\lograc{X}{D} + rac{1}{2}\lograc{2\pi \mathrm{e}}{12} \hspace{2mm} \Leftrightarrow \hspace{2mm} D \leq rac{2\pi \mathrm{e}}{12}X2^{-2K}$$

- Applies for any distribution of x
- For higher dimensions shaping loss decreases
- For $N
 ightarrow \infty$, loss goes to 0
- We assume one-to-one codes (not prefix free)

DPCM-ECDQ scheme

- Use ECDQ as the quantizer in the DPCM scheme
- Similar scheme proposed in [Silva-Derpich-Østergaard IT'11]
- Achieves the following distortions:

$$D_t = \frac{2\pi e}{12} \left(\alpha^2 D_{t-1} + W \right) \mathbb{E} \left[2^{-2r_t} \right]$$

• Steady-state:
$$D_{\infty}^* = \frac{\frac{2\pi e}{12} W \mathbb{E} \left[2^{-2r_1}\right]}{1 - \frac{2\pi e}{12} \alpha^2 \mathbb{E} \left[2^{-2r_1}\right]}$$

Lower bound

$$D_t = \left(\alpha^2 D_{t-1} + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$

• Steady-state:
$$D_{\infty}^* = \frac{W\mathbb{E}\left[2^{-2r_1}\right]}{1 - \alpha^2 \mathbb{E}\left[2^{-2r_1}\right]}$$

Asilomar 2017

Motivation Model Track Track Erasures Variable-Length

Variable-Length Coding for Control

•
$$A = 1.2, W = 1, Q_t \equiv 1, R_t = 0$$
, no erasures: $J_t = \alpha^2 D_t + W$

Asilomar 2017

Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: $\bar{D}_{\infty} = \frac{1}{T} \sum_{t=1}^{T} D_t$

- Total rate budget $\frac{1}{T} \sum_{t=1}^{T} R_t \leq R$
- How to allocate transmission rates R_1, \ldots, R_T ?

No erasures

• Recall:
$$D_t = \left(lpha^2 D_{t-1} + W
ight) 2^{-2R_t}$$

• Convexity arguments $\stackrel{T \to \infty}{\Longrightarrow}$ Uniform allocation $R_t \equiv R$ optimal

(ロ) (同) (E) (E) (E)

Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: $\bar{D}_{\infty} = \frac{1}{T} \sum_{t=1}^{T} D_t$

- Total rate budget $\frac{1}{T} \sum_{t=1}^{T} R_t \leq R$
- How to allocate transmission rates R_1, \ldots, R_T ?

With i.i.d. erasures

- Reminiscent of channel coding with fading that is known @ Tx
- Water-filling over current distortion level can do better(?)

(ロ) (同) (E) (E) (E)