(Almost) Practical Tree Codes

Anatoly Khina

Joint work with Wael Halbawi and Babak Hassibi

Caltech, Pasadena, CA, USA

ITA 2016 San Diego February 2, 2016

Networked Control vs. Traditional Control

Traditional control:

- Observer and controller are co-located.
- Classical systems are hardwired and well crafted

Networked Control vs. Traditional Control

Networked control:

- Observer and controller are not co-located: connected through noisy link
- Suitable for new remote applications (e.g., remote surgery, self-driving cars)

Motivating Example: Tracking a Random Walk [Sahai PhD'01]

$$x_{t+1} = \alpha x_t + w_t$$

- $\alpha > 1 \Longrightarrow$ not stable!
- $w_t \in \{\pm 1\}$
- We wish to track x_t with bounded expected distortion
- If tracking is possible, stability usually follows
- Allows to distill the coding problem (no quantization)

Distortion requirement

$$\mathbb{E}\left[\left(x_t-\hat{x}_t\right)^2\right]<\infty,$$

 $\forall t$

Motivating Example: Tracking a Random Walk [Sahai PhD'01]

- $\hat{b}_{t-d|t}$ Estimate of b_{t-d} at time t
- Probability of first error event at time t-d: $P_e(t,d) \triangleq \Pr\left(b_{t-d} \neq \hat{b}_{t-d|t}, \forall \delta > d, b_{t-\delta} = \hat{b}_{t-\delta|t}\right)$

$$\mathbb{E}\left[\left(x_t - \hat{x}_{t|t}\right)^2\right] \propto \sum_{d=1}^t P_e(t,d)\alpha^{2d} = \sum_{d=1}^t P_e(t,d)2^{2\log\alpha \cdot d} < \infty$$

Error probability profile: Anytime-reliable code

$$P_e(t,d) < 2^{-(2\log\alpha+\epsilon)d}$$
,

Larger moments

Higher exponent ⇒ Cannot stabilize all moments!

 $\forall t. d_0 < d < t$

Anytime-Reliable Codes: Basics

Error probability profile

$$P_e(t,d) < 2^{-(2\log\alpha+\epsilon)d}$$
,

$$\forall t, d_0 < d < t$$

How to generate such a code?

$$egin{aligned} m{c}_1 &= f_1(m{b}_1) \ m{c}_2 &= f_2(m{b}_1, m{b}_2) \ &\vdots \ m{c}_t &= f_t(m{b}_1, m{b}_2, \dots, m{b}_t) \ &\vdots \end{aligned}$$

Anytime-Reliable Codes: Basics

Error probability profile

$$P_e(t,d) < 2^{-(2\log\alpha+\epsilon)d}$$
,

$$\forall t, d_0 < d < t$$

How to generate such a code?

$$c_1 = f_1(b_1)$$
 $c_2 = f_2(b_1, b_2)$
 \vdots
 $c_t = f_t(b_1, b_2, \dots, b_t)$

Anytime-Reliable Codes: Basics

Error probability profile

$$P_e(t,d) < 2^{-(2\log\alpha+\epsilon)d}$$
,

$$\forall t, d_0 < d < t$$

How to generate such a code?

$$c_1 = f_1(\boldsymbol{b}_1)$$

$$c_2 = f_2(\boldsymbol{b}_1, \boldsymbol{b}_2)$$

$$\vdots$$

$$c_t = f_t(\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_t)$$

Anytime-Reliable Codes as Convolutional Codes

Random time-varying convolutional-code ensemble [Viterbi, Yudkin, Zigangirov, Shulman-Feder, ...]

- Most results assume infinite stream (≫ delay-line length)
- We wish to recover a bit using subsequent *nd* output symbols
- The random time-varying CC ensemble achieves:

$$\mathbb{E}[P_e(t,d)] \leq 2^{-E_G(R)nd}$$

• $E_G(R) > 0$ for R < C – Gallager's error exponent

Anytime-Reliable Codes as Convolutional Codes

Good ensemble performance ⇒ Good specific code performance?

- Block codes: Yes, with high probability!
- Anytime reliable-code?
- Such a code exists [Schulman IT'96], but **not w.h.p.** (Proof requires min-distance \propto delay)
- How to construct a good anytime-reliable code?

Ensemble Performance \Rightarrow Specific Code Performance?

Ensemble performance

$$\mathbb{E}[P_e(t,d)] \leq 2^{-E_G(R)nd}$$

Specific d and t

Using Markov's inequality:

$$\Pr\left(P_e(t,d) \ge 2^{-[E_G(R)-\epsilon]nd}\right) \le \frac{\mathbb{E}[P_e(t,d)]}{2^{-[E_G(R)-\epsilon]nd}} = 2^{-\epsilon nd}$$

Ensemble Performance \Rightarrow Specific Code Performance?

Ensemble performance

$$\mathbb{E}[P_e(t,d)] \leq 2^{-E_G(R)nd}$$

Specific d and t

Using Markov's inequality:

$$\Pr\left(P_{\mathsf{e}}(t,d) \geq 2^{-[E_{\mathsf{G}}(R) - \epsilon]nd}\right) \leq \frac{\mathbb{E}[P_{\mathsf{e}}(t,d)]}{2^{-[E_{\mathsf{G}}(R) - \epsilon]nd}} = 2^{-\epsilon nd}$$

All t and $d_0 < \overline{d} < t$

Using the union bound:

$$\Pr\left(\bigcup_{t=1}^{\infty}\bigcup_{d=d_0}^{t}P_e(t,d) \geq 2^{-[E_G(R)-\epsilon]nd}\right)$$

$$\leq \sum_{t=1}^{\infty}\sum_{d=d_0}^{t}\Pr\left(P_e(t,d) \geq 2^{-[E_G(R)-\epsilon]nd}\right) \leq \sum_{t=1}^{\infty}\operatorname{const} \to \infty$$

Linear time-variant code $\mathbf{G} = egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ dots & dots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ dots & dots & dots & dots & dots & \ddots & dots \end{pmatrix}$

Linear time-variant code

$$=egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ dots & dots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ dots & dots & dots & dots & dots & \ddots & dots \end{pmatrix}$$

Linear time-invariant code

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_t & \mathbf{G}_{t-1} & \cdots & \mathbf{G}_1 & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Linear time-variant code

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ dots & dots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ dots & dots & dots & dots & dots & \ddots & \ddots \end{bmatrix}$$

Linear time-invariant code

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_t & \mathbf{G}_{t-1} & \cdots & \mathbf{G}_1 & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Linear time-variant code

$$= \begin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Linear time-invariant code

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ \vdots & \vdots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 $\mathbf{G} = egin{bmatrix} \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \ \mathbf{G}_t & \mathbf{G}_{t-1} & \cdots & \mathbf{G}_1 & \mathbf{0} \ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$

All t and $d_0 < d < t$

Using the union bound:

$$\Pr\left(\bigcup_{t=1}^{\infty}\bigcup_{d=d_0}^{t}P_e(t,d) \ge 2^{-[E_G(R)-\epsilon]nd}\right)$$

$$\le \sum_{t=1}^{\infty}\sum_{d=d_0}^{t}\Pr\left(P_e(t,d) \ge 2^{-[E_G(R)-\epsilon]nd}\right) \le \sum_{t=1}^{\infty}\operatorname{const} \to \infty$$

→ □ → → □ → → □ →

Linear time-variant code

$$=egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ dots & dots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ dots & dots & dots & dots & \ddots & \ddots \end{bmatrix}$$

Linear time-invariant code

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \ \vdots & \vdots & \ddots & \ddots & \cdots \ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \ \vdots & \vdots & \vdots & \vdots & \ddots \ \end{bmatrix} \quad \mathbf{G} = egin{bmatrix} \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots & \cdots \ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \ \mathbf{G}_t & \mathbf{G}_{t-1} & \cdots & \mathbf{G}_1 & \mathbf{0} \ \vdots & \vdots & \vdots & \vdots & \ddots \ \end{bmatrix}$$

All t and $d_0 < d \le t$

Using the union bound:

$$\Pr\left(\bigcup_{t=1}^{\infty}\bigcup_{d=d_0}^{t}P_e(t,d) \ge 2^{-[E_G(R)-\epsilon]nd}\right)$$

$$\le \sum_{t=1}^{\infty}\sum_{d=d_0}^{t}\Pr\left(P_e(t,d) \ge 2^{-[E_G(R)-\epsilon]nd}\right) \le \sum_{t=1}^{\infty}\operatorname{const} \to \infty$$

Linear time-variant code

$$= \begin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Linear time-invariant code

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_{1,1} & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_{2,1} & \mathbf{G}_{2,2} & \mathbf{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \mathbf{G}_{t,1} & \mathbf{G}_{t,2} & \cdots & \mathbf{G}_{t,t} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots & \cdots \\ \mathbf{G}_2 & \mathbf{G}_1 & \mathbf{0} & \cdots & \cdots \\ \mathbf{G}_t & \mathbf{G}_{1} & \mathbf{0} & \cdots & \cdots \\ \mathbf{G}_t & \mathbf{G}_{t-1} & \cdots & \mathbf{G}_1 & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

All t and $d_0 < d < t$

Using the union bound:

$$\Pr\left(\bigcup_{d=d_0}^{\infty} P_e(d) \ge 2^{-[E_G(R)-\epsilon]nd}\right) \le \sum_{d=d_0}^{\infty} 2^{-\epsilon nd}$$
$$= \frac{2^{-\epsilon nd_0}}{1 - 2^{-\epsilon n}}$$

Linear Time-Invariant Codes

- Random LTI convolutional codes are anytime-reliable w.h.p.√
- But the exponent result was valid for time-variant codes
- Valid also for LTI codes [Schulman–Feder IT'00] ✓
 - (Proved independently in [Sukhavasi-Hassibi ISIT'11])
- No gain for general codes over LTI codes in this regime!
 - (Common setting of infinite decoding window: huge gain!)

Linear Time-Invariant Codes

- Random LTI convolutional codes are anytime-reliable w.h.p.√
- But the exponent result was valid for time-variant codes
- Valid also for LTI codes [Schulman–Feder IT'00] ✓
 - (Proved independently in [Sukhavasi-Hassibi ISIT'11])
- No gain for general codes over LTI codes in this regime!
 - (Common setting of infinite decoding window: huge gain!)

What about decoding?

Decoding of Linear Time-Invariant Codes

- All results assumed maximum-likelihood (ML) decoding
- ML complexity rises exponentially with t

Binary Erasure Channel (BEC)

- For LTI codes: ML = Solving linear equations
- What about other channels?

Sequential Decoding

- Before Viterbi algo.: Sequential decoding de facto standard
- Sequential decoding = class of algorithms
- Introduced originally in [Wozencraft '57] for tree codes
- Common to all: Explore only subset of (likely) codewords
- Most prominent variants: Stack and Fano's algorithms

Sequential Decoding

- Fano's metric: $M(\boldsymbol{c}_1, \cdots, \boldsymbol{c}_t) = \sum_{i=1}^{nt} \left[\log \frac{p(\boldsymbol{z}_t | \boldsymbol{c}_t)}{p(\boldsymbol{z}_t)} \widehat{\boldsymbol{B}} \right]$
- For ML decoding: $\arg\max_{\{\boldsymbol{c}_t\}} p(z_t|c_t) = \arg\max_{\{\boldsymbol{c}_t\}} \left[\log\frac{p(z_t|c_t)}{p(z_t)} B\right]$
- For partial tree exploration: Fano's metric penalizes longer incorrect paths via bias B

Error probability of general conv. ensemble [Jelinek's Book '68]

$$\mathbb{E}[P_e(t,d)] \le A 2^{-E_J(B,R)nd}$$

- A is finite for $B < R_0$
- $E_J(B,R)$ properties:
 - $\frac{1}{2}E_G(R) \leq E_J(B,R) < E_G(R)$
 - $E_J(B,R) \xrightarrow{B \to R_0} E_G(R)$, for $R < R_{crit}$
- Does not guarantee a good specific code w.h.p.

Proof for general codes requires:

- Pairwise independence: Every two paths are independent (from divergence point)
- Individual codeword distribution: Entries within each codeword are i.i.d.

Use the following affine time-invariant ensemble:

$$\begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \vdots \\ \boldsymbol{c}_t \\ \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots & \cdots \\ \boldsymbol{G}_2 & \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \boldsymbol{G}_t & \boldsymbol{G}_{t-1} & \cdots & \boldsymbol{G}_1 & \boldsymbol{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \vdots \\ \boldsymbol{b}_t \\ \vdots \end{bmatrix} + \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \vdots \\ \boldsymbol{v}_t \\ \vdots \end{bmatrix}$$

- Entries of $\{\mathbf{G}_t\}$, $\{\mathbf{b}_t\}$ and $\{\mathbf{v}_t\}$ are i.i.d. uniform
- $\{v_t\}$ random translation vectors

Use the following affine time-invariant ensemble:

$$\begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \vdots \\ \boldsymbol{c}_t \\ \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots & \cdots \\ \boldsymbol{G}_2 & \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \boldsymbol{G}_t & \boldsymbol{G}_{t-1} & \cdots & \boldsymbol{G}_1 & \boldsymbol{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \vdots \\ \boldsymbol{b}_t \\ \vdots \end{bmatrix} + \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \vdots \\ \boldsymbol{v}_t \\ \vdots \end{bmatrix}$$

- Entries of $\{\mathbf{G}_t\}$, $\{\mathbf{b}_t\}$ and $\{\mathbf{v}_t\}$ are i.i.d. uniform
- $\{v_t\}$ random translation vectors
- i.i.d. uniformity of $\{\mathbf{G}_t\}$ guarantees pairwise independence \checkmark

Use the following affine time-invariant ensemble:

$$\begin{bmatrix} \boldsymbol{c}_1 \\ \boldsymbol{c}_2 \\ \vdots \\ \boldsymbol{c}_t \\ \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots & \cdots \\ \boldsymbol{G}_2 & \boldsymbol{G}_1 & \boldsymbol{0} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \cdots \\ \boldsymbol{G}_t & \boldsymbol{G}_{t-1} & \cdots & \boldsymbol{G}_1 & \boldsymbol{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \vdots \\ \boldsymbol{b}_t \\ \vdots \end{bmatrix} + \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \vdots \\ \boldsymbol{v}_t \\ \vdots \end{bmatrix}$$

- Entries of $\{\mathbf{G}_t\}$, $\{\mathbf{b}_t\}$ and $\{\mathbf{v}_t\}$ are i.i.d. uniform
- $\{v_t\}$ random translation vectors
- i.i.d. uniformity of $\{\mathbf{G}_t\}$ guarantees pairwise independence \checkmark
- i.i.d. uniformity of $\{v_t\}$ guarantees pairwise independence \checkmark

Sequential Decoding: Complexity

- W_t Number of branch computations of note t
- W_t is a random variable

Cutoff rate [Arıkan IT'88]

For any "good" code (general or LTI), $\mathbb{E}[W_t]$ is unbounded for $R > R_0$.

Pareto distribution of W_t [Gallager, Zigangirov, Viterbi–Omura, ...]

$$Pr(W_t \geq m) \leq Am^{-\rho}$$

- For $B, R < R_0$ and $R < \frac{B+R_0}{2\rho}$, $\rho \in (0,1]$: Tight for **general** and **LTI** codes $\Rightarrow \mathbb{E}[W_t] < \infty$ for $R < R_0$
- For $\rho > 1$, $R = E_0(\rho)/\rho$:
 - Tight for general codes
 - Widely conjectured to be true for LTI codes
- Heavy tailed even if expectation is finite!

200

Simulation: Cart–Stick over BSC(0.01)

$$n = 20$$
 $k = 4$ 10 20
 $R = \frac{1}{5}$ $\frac{1}{2}$ 1
 $E = 0.5382$ 0.2382 0

- Cart-stick system model
 [Franklin-Powell-Emami-Naeini Book]
- BSC(0.01)
- For this setting
 [Sukhavasi-Hassibi ISIT'11]:
 k_{min} = 3, E_{min} = 0.2052