Improved Rates and Coding for the MIMO Two-Way Relay Channel

Anatoly Khina, Tel Aviv University
Joint work with:
Yuval Kochman, Hebrew University
Uri Erez, Tel Aviv University

October 29, 2014

Two-Way Relay Model [Rankov, Wittneben '06][Popovski, Yomo '06]

- Nodes 1 and 2 want to convey messages to each other
- No direct link \Rightarrow have to use relay
- Transmission is divided into two transmission phases:
- Multiple-access (MAC) phase:

Nodes transmit to relay

- Broadcast (BC) phase: Relay transmits to nodes

Part I

SISO

Model

MAC Phase in the Gaussian Case:

$$
y=x_{1}+x_{2}+z
$$

- x_{i} - input of average power P
- y-channel output
- z - Channel noise $\sim \mathcal{C N}(\mathbf{0}, 1)$
- "Closed loop" (Full channel knowledge everywhere)

Symmetric-rate case

- Equal rates: $R_{1}=R_{2} \triangleq R$
- $C_{\text {common }}$ - Common-message capacity of BC phase

Symmetric Gaussian SISO Case

Cut-Set Upper Bound

- Optimal individual capacity when other user is silent
- $R<R_{\mathrm{CS}}=\min \left\{\log (1+P), C_{\text {common }}\right\}$

Symmetric Gaussian SISO Case

Cut-Set Upper Bound

- Optimal individual capacity when other user is silent
- $R<R_{\mathrm{CS}}=\min \left\{\log (1+P), C_{\text {common }}\right\}$

Decode \& Forward

- Decode both messages at relay
- $R_{\mathrm{DF}}=\min \left\{\frac{1}{2} \log (1+2 P), C_{\text {common }}\right\}$
- $1 / 2$ pre-log factor \longleftrightarrow extra 2 within log
- Performs poorly at high SNR: half of cut-set upper bound!
- Optimal at low SNR (achieves $\left.R_{\mathrm{CS}}\right): \frac{1}{2} \log (1+2 P) \underset{P \ll 1}{\approx} P$

Symmetric Gaussian SISO Case

Amplify \& Forward / Naïve Compress \& Forward

- $y=x_{1}+x_{2}+z$
- Gaussian BC: Transmit y as is up to power adjustment: αy
- General BC: Compress noisy sum
- $R_{\mathrm{AF}}=\log \left(1+\frac{P P_{\text {common }}}{1+2 P+P_{\text {common }}}\right)$
- $C_{\text {common }}=\log \left(1+P_{\text {common }}\right)$

Symmetric Gaussian SISO Case

Amplify \& Forward / Naïve Compress \& Forward

- $R_{\mathrm{AF}}=\log \left(1+\frac{P P_{\text {common }}}{1+2 P+P_{\text {common }}}\right)$
- $C_{\text {common }}=\log \left(1+P_{\text {common }}\right)$

Compress \& Forward

- No need to compromise power with other user!
- Use remote Wyner-Ziv compression [Yamamoto, Itoh '80]
- $R_{\text {CF }}=\log \left(1+\frac{P P_{\text {common }}}{1+P+P_{\text {common }}}\right)$ [Gunduz, Tuncel, Nayak '10]
- 1 bit of cut-set upper bound for any $P, P_{\text {common }}$
- Becomes optimal for $1 \ll P \ll P_{\text {common }}$

Symmetric Gaussian SISO Case

Partial Decode \& Forward [Gunduz, Tuncel, Nayak '10]

- Superimpose layers of DF and CF
- (pure) DF and CF are special cases
- Optimization over power allocation to each layer should be performed

Symmetric Gaussian SISO Case

Structured physical-layer network coding [Narayanan et al. '07]

- Extends XORing of Network-Coding to Physical-layer:
- Use the same lattice for both users: $\mathbf{x}_{1}, \mathbf{x}_{2} \in \Lambda$
- Relay decodes sum-message from: $[\mathbf{y}]=\overbrace{\mathbf{x}_{1}+\mathbf{x}_{2}}^{\mathbf{x}_{+}}+\mathbf{z}] \bmod \Lambda$
- Broadcast \mathbf{x}_{+}to both users
- User i recovers $\hat{\mathbf{x}}_{\bar{i}}=\left[\hat{\mathbf{x}}_{+}-\mathbf{x}_{i}\right] \bmod \Lambda$
- $R_{\text {PNC }}=\min \left\{\log \left(\frac{1}{2}+P\right), C_{\text {common }}\right\}$
- 1 bit of cut-set upper bound for any $P, C_{\text {common }}$
- Optimal at high SNR: $P \gg 1$

Asynchronization between users

Sensitive to synchronization, in contrast to all previous strategies.

Symmetric Gaussian SISO Case

- Each strategy performs better for some values of $\left(P, P_{\text {common }}\right)$
- Time-sharing improves over "pure" strategies
- At most 0.2625 bits of cut-set UB (compared to the 1 bit gap of PNC and CF)
- At least 78.78% of cut-set UB

Model: MAC Phase in the Gaussian Case

$$
y=h_{1} x_{1}+h_{2} x_{2}+z
$$

- x_{i} - input of average power P
- h_{i} - channel gain of user i
- y - channel output
- z - Channel noise $\sim \mathcal{C N}(\mathbf{0}, 1)$
- "Closed loop" (Full channel knowledge everywhere)

Model: Broadcast Phase

- Broadcast (BC) phase can be general
- We characterize it by its "side-information rate region":

$$
\mathcal{C}_{\mathrm{BC}}=\mathrm{cl} \operatorname{conv}\left\{\begin{array}{l}
R_{1} \leq I\left(X ; Y_{2} \mid X_{2}\right) \\
R_{2} \leq I\left(X ; Y_{1} \mid X_{1}\right)
\end{array}\right\}
$$

- Gaussian BC: No tension between maximal R_{1} and R_{2} in $\mathcal{C}_{\mathrm{BC}}$ \Rightarrow Define $C_{1}^{B C}$ and $C_{2}^{B C}$

Symmetric-rate case

- Equal rates: $R_{1}=R_{2} \triangleq R$
- $C_{1}^{\mathrm{BC}} \underbrace{=}_{\text {w.l.o.g. }} C_{2}^{\mathrm{BC}}=C_{\text {common }}$
- $C_{\text {common }}$ - Common-message capacity (without side info.)

Gaussian SISO Case: Asymmetric Setting

Decode \& Forward and Compress \& Forward

$$
\begin{aligned}
R_{i}^{\mathrm{DF}} & \leq \min \left\{\log \left(1+\left|h_{i}\right|^{2} P\right), C_{i}^{\mathrm{BC}}\right\} \\
R_{1}^{\mathrm{DF}}+R_{2}^{\mathrm{DF}} & \leq \log \left(1+\left[\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}\right] P\right)
\end{aligned}
$$

- CF and DF work using modulo-lattice strategies
- CF (and pDF) hard to evaluate in asymmetric case
- CF perform poorly due to asymmetry in side info.

Asymmetric PNC [Nam, Chung, Lee '08]

$$
R_{i} \leq \min \left\{\log \left(\frac{\left|h_{i}\right|^{2}}{\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}}+\left|h_{i}\right|^{2} P\right), C_{i}^{\mathrm{BC}}\right\}
$$

- 3 levels of nesting of lattice codes

Part II

MIMO

$$
\mathbf{y}=H_{1} \mathbf{x}_{1}+H_{2} \mathbf{x}_{2}+\mathbf{z}, \quad i=1,2
$$

- $\mathbf{x}_{i}-n \times 1$ input vector of power P
- $H_{i}-n \times n$ channel matrix of user i
- $\mathbf{y}-n \times 1$ output vector
- z-Channel noise $\sim \mathcal{C N}\left(\mathbf{0}, I_{n}\right)$
- "Closed loop" (Full channel knowledge everywhere)

Model: Assumptions

Symmetric-rate case

- $R=R_{1}=R_{2}$
- Equal link capacities \Rightarrow For high SNR: $\left|H_{1}\right|=\left|H_{2}\right|$
- High SNR assumption
- Optimum inputs are white
- $\log \left|I+\frac{P}{n} H_{i} H_{i}^{\dagger}\right| \approx \log \left|\frac{P}{n} H_{i} H_{i}^{\dagger}\right|=2 \log \left|H_{i}\right|+n \log \frac{P}{n}$
- Capacity determined by $\left|H_{i}\right|$ for high SNR

Goals

Theoretical

Generalize scalar strategies to MIMO case.

Practical: "Black box" approach

- Transform MIMO links into SISO links
- Use scalar strategies over SISO links

Cut-set Upper Bound

- $R<R_{\mathrm{CS}}=\min \left\{C_{1}, C_{2}, C_{\text {common }}\right\}$
- $C_{i} \triangleq \max _{K_{i}} \min \left\{\log \left|I+H_{i} K_{i} H_{i}^{\dagger}\right|\right\}$
- C_{i} - Optimal individual capacity when other user is silent

Decode \& Foward

$$
C_{\mathrm{DF}}=\min \left\{C_{\mathrm{MAC}}, C_{\text {common }}\right\}
$$

where

$$
\begin{aligned}
& C_{\mathrm{MAC}}=\max _{K_{1}, K_{2}} \min \left\{\log \left|I+H_{1} K_{1} H_{1}^{\dagger}\right|\right. \\
& \log \left|I+H_{2} K_{2} H_{2}^{\dagger}\right| \\
&\left.\frac{1}{2} \log \left|I+H_{1} K_{1} H_{1}^{\dagger}+H_{2} K_{2} H_{2}^{\dagger}\right|\right\}
\end{aligned}
$$

Practical scheme

DF can be achieved via V-BLAST:

- Apply QR decomposition to "total channel matrix" $\left[\begin{array}{ll}H_{1} K_{1}^{1 / 2} & H_{2} K_{2}^{1 / 2}\end{array}\right]$
(or to its "augmented" version for MMSE variant)
- Use scalar coding over resulting SISO links

Compress \& Forward

- Information-theoretic expression can be derived
- Hard to evaluate in MIMO case
- Suboptimal scalar approaches have been proposed [Lin et al. '13][Kamoun et al. '13]

Structured Physical-layer Network Coding (PNC)

Problem

- How to apply scalar PNC in MIMO case?
- Each antenna sees interference from other streams

Idea

- Use joint matrix decomposition to reduce MIMO channel to SISO channels
- Use unitary transformations at transmitters - preserves power
- Apply scalar PNC over resulting SISO channels

Decomposition

- Joint diagonalization of both channel matrices not possible
- Joint triangularization?

Triangularization

Joint triangularization

$$
\begin{aligned}
& H_{1} K_{1}^{1 / 2}=U T_{1} V_{1}^{\dagger} \\
& H_{2} K_{2}^{1 / 2}=U T_{2} V_{2}^{\dagger}
\end{aligned}
$$

where

- U, V_{1}, V_{2} - Unitary
- T_{1}, T_{2} - Triangular matrices

Application for MAC phase

- Unitary V_{i} is applied at encoder i - preserves power
- Unitary U is applied at relay
- T_{1}, T_{2} - Effective triangular channels

Triangularization

Interesting special cases

- Generalized Singular Value Decomposition (GSVD)
- Joint Equi-diagonal Triangularization (JET)

Triangularization: Special Cases

$$
\begin{aligned}
& H_{1}=\left(\begin{array}{ll}
0.4757 & 0.1541 \\
2.2374 & 2.8273
\end{array}\right), \quad H_{2}=\left(\begin{array}{cc}
0.4729 & -3.9719 \\
3.0858 & -23.8021
\end{array}\right) \\
& \operatorname{det}\left(H_{1}\right)=\operatorname{det}\left(H_{2}\right)=1
\end{aligned}
$$

GSVD [Van Loan '76]

T_{1}, T_{2} have:

- Non-equal diagonals
- Proportional columns

$$
\begin{aligned}
& T_{1}=\left(\begin{array}{cc}
1 / 2 & 0 \\
3 & 2
\end{array}\right) \\
& T_{2}=\left(\begin{array}{cc}
4 & 0 \\
24 & 1 / 4
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=\left(\begin{array}{cc}
0.3065 & 0 \\
-1.5843 & 3.2628
\end{array}\right) \\
& T_{2}=\left(\begin{array}{cc}
0.3065 & 0 \\
24.1106 & 3.2628
\end{array}\right)
\end{aligned}
$$

GSVD Scheme vs. JET Scheme

GSVD-based [Yang et al. '10]

- n diagonal elements
$=n$ SISO sub-channels
- $\operatorname{diag}\left(T_{1}\right) \neq \operatorname{diag}\left(T_{2}\right)$
\Rightarrow asymmetric SISO sub-channels
\Rightarrow Use asymmetric PNC
- Proportional off-diagonal elements
\Rightarrow Subtract sum codewords (GDFE/VBLAST)
- Relay decode sum over the reals
\Rightarrow Can't achieve "the $\frac{1}{2}$ "

JET-based [Kh. et al. '11]

- n diagonal elements
$=n$ SISO sub-channels
- $\operatorname{diag}\left(T_{1}\right)=\operatorname{diag}\left(T_{2}\right)$
\Rightarrow symmetric SISO sub-channels
\Rightarrow Use symmetric PNC
- Subtract off-diagonal elements "in advance" modulo-lattice (dirty-paper coding (DPC))
- Relay decodes sum modulo lattice
\Rightarrow achieves "the $\frac{1}{2}$ "

Example - GSVD-based Scheme

$$
T_{1}=\left(\begin{array}{cc}
1 / 2 & 0 \\
3 & 2
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
4 & 0 \\
24 & 1 / 4
\end{array}\right)
$$

- Use asymmetric PNC over each sub-channel
- Decode sum-codeword of first sub-channel:

$$
2 y_{1}=x_{1 ; 1}+8 x_{2 ; 1}+z_{1} \Rightarrow x_{+}=x_{1 ; 1}+8 x_{2 ; 1}
$$

- Second sub-channel:

Interference

$$
4 y_{2}=8 x_{1 ; 2}+x_{2 ; 2}+\overbrace{12 \underbrace{\left(x_{1 ; 1}+8 x_{2 ; 1}\right)}_{x_{+}}}+z_{2}
$$

- Subtract interference of first sub-channel:

$$
12\left(x_{1 ; 1}+8 x_{2 ; 1}\right)=12 x_{+}
$$

GSVD-based Scheme

- Decodes sum over the reals x_{+}(not modulo lattice)
- BC phase uses random binning scheme (as in [Nam, Chung, Lee '08])
- Achievable rate:

$$
\begin{aligned}
& R_{\mathrm{PNC}}^{\mathrm{GSVD}}=\min \left\{R_{\mathrm{PNC}, 1}^{\mathrm{GSVD}}, R_{\mathrm{PNC}, 2}^{\mathrm{GSVD}}, C_{\text {common }}\right\} \\
& R_{\mathrm{PNC}, i}^{\mathrm{GSVD}}=\sum_{j=1}^{n}\left[\log \left(\left|d_{i, j}^{\mathrm{GSVD}}\right|^{2}\right)\right]^{+}
\end{aligned}
$$

GSVD-based Scheme

- Decodes sum over the reals x_{+}(not modulo lattice)
- BC phase uses random binning scheme (as in [Nam, Chung, Lee '08])
- Achievable rate:

$$
\begin{aligned}
& R_{\mathrm{PNC}}^{\mathrm{GSVD}}=\min \left\{R_{\mathrm{PNC}, 1}^{\mathrm{GSVD}}, R_{\mathrm{PNC}, 2}^{\mathrm{GSVD}}, C_{\text {common }}\right\} \\
& R_{\mathrm{PNC}, i}^{\mathrm{GSVD}}=\sum_{j=1}^{n}\left[\log \left(\left|d_{i, j}^{\mathrm{GSVD}}\right|^{2}\right)\right]^{+}
\end{aligned}
$$

Theorem [New]: Improved GSVD-based Scheme; using [Nazer '12]

$$
R_{\mathrm{PNC}, i}^{\mathrm{GSVD}}=\sum_{j=1}^{n}\left[\log \left(\frac{\left|d_{i, j}^{\mathrm{GSVD}}\right|^{2}}{\left|d_{1, j}^{\mathrm{GSVD}}\right|^{2}+\left|d_{2, j}^{\mathrm{GSVD}}\right|^{2}}+\left|d_{i, j}^{\mathrm{GSVD}}\right|^{2}\right)\right]^{+}
$$

Example - JET-based Scheme

$$
T_{1}=\left(\begin{array}{cc}
0.3065 & 0 \\
-1.5843 & 3.2628
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
0.3065 & 0 \\
24.1106 & 3.2628
\end{array}\right)
$$

- Use symmetric PNC over each sub-channel
- Decode sum-codeword (modulo lattice) of first sub-channel
- Second sub-channel:

Interference

$$
\frac{y_{2}}{3.2628}=\left(x_{1 ; 2}+x_{2 ; 2}\right)+\overbrace{\left(\frac{-1.5843}{3.2628} x_{1 ; 1}+\frac{24.1106}{3.2628} x_{2 ; 1}\right)}+\frac{z_{2}}{3.2628}
$$

- Use doubly dirty-paper coding (Philosof et al. '07) for second sub-channel: $x_{1 ; 2}=\left[\tilde{x}_{1 ; 2}-\frac{-1.5843}{3.2628} x_{1 ; 1}\right] \bmod \Lambda$

$$
x_{2 ; 2}=\left[\tilde{x}_{2 ; 2}-\frac{24.1106}{3.2628} x_{2 ; 1}\right] \quad \bmod \Lambda
$$

- Decode modulo lattice:

$$
y_{2}^{\prime}=\left[\frac{y_{2}}{3.2628}\right] \bmod \Lambda=\left[\tilde{x}_{1 ; 2}+\tilde{x}_{2 ; 2}+\frac{z_{2}}{3.2628}\right] \bmod \Lambda
$$

JET-based Scheme

- Standard scalar symmetric PNC over each sub-channel is used
- MMSE version of each sub-channel can be used - achieves "the $\frac{1}{2}$ " over each sub-channel
- Any common-message scheme for BC phase
- Achievable rate:

$$
\begin{aligned}
R_{\mathrm{PNC}}^{\mathrm{JET}} & =\min \left\{R_{\mathrm{PNC}, 1}^{\mathrm{JET}}, R_{\mathrm{PNC}, 2}^{\mathrm{JET}}, C_{\text {common }}\right\} \\
R_{\mathrm{PNC}, i}^{\mathrm{JET}} & =\sum_{j=1}^{n}\left[\log \left(\frac{1}{2}+\left|d_{i, j}^{\mathrm{JET}}\right|^{2}\right)\right]^{+}
\end{aligned}
$$

High SNR asymptotic optimality

Both schemes achieve optimum for $P \rightarrow \infty$

General SNR

The $\frac{d_{i}^{2}}{d_{1}^{2}+d_{2}^{2}}$ gain is more significant in symmetric case \Rightarrow JET-based scheme performs better in most cases

Combining PNC with CF, DF: GSVD Scheme

- Optimization of even "pure" CF is hard in asymmetric cases
- "One-layered" CF in asymmetric case: Suboptimal within CF class ${ }^{-}$
- DF and PNC must preceed CF in decoding \Downarrow
Problem using best time-shared scheme over each SISO link
- Asymmetric links impair performance, its analysis, and constructing a practical scheme for CF, pDF, and even PNC
- PNC rate deteriorates when additional interference is present

Combining PNC with CF, DF: JET Scheme

- "One-layered" CF in symmetric case: Optimal within CF class!
- Combining JET-based PNC with CF and DF is simple:
- Apply JET to channel matrices \Rightarrow parallel symmetric channel
- Apply optimal SISO strategy over resulting channel: Time-sharing between CF/DF/PNC
- CF and PNC work better in symmetric case!
- Achieves the same rate when additional interference is present

$$
H_{1}=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 4
\end{array}\right) \quad H_{2}=\left(\begin{array}{cc}
4 & 0 \\
0 & 1 / 4
\end{array}\right)
$$

General SNR in MIMO Setting

- No claim on bounded gap from cut-set upper bound! (Except in high SNR)
- This is in contrast to SISO setting!

Open problem

- How to make MMSE variants for PNC/CF?
- For DF: MMSE V-BLAST does the job

Gaussian BC Case

Terminal 1
Terminal 2

$$
\mathbf{y}_{i}=G_{i} \mathbf{x}+\mathbf{z}_{i}, \quad i=1,2
$$

Similar approach to MAC approach [Kh., Kochman, Erez 2010]

- Apply the JET to G_{1} and G_{2} (for augmented matrices if SNR not high).
- Achieves triangular matrices with equal diagonals.
- Use GDFE/VBLAST (instead of DPC).
- Optimal for any matrices and any SNR!

