The Confidential MIMO Broadcast Capacity A Simple Derivation

Anatoly Khina, Tel Aviv University
Joint work with:
Yuval Kochman, Hebrew University Ashish Khisti, University of Toronto

ISIT 2015
Hong Kong
June 18, 2015

Model: Confidential Gaussian MIMO Broadcast

Bob: M_{B}, M_{G}
$\mathbf{y}_{B}=\mathbf{H}_{B} \mathbf{x}_{A}+\mathbf{z}_{B}$
$\mathbf{y}_{C}=\mathbf{H}_{C} \mathbf{x}_{A}+\mathbf{z}_{C}$

- $\mathbf{x}_{A}-N_{A} \times 1$ input vector
- $\mathbf{y}_{B}, \mathbf{y}_{C}-N_{B} \times 1, N_{C} \times 1$ received vectors
- $\mathrm{H}_{B}, \mathrm{H}_{C}-N_{B} \times N_{A}, N_{C} \times N_{A}$ channel matrices
- $\mathbf{z}_{B} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{B}}\right), \mathbf{z}_{C} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{C}}\right)$ - noise vectors
- "Closed loop" (full channel knowledge everywhere)

Outline of Talk (Special Cases)

MIMO Without Secrecy (No Charlie)

Bob: M_{B}

Outline of Talk (Special Cases)

MIMO Without Secrecy (No Charlie)

MIMO Wiretap (Maximize Rate to Bob)

Bob: M_{B}, M_{C}
Charlie: M_{B},

MIMO Without Secrecy (No Charlie) Practical Scheme via Matrix Decompositions

MIMO Without Secrecy (No Charlie)

Total power constraint: Capacity

$$
C\left(\mathbf{H}_{B}\right)=\max _{\mathbf{K}: \operatorname{tr}\{\mathbf{K}\} \leq P} \overbrace{\log \left|I+\mathbf{H}_{B} \mathrm{KH}_{B}\right|}^{I\left(\mathbf{X}_{A} ; \mathbf{Y}_{B}\right)}
$$

- $X \sim$ Gaussian
- Maximization over all admissible covariance matrices K
- Explicit expression for optimal K via SVD [Telatar '99]

Input covariance constraint: Capacity

- Replace $\operatorname{tr}\{\mathbf{K}\} \leq P$ with $\mathbf{K} \preceq \overline{\mathbf{K}}$
- Use all of the "available covariance" \bar{K}

V-BLAST Scheme: QR Decomposition Based Scheme

Zero-forcing V-BLAST [Foschini '96][Wolniansky et al. '98]

- $\mathrm{H}_{B}=\mathbf{Q}_{B} \mathbf{T}_{B}$
- \mathbf{Q}_{B} - unitary; \mathbf{T}_{B} - triangular
- Bob applies Q_{B}^{\dagger} (no SP is required by Alice)
$-\mathbf{T}_{B}=\left(\begin{array}{ccccc}b_{1} & * & * & \cdots & * \\ 0 & b_{2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{N_{A}-1} & * \\ 0 & 0 & \cdots & 0 & b_{N_{A}}\end{array}\right) \Rightarrow \begin{gathered}y_{1}^{\text {eff }}=b_{1} \tilde{x}_{1}+z_{1} \\ y_{2}^{\text {eff }}=b_{2} \tilde{x}_{2}+z_{2} \\ \vdots \\ y_{N_{A}}^{\text {eff }}=b_{N_{A}} \tilde{x}_{N_{A}}+z_{N_{A}}\end{gathered}$
- Off-diagonal elements are canceled via either:
- Successive interference cancellation (SIC)
- Dirty-paper coding (DPC)

V-BLAST Scheme: QR Decomposition Based Scheme

MMSE-VBLAST for a given covariance K [Hassibi '00]

- $\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$
- Q_{B} - unitary; $\tilde{Q}_{B}-N_{B} \times N_{A}$ submatrix of Q_{B}
- Bob applies $\tilde{\mathrm{Q}}_{B}^{\dagger}$ (no SP is required by Alice)
- \tilde{Q}_{B}^{\dagger} contains Wiener-filtering ("FFE")
- Effective noise has channel noise and "ISI" components
- Effective SNRs satisfy: $b_{i}^{2}=1+$ SNR $_{i}$

$$
\log \left(b_{i}^{2}\right)=\log \left(1+\operatorname{SNR}_{i}\right)=I\left(\tilde{x}_{i} ; y_{B} \mid \tilde{x}_{i+1}^{N_{A}}\right)
$$

- Off-diagonal elements above diagonal canceled via SIC or DPC

V-BLAST Scheme: QR Decomposition Based Scheme

- For square invertible $\mathbf{H}, \mathrm{ZF}-\mathrm{VBLAST}$ achieves:

$$
R=\log \left|\mathbf{H}_{B} \mathbf{H}_{B}^{\dagger}\right|
$$

(Using K at the transmitter achieves: $R=\log \left|\mathbf{H}_{B} \mathrm{KH}_{B}^{\dagger}\right|$)

- MMSE-VBLAST achieves:

$$
R=\sum_{i=1}^{N_{A}} \log b_{i}^{2}=\log \left|\mathbf{I}_{N_{B}}+\mathbf{H}_{B} \mathrm{KH}_{B}^{\dagger}\right|
$$

Precoded V-BLAST: Alice Applies Unitary $\mathbf{V}_{\text {A }}$

MMSE-VBLAST with precoding for a given covariance K
$-\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$

- V_{A} can be used to design diagonal values \Leftrightarrow design SNRs

Precoded V-BLAST: Alice Applies Unitary $\mathbf{V}_{\text {A }}$

MMSE-VBLAST with precoding for a given covariance K

- $\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \boldsymbol{T}_{B}$
- V_{A} can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)

Choosing \mathbf{V}_{A} of the SVD of $\mathbf{H}_{B} \mathbf{K}^{1 / 2} \Rightarrow$ SVD scheme (no SIC/DPC needed)

Precoded V-BLAST: Alice Applies Unitary \mathbf{V}_{A}

MMSE-VBLAST with precoding for a given covariance K

$\cdot\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$

- V_{A} can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)
Choosing \mathbf{V}_{A} of the SVD of $\mathrm{H}_{B} \mathrm{~K}^{1 / 2} \Rightarrow$ SVD scheme (no SIC/DPC needed)

Geometric-mean decomposition [Jiang et al. '05]/ QRS [Zhang et al. '05]

- \mathbf{V}_{A} is choosing s.t. all diagonal values (all SNRs) are equal
- The same codebook can be used over all subchannels
- No need for bit-loading

MIMO Wiretap (Maximize Rate to Bob)

Gaussian MIMO Wiretap: Maximize rate to Bob

Total power constraint [Khisti-Wornell '10][Oggier-Hassibi '11]

$$
C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{C}\right)=\max _{\mathbf{K}: \operatorname{tr}\{\mathbf{K}\} \leq P}[\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{B} \mathbf{K H}_{B}^{\dagger}\right|}-\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{C} \mathbf{K} \mathbf{H}_{C}^{\dagger}\right|}]
$$

- $X \sim$ Gaussian
- Maximization over all admissible covariance matrices K
- No explicit expression for optimal K

Gaussian MIMO Wiretap: Maximize rate to Bob

Total power constraint [Khisti-Wornell '10][Oggier-Hassibi '11]

$C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{C}\right)=\max _{\mathbf{K}: \operatorname{tr}\{\mathbf{K}\} \leq P}[\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{B} \mathbf{K} \mathbf{H}_{B}^{\dagger}\right|}^{I\left(\mathbf{X}_{A} ; \mathbf{Y}_{B}\right)}-\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{C} \mathbf{K} \mathbf{H}_{C}^{\dagger}\right|}^{I\left(\mathbf{X}_{A} ; \mathbf{Y}_{C}\right)}]$

- $X \sim$ Gaussian
- Maximization over all admissible covariance matrices K
- No explicit expression for optimal K

Input covariance constraint [Liu-Shamai '09]

- Replace $\operatorname{tr}\{\mathbf{K}\} \leq P$ with $\mathbf{K} \preceq \overline{\mathbf{K}}$
- Explicit exp. for optimal K! [Bustin-Liu-Poor-Shamai '09]

Scheme for General SNR [Kh., Kochman, Khisti ISIT'14]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N_{A}}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{C} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{C} \overbrace{\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N_{A}}
\end{array}\right)}, \quad c_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs ($b_{i}^{2}-1, c_{i}^{2}-1$)
- \mathbf{V}_{A} of Charlie's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- \mathbf{V}_{A} of Bob's SVD \Rightarrow No need for V-BLAST
- $\operatorname{diag}\left\{\mathbf{T}_{B}\right\}, \operatorname{diag}\left\{\mathbf{T}_{C}\right\}$ are const. \Rightarrow Same code over all channels

Scheme for General SNR [Kh., Kochman, Khisti ISIT'14]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N_{A}}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{C} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{C} \overbrace{\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N_{A}}
\end{array}\right)}, \quad c_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs $\left(b_{i}^{2}-1, c_{i}^{2}-1\right)$

Genie-aided secrecy-proof

- Charlie tries to recover messages sequentially (from last to first)
- For the recovery of message i all previous messages are revealed

Dirty-Paper Coding Variant of Scheme [New]

Alice:

- Cancels out off-diagonal elements of Bob via DPC
- Uses good SISO DPC wiretap codes for SNR-pairs ($b_{i}^{2}-1, c_{i}^{2}-1$)

Bob: Recovers using DPC decoder (as in MIMO without secrecy)

Genie-aided secrecy-proof

- Similar to secrecy analysis for SIC scheme
- Charlie tries to recover messages sequentially
- Messages this time are Costa-like auxiliaries $\left(U_{i}\right)$
- For the recovery of message i previous auxiliaries are revealed (from which the signals X_{i} can be constructed)

Restatement of Optimal K Expression of Bustin et al. via GSVD

MIMO Wiretap Capacity under Covariance Constraint $\mathrm{K} \preceq \overline{\mathrm{K}}$

- Apply \mathbf{V}_{A} of the Generalized Singular Value Decomposition (GSVD) to the "MMSE-VBLAST" matrices:

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{H}_{B} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{B}\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N_{A}}
\end{array}\right) \\
{\left[\begin{array}{c}
\mathbf{H}_{C} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{C}\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N_{A}}
\end{array}\right)
\end{aligned}
$$

- $C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{C}\right)=\sum_{i=1}^{N_{A}}\left[\log \frac{b_{i}}{c_{i}}\right]^{+}$
- $\mathbf{K}_{\text {opt }}=\overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \mathbf{I}_{B} \mathbf{V}_{A}^{\dagger} \overline{\mathbf{K}}^{1 / 2 \dagger}$
- I_{B} - Diagonal matrix with 1 whenever $b_{i}>c_{i}$ and 0 otherwise

Wiretap under Cov. Constraint: Alternative Proof Outline

- W.I.o.g., $\mathrm{K} \preceq \overline{\mathrm{K}}$ can be written as $\mathrm{K}=\overline{\mathrm{K}}^{1 / 2} \mathbf{V}_{A} \mathbf{D V _ { A } ^ { \dagger }} \overline{\mathrm{~K}}^{\dagger / 2}$
- D is non-negative diagonal with $0 \leq D_{i i} \leq 1$
- For any $\mathbf{V}_{A}: I\left(\mathbf{H}_{B}, \mathbf{K}\right)-I\left(\mathbf{H}_{C}, \mathbf{K}\right)=\sum_{i=1}^{N} \log \frac{b_{i}^{2}}{c_{i}^{2}}$
- Optimal \mathbf{D} for a given $\mathbf{V}_{\mathbf{A}}$: truncation

$$
C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \overline{\mathbf{K}}\right)=\max _{\mathbf{V}_{A}} \sum_{i=1}^{N}\left[\log \frac{b_{i}^{2}}{c_{i}^{2}}\right]^{+}
$$

- By multiplicative majorization of joint unitary triangularization [Khina, Kochman, Erez SP'12], \mathbf{V}_{A} of the GSVD is optimal

Optimal covariance matrix

$$
\mathbf{K}_{\mathrm{opt}}=\overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \mathbf{I}_{B} \mathbf{V}_{A}^{\dagger} \overline{\mathbf{K}}^{1 / 2 \dagger}
$$

- I_{B} - Diagonal matrix with 1 whenever $b_{i}>c_{i}$ and 0 otherwise

Finally... Confidential MIMO Broadcast

Confidential MIMO BC Capacity [Liu-Liu-Poor-Shamai '10]

Total power constraint

Using Lemma 1 of [Weingarten-Steinberg-Shamai '06]:

$$
\mathcal{C}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, P\right)=\bigcup_{\mathbf{K}: \operatorname{tr}\{\mathbf{K}\}=P}\left(C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{C}, \mathbf{K}\right), C_{S}\left(\mathbf{H}_{C}, \mathbf{H}_{B}, \mathbf{K}\right)\right)
$$

\Rightarrow Suffices to determine capacity region under covariance constraint

Covariance constraint

- No tension between users
- Both users achieve optimal wiretap capacities simultaneously!
- Rectangular capacity region

Confidential MIMO BC Capacity [Liu-Liu-Poor-Shamai '10]

Method of proof for covariance constraint

Converse: Trivial (both users achieve optimality simultaneously) Achievable:

- Development of new achievable for MIMO wiretap channel that uses "artificial noise"
- Showing that new techniques achieves capacity (via channel enhancement technique)
- Double random-binning schemes and "secret dirty-paper coding"
- Alice \rightarrow Bob: Uses "standard" random binning (standard technique)
- Alice \rightarrow Charlie: Uses random binning with artificial noise (new technique)

Confidential MIMO BC Capacity [Liu-Liu-Poor-Shamai '10]

Connection to [Bustin-Liu-Poor-Shamai '09]

- Generalization of the techniques of Bustin et al.
- Capacity region can be represented via "generalized eigenvalues"

Confidential MIMO BC Capacity: New Derivation

- Simple derivation: Easy consequence of MIMO Wiretap treatment
- Uses standard MIMO wiretap capacity expression (no need for expression with "artificial noise")
- Uses standard (Costa) dirty-paper coding
- Explains why dirty-paper coding is required (for at least one of the users)
- Connection to the generalized singular values is natural
- Allows construction of a practical scheme

Capacity-Achieving Confidential MIMO Broadcast

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{H}_{B} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{B}\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N_{A}}
\end{array}\right) \\
{\left[\begin{array}{c}
\mathbf{H}_{C} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{C}\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N_{A}}
\end{array}\right)
\end{aligned}
$$

- \mathbf{V}_{A} of the GSVD
- Choosing directions of $b_{i}>c_{i}$ is optimal for Bob
- But... Choosing directions of $b_{i}<c_{i}$ is optimal for Charlie!

Allocate $b_{i}>c_{i}$ to Bob Allocate $b_{i}<c_{i}$ to Charlie

Capacity-Achieving Confidential MIMO Broadcast

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{H}_{B} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{B}\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N_{A}}
\end{array}\right) \\
{\left[\begin{array}{c}
\mathbf{H}_{C} \overline{\mathbf{K}}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right] } & =\mathbf{Q}_{C}\left(\begin{array}{ccc}
c_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & c_{N_{A}}
\end{array}\right)
\end{aligned}
$$

Scheme

Charlie: Uses SIC or DPC over elements satisfying $c_{i}>b_{i}$

Bob: Uses DPC scheme over elements satisfying $b_{i}>c_{i}$

- Alice pre-cancels interference also from Charlie's signals
- Bob can gain no info. of Charlie's message from DPC

Capacity-Achieving Confidential MIMO Broadcast

Decoupling the Modulation

- Alice can apply additional unitary block-matrix operations:

$$
\begin{aligned}
& \tilde{\mathbf{T}}_{B}=\overbrace{\left(\begin{array}{cc}
\mathbf{Q}_{B ; B}^{\dagger} & \mathbf{0} \\
\mathbf{0} & \mathbf{Q}_{B ; C}^{\dagger}
\end{array}\right)}^{\text {Bob }}\left(\begin{array}{cc}
\mathbf{B}_{B} & * \\
\mathbf{0} & \mathbf{B}_{C}
\end{array}\right) \overbrace{\left(\begin{array}{cc}
\mathbf{V}_{B} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{C}
\end{array}\right)}^{\text {Alice }} \\
& \tilde{\mathbf{T}}_{C}=\overbrace{\left(\begin{array}{cc}
\mathbf{Q}_{C ; B}^{\dagger} & \mathbf{0} \\
\mathbf{0} & \mathbf{Q}_{C ; C}^{\dagger}
\end{array}\right)}^{\text {Charlie }} \begin{array}{cc}
\mathbf{C}_{B} & * \\
\mathbf{0} & \mathbf{C}_{C}
\end{array}) \overbrace{\left(\begin{array}{cc}
\mathbf{V}_{B} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{C}
\end{array}\right)}^{\text {Alice }}
\end{aligned}
$$

- SVD of Charlie's "block" \mathbf{C}_{C} allows him to avoid SIC or DPC
- Other decompositions with desired properties can be applied (SVD of $\mathbf{B}_{C}, 2-G M D$ of $\left(\mathbf{B}_{B}, \mathbf{B}_{C}\right)$, 2-GMD of $\left(\mathbf{C}_{B}, \mathbf{C}_{C}\right)$, etc.)

Summary

- Alternative derivation of the result of Bustin et al. for MIMO WTC via matrix analysis tools
- Simple derivation of capacity region of confidential MIMO BC
- Connection to generalized singular values is immediate
- Explicitly shows why DPC by at least one user is required

