Sequential Coding of Gauss–Markov Sources with Packet Erasures and Feedback

Anatoly Khina, Caltech

Joint work with Victoria Kostina and Babak Hassibi, Caltech Ashish Khisti, University of Toronto

ITW Kaohsiung, Taiwan November 10, 2017

・ 同 ト ・ ヨ ト ・ ヨ ト

Single-track

Tracking Gauss-Markov Processes over a Noiseless Channel

A. Khina, V. Kostina, A. Khisti, B. Hassibi ITW 2017 Sequential Coding of Gauss-Markov Sources with Packet Drops

A ■

э

Tracking Gauss–Markov Processes over a Noiseless Channel

- $x_{t+1} = \alpha x_t + w_t$
- w_t White Gaussian Kaohsiung noise $\mathcal{N}(0, W)$

- **Goal:** Minimize the distortions $D_t \triangleq \mathbb{E}\left[\left(x_t \hat{x}_t\right)^2\right]$
- Might be a tension betweeen optimizing D_{t_1} and D_{t_2}

Noiseless finite-rate channel of rate r

Fixed rate: Exactly *r* bits are available at every time sample *t* **Variable rate:** *r* bits are available **on average** at every *t*

· < @ > < 문 > < 문 > · · 문

Tracking Gauss–Markov Processes over a Noiseless Channel

- $x_{t+1} = \alpha x_t + w_t$
- w_t White Gaussian Kaohsiung noise $\mathcal{N}(0, W)$

- **Goal:** Minimize the distortions $D_t \triangleq \mathbb{E}\left[\left(x_t \hat{x}_t\right)^2\right]$
- Might be a tension betweeen optimizing D_{t_1} and D_{t_2}

Random-rate budget

At time t: Exactly r_t bits are given.

イロン イ部ン イヨン イヨン 三日

Tracking Gauss–Markov Processes over a Noiseless Channel

- $x_{t+1} = \alpha x_t + w_t$
- w_t White Gaussian Kaohsiung noise $\mathcal{N}(0, W)$

- **Goal:** Minimize the distortions $D_t \triangleq \mathbb{E}\left[\left(x_t \hat{x}_t\right)^2\right]$
- Might be a tension betweeen optimizing D_{t_1} and D_{t_2}

Packet erasures with instantaneous acknowledgments (ACKs) [Minero et al. AC'09]: Erasure + ACK $\iff r_t = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Tracking Gauss–Markov Processes over a Noiseless Channel

- $x_{t+1} = \alpha x_t + w_t$
- w_t White Gaussian Kaohsiung noise $\mathcal{N}(0, W)$

- **Goal:** Minimize the distortions $D_t \triangleq \mathbb{E}\left[\left(x_t \hat{x}_t\right)^2\right]$
- Might be a tension betweeen optimizing D_{t_1} and D_{t_2}

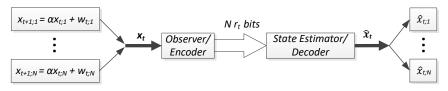
Packet erasures with delayed acknowledgments (ACKs) More tricky... We'll get back to it later...

(1) マン・ション・

Multi-Tracking Gauss-Markov Processes over a Noiseless Channel

Multi-track

Several processes are tracked and controlled over a shared channel.



• N — Number of tracked processes

Single-track Multi-track Converse Direct

◆□→ ◆□→ ◆注→ ◆注→ □注□

(Multi-)Track: Impossibility

Lower bound

- Given rates R_1, \ldots, R_T
- $D_t \ge D_t^*$ where

$$D_t^* = (\alpha^2 D_{t-1}^* + W) 2^{-2R_t}$$

$$D_0^* = 0$$

Previous results

- Sum-rate explicitly proved by [Ma-Ishwar IT'11]
- Steady-state can be deduced from [Gorbunov-Pinsker PPI'74] [Tatikonda-Sahai-Mitter AC'04][Kostina-Hassibi Allerton'16]

Single-track Multi-track Converse Direct

イロン イヨン イヨン イヨン

э

(Multi-)Track: Impossibility

Lower bound

- Given rates R_1, \ldots, R_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) 2^{-2R_t}$$
$$D_0^* = 0$$

Inductive proof sketch

- Condition on previously received packets
- \bullet Shannon's lower bound \Rightarrow Entropy-power calculations
- Entropy-power inequality \Rightarrow Separates w_t from $\alpha(x_t \hat{x}_t)$
- Jensen's inequality + simple IT inequalities

Single-track Multi-track Converse Direct

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

(Multi-)Track: Impossibility

Lower bound

- Random rates r_1, \ldots, r_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Proof adjustment

- Condition on rates
- Take expectation at the end

Single-track Multi-track Converse Direct

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

(Multi-)Track: Impossibility

Lower bound

- Random rates r_1, \ldots, r_T
- $D_t \ge D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Track vs. Multi-track

- Holds for any number of tracked processes N
- Applies for single-process tracking

Single-track Multi-track Converse Direct

Multi-Track: Achievability

Upper bound

- Any $\epsilon > 0$ and large enough N
- Given rates R_1, \ldots, R_T
- $D_t \leq D_t^* + \epsilon$ where

$$D_t^* = (\alpha^2 D_{t-1}^* + W) 2^{-2R_t}$$

 $D_0^* = 0$

Single-track Multi-track Converse Direct

<ロ> (四) (四) (三) (三) (三)

Multi-Track: Achievability

Upper bound

- Any $\epsilon > 0$ and large enough N
- Random rates r_1, \ldots, r_T
- $D_t \leq D_t^*$ where

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

→ 同 → → 目 → → 目 →

Multi-Track: Achievability

Optimal multi-track for large N

- The upper and lower bounds coincide for large N
- Optimal distortions:

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

- Optimal performance achieved by greedy quantization
- No tension between optimizing D_{t_1} and D_{t_2}

イロン イヨン イヨン イヨン

Multi-Track: Achievability

Optimal multi-track for large N

- The upper and lower bounds coincide for large N
- Optimal distortions:

$$D_t^* = \left(\alpha^2 D_{t-1}^* + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$
$$D_0^* = 0$$

Steady-state distortion

$$D_{\infty}^{*} \triangleq \lim_{t \to \infty} D_{t}^{*} = \frac{W\mathbb{E}\left[2^{-2r_{1}}\right]}{1 - \alpha^{2}\mathbb{E}\left[2^{-2r_{1}}\right]}$$

• Recovers the data-rate theorem of [Minero et al. AC'09]:

$$\alpha^2 \mathbb{E}\left[2^{-2r_1}\right] < 1$$

 \bullet Or in the deterministic case: $R>\log|\alpha|$

Single-track Multi-track Converse Direct

Multi-Track: Achievability

DPCM scheme

Observer at time t

• Generates the prediction error

$$\tilde{\boldsymbol{x}}_t \triangleq \boldsymbol{x}_t - \alpha \hat{\boldsymbol{x}}_{t-1}$$

• Quantizes the error:

 $\hat{\tilde{\boldsymbol{x}}}_t = Q_t(\tilde{\boldsymbol{x}}_t)$

- Sends the quantization index
- Generates next estimate: $\hat{\mathbf{x}}_t = \alpha \hat{\mathbf{x}}_{t-1} + \hat{\tilde{\mathbf{x}}}_t$

State estimator at time t

- Receives quantization index
- Recovers $\hat{\tilde{x}}_t$
- Generates an estimate of x_t:

$$\hat{\boldsymbol{x}}_t = \alpha \hat{\boldsymbol{x}}_{t-1} + \hat{\tilde{\boldsymbol{x}}}_t$$

ヘロン 人間と 人間と 人間と

Э

Random rates

Algorithm is greedy \Rightarrow Does not need to know rates in advance

- (目) - (日) - (日)

Packet Erasures with Instantaneous Feedback

One packet per one state frame

• I.i.d. packet erasures:
$$b_t = \left\{ egin{array}{ccc} 1 & {
m w.p.} & eta & (arrived) \\ 0 & {
m w.p.} & 1-eta & (erased) \end{array}
ight.$$

• Instantaneous feedback \Rightarrow Random-rate budget scenario

• I.i.d. rates
$$r_t = Rb_t = egin{cases} R, & ext{w.p. } eta \ 0, & ext{w.p. } 1-eta \ 0, \end{cases}$$

(本間) (本語) (本語) (語)

Packet Erasures with Instantaneous Feedback

Multiple packets per one state frame

- I.i.d. $\mathscr{B}er(\beta)$ packet erasures
- K packets each of rate R/K
- $b_t \sim \mathscr{B}in(K,\beta)$ Number of successful packet arrivals
- Instantaneous feedback \Rightarrow Random-rate budget scenario
- I.i.d. rates $r_t = R b_t / K$

- 4 同 6 4 日 6 4 日 6

Packet Erasures with Instantaneous Feedback

Steady-state distortion

$$D_{\infty}^{*} \triangleq \lim_{t \to \infty} D_{t}^{*} = rac{W\mathbb{E}\left[2^{-2r_{1}}
ight]}{1 - lpha^{2}\mathbb{E}\left[2^{-2r_{1}}
ight]}$$

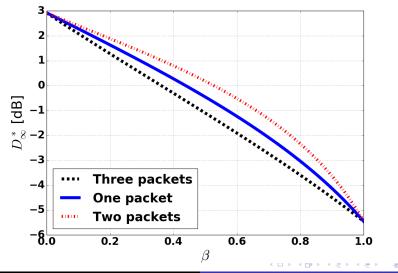
Are more packets necessarily better?

- $\bullet\,$ More packets $\Rightarrow\,$ Higher chance to convey with non-zero rate
- Less packets \Rightarrow Higher chance to send full rate R
- How to choose the optimal K?

• Choose K that optimizes
$$\mathbb{E}\left[2^{-2r_t}
ight]$$
 w.r.t. $b_t\sim \mathscr{B}in(K,eta)$

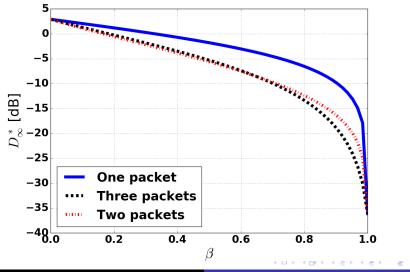
Packet Erasures with Instantaneous Feedback





Packet Erasures with Instantaneous Feedback





Packet Erasures with Delayed Feedback

Delay by one time unit

Observer at time *t*:

- Does not know whether the last packet arrived or not (b_{t-1})
- Knows whether all preceding packets arrived or not (b^{t-2})

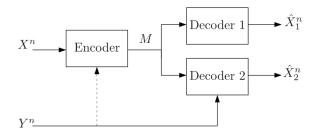
Idea

At time t, treat packet of time t - 1 as

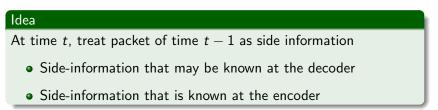
- Side-information that may be known at the decoder
- Side-information that is known at the encoder

イロン イヨン イヨン イヨン

Packet Erasures with Delayed Feedback



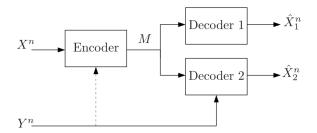
(Fig. from the lectures notes of El Gamal & Kim)



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Packet Erasures with Delayed Feedback



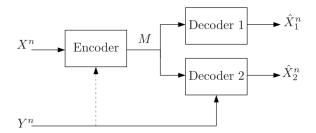
Idea

- $X^n \rightarrow \mathbf{x}_t$
- $Y^n
 ightarrow$ Packet sent at time t-1
- \bullet Decoder $1 \rightarrow$ Previous packet did not arrive
- Decoder $2 \rightarrow$ Previous packet arrived successfully

소리가 소문가 소문가 소문가

э

Packet Erasures with Delayed Feedback



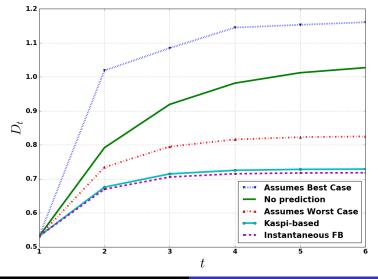
Rate-distortion region [Kaspi IT'94 ('80)]

- Gaussian case explicitly solved by [Perron et al. ISIT'06]
- Availability of SI @ Tx improves performance!
 - Does not help when SI always available @ Rx (Wyner-Ziv)
 - Does not help in when no SI available @ Rx
- SI@Tx \Rightarrow (anti-)correlate quantization noise and prediction error

э

Packet Erasures with Delayed Feedback

• $\mathbf{x}_t = \alpha \mathbf{x}_t + \mathbf{w}_t$, with $\beta = 0.5$, $\alpha = 0.7$, R = 2, W = 1



• Back to tracking a *single* process

Fixed-length coding

Exactly R bits are available at time t.

Variable-length coding

R bits are available *on average* at time *t*.

• Rx decides on bit allocation depending on the source value

- 4 回 ト 4 ヨ ト 4 ヨ ト

Entropy-Coded Dithered Quantization (ECDQ) [Ziv'85][Zamir-Feder'96]

- Quantize x using an infinite grid of step size Δ
- Apply entropy-coding to resulting bits

Improvement 1: Add uniform random dither *z* modulo Δ :

 $[x+z] \mod \Delta$

• Makes quantization error uniform and independent of x

Improvement 2: Linear pre- and post-processing

• Essentially applies MMSE estimation

▲帰▶ ★ 国▶ ★ 国▶

ECDQ performance [Zamir-Feder IT'96]

- Source power X
- R bits on average

$$R \leq rac{1}{2}\lograc{X}{D} + rac{1}{2}\lograc{2\pi \mathrm{e}}{12} \hspace{2mm} \Leftrightarrow \hspace{2mm} D \leq rac{2\pi \mathrm{e}}{12}X2^{-2K}$$

- Applies for any distribution of x
- For higher dimensions shaping loss decreases
- For $N o \infty$, loss goes to 0
- We assume one-to-one codes (not prefix free)

(4月) (4日) (4日)

DPCM-ECDQ scheme

- Use ECDQ as the quantizer in the DPCM scheme
- Similar scheme proposed in [Silva-Derpich-Østergaard IT'11]
- Achieves the following distortions:

$$D_t = \frac{2\pi e}{12} \left(\alpha^2 D_{t-1} + W \right) \mathbb{E} \left[2^{-2r_t} \right]$$

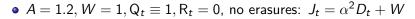
• Steady-state:
$$D_{\infty}^* = \frac{\frac{2\pi e}{12} W \mathbb{E} \left[2^{-2r_1}\right]}{1 - \frac{2\pi e}{12} \alpha^2 \mathbb{E} \left[2^{-2r_1}\right]}$$

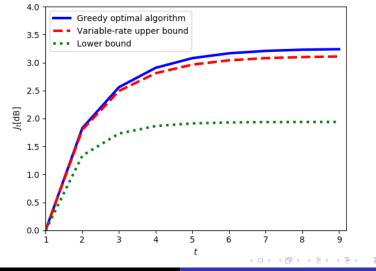
Lower bound

$$D_t = \left(\alpha^2 D_{t-1} + W\right) \mathbb{E}\left[2^{-2r_t}\right]$$

• Steady-state:
$$D_{\infty}^* = \frac{W\mathbb{E}\left[2^{-2r_1}\right]}{1 - \alpha^2 \mathbb{E}\left[2^{-2r_1}\right]}$$

Variable-Length Coding for Control





Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: $\bar{D}_{\infty} = \frac{1}{T} \sum_{t=1}^{T} D_t$

- Total rate budget $\frac{1}{T} \sum_{t=1}^{T} R_t \leq R$
- How to allocate transmission rates R_1, \ldots, R_T ?

No erasures

• Recall:
$$D_t = \left(lpha^2 D_{t-1} + W
ight) 2^{-2R_t}$$

• Convexity arguments $\stackrel{T \to \infty}{\Longrightarrow}$ Uniform allocation $R_t \equiv R$ optimal

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへの

Multi-Track: Rate Allocation

Goal

Maximize average (across time) distortion: $\bar{D}_{\infty} = \frac{1}{T} \sum_{t=1}^{T} D_t$

- Total rate budget $\frac{1}{T} \sum_{t=1}^{T} R_t \leq R$
- How to allocate transmission rates R_1, \ldots, R_T ?

With i.i.d. erasures

- Reminiscent of channel coding with fading that is known @ Tx
- Water-filling over current distortion level can do better(?)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

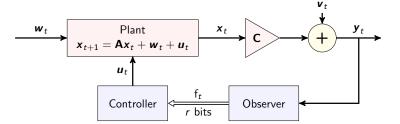
イロト イポト イヨト イヨト

э

Linear Quadratic Gaussian Control over Noiseless Channels

Linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{u}_t + \mathbf{w}_t, & \mathbf{w}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, \mathbf{W}\right) \\ \mathbf{y}_t &= \mathbf{C}\mathbf{x}_t + \mathbf{v}_t, & \mathbf{v}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, \mathbf{V}\right) \end{aligned}$$



Noiseless finite-rate channel of rate r

Fixed rate: Exactly *r* bits are available at every time sample *t* **Variable rate:** *r* bits are available **on average** at every *t*

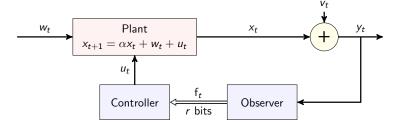
イロト イポト イヨト イヨト

э

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ y_t &= \mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$



Noiseless finite-rate channel of rate r

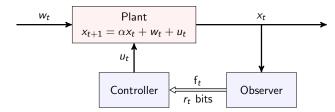
Fixed rate: Exactly *r* bits are available at every time sample *t* **Variable rate:** *r* bits are available **on average** at every *t*

・ 同 ト ・ ヨ ト ・ ヨ ト

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$



Random-rate budget

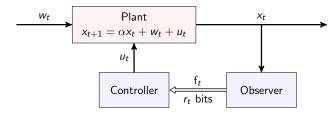
At time t: Exactly r_t bits are given.

- 4 同 6 4 日 6 4 日 6

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$



Packet erasures with instantaneous acknowledgments (ACKs)

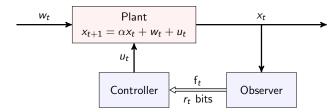
[Minero et al. AC'09]: Erasure + ACK $\iff r_t = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1\\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$



Packet erasures with delayed acknowledgments (ACKs)

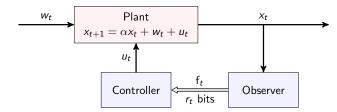
More tricky... We'll get back to it later...

イロト イポト イヨト イヨト

Linear Quadratic Gaussian Control over Noiseless Channels

Scalar linear quadratic Gaussian (LQG) system

$$\begin{aligned} \mathbf{x}_{t+1} &= \alpha \mathbf{x}_t + u_t + w_t, \quad w_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, W\right), \quad |\alpha| > 1 \\ \mathbf{y}_t &= \mathbf{x}_t + \mathbf{y}_t, \quad \mathbf{y}_t \sim \text{ i.i.d. } \mathcal{N}\left(\mathbf{0}, V\right) \end{aligned}$$



LQG cost

$$\bar{J}_{T} = \mathbb{E}\left[\sum_{t=1}^{T-1} \left(\mathsf{Q}_{t} x_{t}^{2} + \mathsf{R}_{t} u_{t}^{2}\right) + \mathsf{Q}_{T} x_{T}^{2}\right]$$

・ 回 と ・ ヨ と ・ ヨ と

The Control–Estimation Separation Principle

Control-estimation separation for networked control systems [Fischer AC'82][Tatikonda-Sahai-Mitter AC'04]

• Optimal control action:
$$u_t = -K_t \hat{x}_t$$

• LQR coefficients:
$$\begin{cases} K_t = \frac{\alpha L_{t+1}}{R_t + L_{t+1}}, & K_T = 0, \\ L_t = Q_t + \alpha R_t K_t, & L_{T+1} = 0 \end{cases}$$

• MMSE estimate:
$$\hat{x}_t = \mathbb{E}[x_t | f^t]$$

• Optimal cost:
$$\bar{J}_T^* = \frac{1}{T} \sum_{t=1}^{I} (WL_t + \alpha K_t L_{t+1} D_t^*)$$

•
$$D_t = \mathbb{E}\left[\left(x_t - \hat{x}_t\right)^2\right]$$

- Past u_t known to all \Rightarrow Same $\{D_t\}$ for all control actions $\{u_t\}$
- Control-estimation separation extends to networked control