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Model General

Two-Way Relay Model [Rankov, Wittneben '06][Popovski, Yomo '06]

@ Nodes 1 and 2 want to convey messages to each other
@ No direct link = have to use relay

@ Transmission is divided into two transmission phases:

o Multiple-access (MAC) phase:
Nodes transmit to relay

@ Broadcast (BC) phase:
Relay transmits to nodes

p(y1; y2|x)
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Model

MAC Phase in the Gaussian Case:
y=xi1+x+z
@ x; — input of average power P
@ y - channel output

@ z - Channel noise ~ CN(0,1)

@ “Closed loop” (Full channel knowledge everywhere)

Symmetric-rate case

o Equal rates: Ry = R, £ R

® Ceommon — Common-message capacity of BC phase
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Cut-Set Upper Bound

@ Optimal individual capacity when other user is silent

@ R < Rcs = min {Iog(l + P) s Ccommon}
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Cut-Set Upper Bound

@ Optimal individual capacity when other user is silent

@ R < Rcg = min {Iog(l + P) s Ccommon}

Decode & Forward

@ Decode both messages at relay

® Rpr = min {% log (1 +2P), Ccommon}
@ 1/2 pre-log factor <— extra 2 within log
@ Performs poorly at high SNR: half of cut-set upper bound!

@ Optimal at low SNR (achieves Rcs): 5 log(1 + 2P) P
P<1

A
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Amplify & Forward / Naive Compress & Forward

O y=x1+x+z

@ Gaussian BC: Transmit y as is up to power adjustment: ay

@ General BC: Compress noisy sum

J— PPC mmon
® Rar = log (1 + 1+2Pchofnmon)

o Ccommon - Iog(l + Pcommon)
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Amplify & Forward / Naive Compress & Forward

_ PPCOmmOn
® Rar = log (1 + 1+2P+Pcommon)

o Ccommon - |Og(1 + Pcommon)

Compress & Forward

@ No need to compromise power with other user!

@ Use remote Wyner—Ziv compression [Yamamoto, Itoh '80]

® Rcr = log (1 - J,ff’ﬁ) [Gunduz, Tuncel, Nayak "10]

@ 1 bit of cut-set upper bound for any P, Pcommon

@ Becomes optimal for 1 < P < Peommon
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Partial Decode & Forward [Gunduz, Tuncel, Nayak '10]

@ Superimpose layers of DF and CF
@ (pure) DF and CF are special cases

@ Optimization over power allocation to each layer should be
performed
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

Structured physical-layer network coding [Narayanan et al. '07]

@ Extends XORing of Network-Coding to Physical-layer:
o Use the same lattice for both users: x;3,x2 € A
X

a
s Relay decodes sum-message from: [y] = [x; + x2 +2z] mod A
o Broadcast x; to both users

@ User i recovers X; = [X; — x;] mod A

) RPNC = min {Iog (% + P) 5 Ccommon}

@ 1 bit of cut-set upper bound for any P, Ccommon

@ Optimal at high SNR: P> 1

Asynchronization between users

Sensitive to synchronization, in contrast to all previous strategies.
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Symmetric SISO Model CS UB, DF AF CF pDF PNC

Symmetric Gaussian SISO Case

@ Each strategy performs better for some values of (P, Pcommon)
@ Time-sharing improves over “pure” strategies

@ At most 0.2625 bits of cut-set UB
(compared to the 1 bit gap of PNC and CF)

o At least 78.78% of cut-set UB
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Asymmetric SISO Model

Model: MAC Phase in the Gaussian Case

y =hixi + hoxp + z

@ x; — input of average power P

® h;j - channel gain of user |

(]

y - channel output

z - Channel noise ~ CA/(0,1)

@ “Closed loop” (Full channel knowledge everywhere)
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Asymmetric SISO Model

Model: Broadcast Phase

@ Broadcast (BC) phase can be general

@ We characterize it by its “side-information rate region”:

Rl S I(X; YQ‘XQ)}

Cgc =d conv{R2 < 1(X: Va|X)

@ Gaussian BC: No tension between maximal Ry and R» in Cgc
= Define ClBC and C2BC

Symmetric-rate case
o Equal rates: Ry =R, = R

° ClBC,:,CzBC:Ccommon

w.l.o.g.

@ Ceommon — Common-message capacity (without side info.)
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Asymmetric SISO Model

Gaussian SISO Case: Asymmetric Setting

Decode & Forward and Compress & Forward

RPF < min {Iog (1+ |h,-|2P) ; CiBC}

RD™+ Ry < log (1+ [Im[? + hof*] P)
@ CF and DF work using modulo-lattice strategies

@ CF (and pDF) hard to evaluate in asymmetric case

@ CF perform poorly due to asymmetry in side info.

Asymmetric PNC [Nam, Chung, Lee '08]

hi|?
R; < min {Iog <# o \h;\2P> : C,-BC}

|12 + [haf?

@ 3 levels of nesting of lattice codes
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Part Il

MIMO
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Terminal 1

Terminal 2

y = Hix1 + Hoxa + z, i=1,2

@ x; — n x 1 input vector of power P

@ y - n x 1 output vector

@ z - Channel noise ~ CA/(0, /,)

H; - n x n channel matrix of user i

@ “Closed loop” (Full channel knowledge everywhere)
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Model
Model: Assumptions

Symmetric—rate case
o R= R1 = R2

@ Equal link capacities = For high SNR: |H1| = |Ha|

High SNR assumption

Optimum inputs are white

log |/ + %H,-H;f\ ~ Iog\%H,-H,” = 2log |H;| + nlog £

Capacity determined by |H;| for high SNR
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Theoretical

Generalize scalar strategies to MIMO case.

Practical: “Black box" approach
@ Transform MIMO links into SISO links

@ Use scalar strategies over SISO links
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cs

Cut-set Upper Bound

o R< RCS = min {C17 C27 Ccommon}
= max min {Iog ‘I + H,-K,-H,T‘}

@ C; — Optimal individual capacity when other user is silent
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DF

Decode & Foward

CDF = min{CMAC, Ccommon}
where

9

wmzp%mﬂm/+mm@

1,A2

log |1 + HaKaHJ

)

1
Em/+mm%+%m@w

Practical scheme

DF can be achieved via V-BLAST:
o Apply QR decomposition to “total channel matrix”
[HlKll/2 H2K21/2}
(or to its “augmented” version for MMSE variant)

@ Use scalar coding over resulting SISO links
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CF

Compress & Forward

@ Information-theoretic expression can be derived
@ Hard to evaluate in MIMO case

@ Suboptimal scalar approaches have been proposed
[Lin et al. '13][Kamoun et al. '13]
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PNC Triangularization GSVD vs. JET

Structured Physical-layer Network Coding (PNC)

@ How to apply scalar PNC in MIMO case?

@ Each antenna sees interference from other streams |
@ Use joint matrix decompaosition to reduce
MIMO channel to SISO channels

@ Use unitary transformations at transmitters — preserves power

@ Apply scalar PNC over resulting SISO channels

V.
Decomposition

@ Joint diagonalization of both channel matrices not possible

@ Joint triangularization?

Anatoly Khina, Yuval Kochman, Uri Erez ITW 2014 Part 1l: MIMO



PNC Triangularization GSVD vs. JET

Triangularization

H K2 = Uy Vf
Ho Ky = UT, V)
where
o U, Vi, V) — Unitary

@ Ty, To — Triangular matrices

Application for MAC phase

@ Unitary V] is applied at encoder i — preserves power
@ Unitary U is applied at relay

@ T, T, — Effective triangular channels
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PNC Triangularization GSVD vs. JET

Triangularization

Interesting special cases

@ Generalized Singular Value Decomposition (GSVD)

@ Joint Equi-diagonal Triangularization (JET)

Anatoly Khina, Yuval Kochman, Uri Erez ITW 2014 Part 1l: MIMO



PNC Triangularization GSVD vs. JET

Triangularization: Special Cases

by, _ (04757 0.1541 b, _ (04720 —3.9719
1=\ 22374 28273 ) "2 7\ 3.0858 —23.8021

det(Hl) = det(Hz) =1.

GSVD [Van Loan '76] JET [Kh., Kochman, Erez '12]
T1, T> have: T1, T> have:
@ Non-equal diagonals o Equal diagonals
@ Proportional columns @ Non-proportional columns
1/2 0 0.3065 0
hi= < é 2 ) h= ( ~1.5843 3.2628 )
T2:< 4 0 > T2:< 0.3065 0 >
24 1/4 24.1106 3.2628
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PNC Triangularization GSVD vs. JET

GSVD Scheme vs. JET Scheme

GSVD-based [Yang et al. '10] JET-based [Kh. et al. '11]

@ n diagonal elements @ n diagonal elements
= n SISO sub-channels = n SISO sub-channels
o diag(Ty) # diag(T2) o diag(Ty) = diag(T>)
=- asymmetric SISO = symmetric SISO
sub-channels sub-channels
= Use asymmetric PNC = Use symmetric PNC
@ Proportional off-diagonal @ Subtract off-diagonal
elements elements “in advance”
= Subtract sum codewords modulo-lattice
(GDFE/VBLAST) (dirty-paper coding (DPC))
@ Relay decode sum over the o Relay decodes sum
reals modulo lattice
= Can't achieve “the % = achieves “the %
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PNC Triar arization GSVD vs. JET

Example — GSVD-based Scheme

T1:<1éz (2)> T2:<2Lt1 1(/)4>

@ Use asymmetric PNC over each sub-channel

@ Decode sum-codeword of first sub-channel:
2y1 = x1;1 +8x0;1 + 21 = Xy = x1;1 + 8x2;1

@ Second sub-channel: | ierference

r——
4yr = 8x1;2 + x02 + 12 (x1;1 + 8x21) +22
——

X+

@ Subtract interference of first sub-channel:
12(x1.1 + 8x2:1) = 12x4
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PNC Triangularization GSVD vs. JET

GSVD-based Scheme

@ Decodes sum over the reals x; (not modulo lattice)

@ BC phase uses random binning scheme
(as in [Nam, Chung, Lee '08])

@ Achievable rate:

GSVD _ . [ pGSVD pGSVD
Rpnc™ = min {RPNC,la RpNC2 5 Ccommon}

GSVD eswo 2] "
RPNC,i Z [|0€ <‘di,j ‘ )]

Jj=1
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PNC Triangularization GSVD vs. JET

GSVD-based Scheme

@ Decodes sum over the reals x; (not modulo lattice)

@ BC phase uses random binning scheme
(as in [Nam, Chung, Lee '08])

@ Achievable rate:

GSVD _ . [ pGSVD pGSVD
Rpnc™ = min {RPNC,la RpNC2 5 Ccommon}

GSVD eswo 2] "
RPNC,i Z [|0€ < di,j ‘ )]

Jj=1

Theorem [New]: Improved GSVD-based Scheme; using [Nazer '12]

i +

n
GSVD __
RPNC’i - Z log Gsvp|? Gsvp|?
=1 ‘dld- ‘ +‘d27j (
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PNC Triangularization GSVD vs. JET

Example — JET-based Scheme
7 _ ( 03065 0 7. _ ( 0-3065 0
1=\ —15843 32628 /> 27\ 24.1106 3.2628

@ Use symmetric PNC over each sub-channel

@ Decode sum-codeword (modulo lattice) of first sub-channel

@ Second sub-channel: Interference

AN

L 15843 241106
32 = (a2 e2) | g + 35g58 e | a6

@ Use doubly dirty-paper coding (Philosof et al. '07) for second
sub-channel: xj.0 = [)?1;2 %xl 1] mod A

24.1106
X220 = [X22 ~ 30608 le] mod A

@ Decode modulo lattice:
V= [—35’;28] mod A = [%1,2 + %22 + 35255] mod A
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PNC Triangularization GSVD vs. JET

JET-based Scheme

@ Standard scalar symmetric PNC over each sub-channel is used

@ MMSE version of each sub-channel can be used — achieves
“the % over each sub-channel

@ Any common-message scheme for BC phase

@ Achievable rate:

JET . JET JET
Rpnc = min {RPNC,17 Renc,2 » Ccommon}

JET & 1 JET 2 -
RPNC,i = Z |:|Og <§ + ‘d’.dl ‘ >:|

j=1
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PNC Triangularization GSVD vs. JET

PNC: GSVD Scheme vs. JET Scheme

High SNR asymptotic optimality

Both schemes achieve optimum for P — oo

General SNR

d? .. e . .
ﬁ gain is more significant in symmetric case
1 2

The 7

= JET-based scheme performs better in most cases
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PNC Triangularization GSVD vs. JET

Combining PNC with CF, DF: GSVD Scheme

Optimization of even “pure” CF is hard in asymmetric cases

"One-layered” CF in asymmetric case:
Suboptimal within CF class ®

DF and PNC must preceed CF in decoding
\

Problem using best time-shared scheme over each SISO link

Asymmetric links impair performance, its analysis, and
constructing a practical scheme for CF, pDF, and even PNC

PNC rate deteriorates when additional interference is present
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PNC Triangularization GSVD vs. JET

Combining PNC with CF, DF: JET Scheme

@ “One-layered” CF in symmetric case: Optimal within CF class!

@ Combining JET-based PNC with CF and DF is simple:

o Apply JET to channel matrices = parallel symmetric channel

@ Apply optimal SISO strategy over resulting channel:
Time-sharing between CF/DF/PNC

@ CF and PNC work better in symmetric case!

@ Achieves the same rate when additional interference is present
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Triangularization GSVD vs. JET
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General SNR in MIMO Setting

@ No claim on bounded gap from cut-set upper bound!
(Except in high SNR)

@ This is in contrast to SISO setting!

Open problem

@ How to make MMSE variants for PNC/CF?

@ For DF: MMSE V-BLAST does the job
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Gauss.-BC
Gaussian BC Case

Terminal 1 Terminal 2
y; = Gix+ z;, i=1,2

Similar approach to MAC approach [Kh., Kochman, Erez 2010]
@ Apply the JET to G; and G,
(for augmented matrices if SNR not high).

@ Achieves triangular matrices with equal diagonals.
@ Use GDFE/VBLAST (instead of DPC).
@ Optimal for any matrices and any SNR!
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