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Track Track Erasures Variable-Length Coding Model Single-track

Tracking Gauss–Markov Processes over a Noiseless Channel
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Tracking Gauss–Markov Processes over a Noiseless Channel

xt+1 = αxt + wt

wt – White((((
(hhhhhGaussianKaohsiung noise N(0,W )

Observer/
Encoder

State Estimator/
Decoder

xt

rt  bits
ොtݔ

Goal: Minimize the distortions Dt , E
[
(xt − x̂t)

2
]

Might be a tension betweeen optimizing Dt1 and Dt2

Noiseless finite-rate channel of rate r

Fixed rate: Exactly r bits are available at every time sample t

Variable rate: r bits are available on average at every t
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Tracking Gauss–Markov Processes over a Noiseless Channel

xt+1 = αxt + wt

wt – White((((
(hhhhhGaussianKaohsiung noise N(0,W )

Observer/
Encoder

State Estimator/
Decoder

xt

rt  bits
ොtݔ

Goal: Minimize the distortions Dt , E
[
(xt − x̂t)

2
]

Might be a tension betweeen optimizing Dt1 and Dt2

Random-rate budget

At time t: Exactly rt bits are given.
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Tracking Gauss–Markov Processes over a Noiseless Channel

xt+1 = αxt + wt

wt – White((((
(hhhhhGaussianKaohsiung noise N(0,W )

Observer/
Encoder

State Estimator/
Decoder

xt

rt  bits
ොtݔ

Goal: Minimize the distortions Dt , E
[
(xt − x̂t)

2
]

Might be a tension betweeen optimizing Dt1 and Dt2

Packet erasures with instantaneous acknowledgments (ACKs)

[Minero et al. AC’09]: Erasure + ACK ⇐⇒ rt = 0
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Tracking Gauss–Markov Processes over a Noiseless Channel

xt+1 = αxt + wt

wt – White((((
(hhhhhGaussianKaohsiung noise N(0,W )

Observer/
Encoder

State Estimator/
Decoder

xt

rt  bits
ොtݔ

Goal: Minimize the distortions Dt , E
[
(xt − x̂t)

2
]

Might be a tension betweeen optimizing Dt1 and Dt2

Packet erasures with delayed acknowledgments (ACKs)

More tricky... We’ll get back to it later...
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Multi-Tracking Gauss–Markov Processes over a Noiseless Channel

Multi-track

Several processes are tracked and controlled over a shared channel.

...

xt+1;1 = αxt;1 + wt;1 

xt+1;N = αxt;N + wt;N 

Observer/
Encoder

State Estimator/
Decoder

xt
N rt  bits ...

t;1

t;N 

t

N — Number of tracked processes
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(Multi-)Track: Impossibility

Lower bound

Given rates R1, . . . ,RT

Dt ≥ D∗t where

D∗t =
(
α2D∗t−1 + W

)
2−2Rt

D∗0 = 0

Previous results

Sum-rate explicitly proved by [Ma-Ishwar IT’11]

Steady-state can be deduced from [Gorbunov-Pinsker PPI’74]

[Tatikonda-Sahai-Mitter AC’04][Kostina-Hassibi Allerton’16]
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(Multi-)Track: Impossibility

Lower bound

Given rates R1, . . . ,RT

Dt ≥ D∗t where

D∗t =
(
α2D∗t−1 + W

)
2−2Rt

D∗0 = 0

Inductive proof sketch

Condition on previously received packets

Shannon’s lower bound ⇒ Entropy-power calculations

Entropy-power inequality ⇒ Separates wt from α(xt − x̂t)

Jensen’s inequality + simple IT inequalities
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(Multi-)Track: Impossibility

Lower bound

Random rates r1, . . . , rT

Dt ≥ D∗t where

D∗t =
(
α2D∗t−1 + W

)
E
[
2−2r t

]
D∗0 = 0

Proof adjustment

Condition on rates

Take expectation at the end
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(Multi-)Track: Impossibility

Lower bound

Random rates r1, . . . , rT

Dt ≥ D∗t where

D∗t =
(
α2D∗t−1 + W

)
E
[
2−2r t

]
D∗0 = 0

Track vs. Multi-track

Holds for any number of tracked processes N

Applies for single-process tracking
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Multi-Track: Achievability

Upper bound

Any ε > 0 and large enough N

Given rates R1, . . . ,RT

Dt ≤ D∗t + ε where

D∗t =
(
α2D∗t−1 + W

)
2−2Rt

D∗0 = 0
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Multi-Track: Achievability

Upper bound

Any ε > 0 and large enough N

Random rates r1, . . . , rT

Dt ≤ D∗t where

D∗t =
(
α2D∗t−1 + W

)
E
[
2−2r t

]
D∗0 = 0
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Multi-Track: Achievability

Optimal multi-track for large N

The upper and lower bounds coincide for large N

Optimal distortions:

D∗t =
(
α2D∗t−1 + W

)
E
[
2−2r t

]
D∗0 = 0

Optimal performance achieved by greedy quantization

No tension between optimizing Dt1 and Dt2
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Multi-Track: Achievability

Optimal multi-track for large N

The upper and lower bounds coincide for large N

Optimal distortions:

D∗t =
(
α2D∗t−1 + W

)
E
[
2−2r t

]
D∗0 = 0

Steady-state distortion

D∗∞ , lim
t→∞

D∗t =
WE

[
2−2r1

]
1− α2E [2−2r1 ]

Recovers the data–rate theorem of [Minero et al. AC’09]:

α2E
[
2−2r1

]
< 1

Or in the deterministic case: R > log |α|
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Multi-Track: Achievability

DPCM scheme

Observer at time t

Generates the prediction error

x̃ t , x t − αx̂ t−1

Quantizes the error:

ˆ̃x t = Qt(x̃ t)

Sends the quantization index

Generates next estimate:

x̂ t = αx̂ t−1 + ˆ̃x t

State estimator at time t

Receives quantization index

Recovers ˆ̃x t

Generates an estimate of x t :

x̂ t = αx̂ t−1 + ˆ̃x t

Random rates

Algorithm is greedy ⇒ Does not need to know rates in advance
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Packet Erasures with Instantaneous Feedback

One packet per one state frame

I.i.d. packet erasures: bt =

{
1 w.p. β (arrived)
0 w.p. 1− β (erased)

Instantaneous feedback ⇒ Random-rate budget scenario

I.i.d. rates rt = Rbt =

{
R, w.p. β

0, w.p. 1− β
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Packet Erasures with Instantaneous Feedback

Multiple packets per one state frame

I.i.d. Ber(β) packet erasures

K packets each of rate R/K

bt ∼Bin(K , β) — Number of successful packet arrivals

Instantaneous feedback ⇒ Random-rate budget scenario

I.i.d. rates rt = R bt/K
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Packet Erasures with Instantaneous Feedback

Steady-state distortion

D∗∞ , lim
t→∞

D∗t =
WE

[
2−2r1

]
1− α2E [2−2r1 ]

Are more packets necessarily better?

More packets ⇒ Higher chance to convey with non-zero rate

Less packets ⇒ Higher chance to send full rate R

How to choose the optimal K?

Choose K that optimizes E
[
2−2rt

]
w.r.t. bt ∼Bin(K , β)
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Packet Erasures with Instantaneous Feedback

x t = αx t + w t , with α = 0.7, R = 1, W = 1
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Packet Erasures with Instantaneous Feedback

x t = αx t + w t , with α = 0.7, R = 6, W = 1
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Packet Erasures with Delayed Feedback

Delay by one time unit

Observer at time t:

Does not know whether the last packet arrived or not (bt−1)

Knows whether all preceding packets arrived or not (bt−2)

Idea

At time t, treat packet of time t − 1 as

Side-information that may be known at the decoder

Side-information that is known at the encoder
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Packet Erasures with Delayed Feedback

(Fig. from the lectures notes of El Gamal & Kim)

Idea

At time t, treat packet of time t − 1 as side information

Side-information that may be known at the decoder

Side-information that is known at the encoder
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Packet Erasures with Delayed Feedback

Idea

X n → x t

Y n → Packet sent at time t − 1

Decoder 1 → Previous packet did not arrive

Decoder 2 → Previous packet arrived successfully

A. Khina, V. Kostina, A. Khisti, B. Hassibi ITW 2017 Sequential Coding of Gauss–Markov Sources with Packet Drops



Track Track Erasures Variable-Length Coding Model Single packet Multi-packet Delayed ACKs

Packet Erasures with Delayed Feedback

Rate–distortion region [Kaspi IT’94 (’80)]

Gaussian case explicitly solved by [Perron et al. ISIT’06]

Availability of SI @ Tx improves performance!

Does not help when SI always available @ Rx (Wyner–Ziv)

Does not help in when no SI available @ Rx

SI@Tx ⇒ (anti-)correlate quantization noise and prediction error
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Packet Erasures with Delayed Feedback

x t = αx t + w t , with β = 0.5, α = 0.7, R = 2, W = 1
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Variable-Length Coding

Back to tracking a single process

Fixed-length coding

Exactly R bits are available at time t.

Variable-length coding

R bits are available on average at time t.

Rx decides on bit allocation depending on the source value
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Variable-Length Coding

Entropy-Coded Dithered Quantization (ECDQ) [Ziv’85][Zamir-Feder’96]

Quantize x using an infinite grid of step size ∆

Apply entropy-coding to resulting bits

Improvement 1: Add uniform random dither z modulo ∆:

[x + z ] mod ∆

Makes quantization error uniform and independent of x

Improvement 2: Linear pre- and post-processing

Essentially applies MMSE estimation
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Variable-Length Coding

ECDQ performance [Zamir-Feder IT’96]

Source power X

R bits on average

R ≤ 1

2
log

X

D
+

1

2
log

2πe

12
⇔ D ≤ 2πe

12
X2−2R

Applies for any distribution of x

For higher dimensions shaping loss decreases

For N →∞, loss goes to 0

We assume one-to-one codes (not prefix free)
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Variable-Length Coding

DPCM-ECDQ scheme

Use ECDQ as the quantizer in the DPCM scheme

Similar scheme proposed in [Silva-Derpich-Østergaard IT’11]

Achieves the following distortions:

Dt =
2πe

12

(
α2Dt−1 + W

)
E
[
2−2rt

]
Steady-state: D∗∞ =

2πe
12 WE

[
2−2r1

]
1− 2πe

12 α
2E [2−2r1 ]

Lower bound

Dt =
(
α2Dt−1 + W

)
E
[
2−2rt

]
Steady-state: D∗∞ =

WE
[
2−2r1

]
1− α2E [2−2r1 ]
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Variable-Length Coding for Control

A = 1.2,W = 1,Qt ≡ 1,Rt = 0, no erasures: Jt = α2Dt + W
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Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: D̄∞ = 1
T

∑T
t=1Dt

Total rate budget 1
T

∑T
t=1 Rt ≤ R

How to allocate transmission rates R1, . . . ,RT ?

No erasures

Recall: Dt =
(
α2Dt−1 + W

)
2−2Rt

Convexity arguments
T→∞
=⇒ Uniform allocation Rt ≡ R optimal
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Track Track Erasures Variable-Length Coding Model Rate allocation

Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: D̄∞ = 1
T

∑T
t=1Dt

Total rate budget 1
T

∑T
t=1 Rt ≤ R

How to allocate transmission rates R1, . . . ,RT ?

With i.i.d. erasures

Reminiscent of channel coding with fading that is known @ Tx

Water-filling over current distortion level can do better(?)
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Linear Quadratic Gaussian Control over Noiseless Channels

Linear quadratic Gaussian (LQG) system

x t+1 = Ax t + But + w t , w t ∼ i.i.d. N (0,W)

y t = Cx t + v t , v t ∼ i.i.d. N (0,V)

Plant
x t+1 = Ax t + w t + ut

C +

v t

ObserverController

x t y tw t

ft

r bits

ut

Noiseless finite-rate channel of rate r

Fixed rate: Exactly r bits are available at every time sample t

Variable rate: r bits are available on average at every t
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Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

xt+1 = αxt + ut + wt , wt ∼ i.i.d. N (0,W ) , |α| > 1

yt = xt + vt , vt ∼ i.i.d. N (0,V )

Plant
xt+1 = αxt + wt + ut

+

vt

ObserverController

xt ytwt

ft

r bits

ut

Noiseless finite-rate channel of rate r

Fixed rate: Exactly r bits are available at every time sample t

Variable rate: r bits are available on average at every t
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Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

xt+1 = αxt + ut + wt , wt ∼ i.i.d. N (0,W ) , |α| > 1

yt = xt +��ZZvt , ��ZZvt ∼(((((
(((hhhhhhhhi.i.d. N (0,V )

Plant
xt+1 = αxt + wt + ut

ObserverController

wt xt

ft

rt bits

ut

Random-rate budget

At time t: Exactly rt bits are given.

A. Khina, V. Kostina, A. Khisti, B. Hassibi ITW 2017 Sequential Coding of Gauss–Markov Sources with Packet Drops



Track Track Erasures Variable-Length Coding Model Networked Control Control–Estimation Separation

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

xt+1 = αxt + ut + wt , wt ∼ i.i.d. N (0,W ) , |α| > 1

yt = xt +��ZZvt , ��ZZvt ∼(((((
(((hhhhhhhhi.i.d. N (0,V )

Plant
xt+1 = αxt + wt + ut

ObserverController

wt xt

ft

rt bits

ut

Packet erasures with instantaneous acknowledgments (ACKs)

[Minero et al. AC’09]: Erasure + ACK ⇐⇒ rt = 0
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Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

xt+1 = αxt + ut + wt , wt ∼ i.i.d. N (0,W ) , |α| > 1

yt = xt +��ZZvt , ��ZZvt ∼(((((
(((hhhhhhhhi.i.d. N (0,V )

Plant
xt+1 = αxt + wt + ut

ObserverController

wt xt

ft

rt bits

ut

Packet erasures with delayed acknowledgments (ACKs)

More tricky... We’ll get back to it later...
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Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

xt+1 = αxt + ut + wt , wt ∼ i.i.d. N (0,W ) , |α| > 1

yt = xt +��ZZvt , ��ZZvt ∼(((((
(((hhhhhhhhi.i.d. N (0,V )

Plant
xt+1 = αxt + wt + ut

ObserverController

wt xt

ft

rt bits

ut

LQG cost

J̄T = E

[
T−1∑
t=1

(
Qtx

2
t + Rtu

2
t

)
+ QT x

2
T

]
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The Control–Estimation Separation Principle

Control–estimation separation for networked control systems
[Fischer AC’82][Tatikonda-Sahai-Mitter AC’04]

Optimal control action: ut = −Kt x̂t

LQR coefficients:

Kt = αLt+1

Rt+Lt+1
, KT = 0,

Lt = Qt + αRtKt , LT+1 = 0

MMSE estimate: x̂t = E [xt |ft ]

Optimal cost: J̄∗T = 1
T

T∑
t=1

(WLt + αKtLt+1D
∗
t )

Dt = E
[
(xt − x̂t)

2
]

Past ut known to all ⇒ Same {Dt} for all control actions {ut}
Control–estimation separation extends to networked control
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