From Ordinary AWGN Codes to Optimal MIMO Wiretap Schemes

Anatoly Khina, Tel Aviv University

Joint work with:
Yuval Kochman, Hebrew University Ashish Khisti, University of Toronto

ITW 2014
Hobart, Tasmania, Australia
November 05, 2014

Channel Model: Gaussian MIMO Wiretap Channel

$\mathbf{y}_{B}=\mathbf{H}_{B} \mathbf{x}+\mathbf{z}_{B}$

$$
\mathbf{y}_{E}=\mathbf{H}_{E} \mathbf{x}+\mathbf{z}_{E}
$$

- $\mathrm{x}-N_{A} \times 1$ input vector of power P
- $\mathbf{y}_{B}, \mathbf{y}_{E}-N_{B} \times 1, N_{E} \times 1$ received vectors
- $\mathrm{H}_{B}, \mathrm{H}_{E}-N_{B} \times N_{A}, N_{E} \times N_{A}$ channel matrices
- $\mathbf{z}_{B} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{B}}\right), \mathbf{z}_{E} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N_{E}}\right)$ - noise vectors
- "Closed loop" (full channel knowledge everywhere)

Capacity

Gaussian SISO channel capacity [Leung-Yan-Cheong, Hellman '78]

$$
C_{S}\left(h_{B}, h_{E}\right)=[\overbrace{\log \left(1+\left|h_{B}\right|^{2} P\right)}^{I\left(X_{i} Y_{B}\right)}-\overbrace{\log \left(1+\left|h_{E}\right|^{2} P\right)}^{I\left(X_{i} Y_{E}\right)}]_{+}
$$

Gaussian MIMO channel capacity [Khisti,Wornell '10][Oggier,Hassibi '11]
$C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{E}\right)=\max _{\mathbf{K}: \operatorname{trace}\{\mathbf{K}\} \leq P}[\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{B} \mathbf{K} \mathbf{H}_{B}^{\dagger}\right|}^{I\left(\mathbf{X}_{;} \mathbf{Y}_{B}\right)}-\overbrace{\log \left|\mathbf{I}+\mathbf{H}_{E} \mathbf{K H}_{E}^{\dagger}\right|}^{I\left(\mathbf{X}_{\mathbf{\prime}} \mathbf{Y}_{E}\right)}]$

- Maximization over all admissible covariance matrices K
- Power constraint can be replaced with covariance constraint [Liu, Shamai '09]

How to Construct a Practical Capacity-achieving Scheme?

Black box approach

- Construct MIMO Wiretap Codes from "ordinary" SISO ones
- Any good "ordinary" SISO AWGN codes
- Signal processing (SVD-based scheme [Telatar '99], V-BLAST [Foschini '96], ...)
- Codeword indexing
- Achieves capacity
- Gap-to-capacity dictated by gap-to-capacity of the SISO codes

How to Construct a Practical Capacity-achieving Scheme?

Two-step procedure

(1) Reduce MIMO to SISO (as in "ordinary" MIMO case)
(2) Transform "ordinary" (non-secrecy) codes to wiretap ones

Weak/strong secrecy

- Concentrate on achievability of weak secrecy
- One specific structure achieves strong secrecy

"Ordinary" Codes \rightarrow Wiretap Codes

Good Wiretap Codes for SISO

Two-level AWGN code of rates (R, \tilde{R})

- $x^{n}=g(m, f)$
- $m \in\left\{1, \ldots, 2^{n R}\right\}$ - Information message
- $f \in\left\{1, \ldots, 2^{n \tilde{R}}\right\}$ - Fictitious message
- g - Mapping known to all (including Eve!)
- Bob can decode (m, f) and then discard f
- Eve can recover f from $\left(y_{E}, m\right)$ \Downarrow
Eve cannot recover m from $y_{E}: I\left(m ; y_{E}\right) \leq n \epsilon$

Ordinary Codes \rightarrow Two-level AWGN Codes

Randomized procedure

- Base AWGN codebook \mathcal{C}_{0} of rate $R_{0}: R+\tilde{R}<R_{0}<C_{B}$
- $\forall(m, f)$: Draw an index $\theta(m, f) \in \operatorname{Unif}\left(\left\{1, \ldots, 2^{n R_{0}}\right\}\right)$
- Average codebook = good two-level AWGN codebook
- De-mapping of random indexing is hard!

Practical procedure

- Two-universal hash function
[Hayashi, Matsumoto 2010][Bellare, Tessaro, Vardy 2012]
- Low-complexity structured approach
- Valid for Gaussian channels [Tyagi, Vardy ISIT2014]

MIMO Without Secrecy (No Eve)

Singular-Value Decomposition (SVD) Scheme [Telatar '99]

- $\mathbf{H}_{B}=\mathbf{Q}_{B} \mathbf{D}_{B} \mathbf{V}_{A}^{\dagger}$
- \mathbf{Q}_{B} and \mathbf{V}_{A} - unitary
- Alice applies \mathbf{V}_{A} and Bob applies \mathbf{Q}_{B}
- $\mathbf{D}_{B}=\left(\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N}\end{array}\right) \Rightarrow \begin{gathered}y_{1}=d_{1} x_{1}+z_{1} \\ y_{2}=d_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}=d_{N} x_{N}+z_{N}\end{gathered}$
- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply water-filling to $\left\{x_{1}, \ldots, x_{N}\right\}: \mathbf{x}=\mathbf{V}_{A} \mathbf{W} \mathbf{c}$

SVD-based scheme for a given input covariance K

- $\mathbf{H}_{B} \mathbf{K}^{1 / 2}=\mathbf{Q}_{B} \mathbf{D}_{B} \mathbf{V}_{A}^{\dagger}$
- \mathbf{Q}_{B} and \mathbf{V}_{A} - unitary
- Alice applies $\mathrm{K}^{1 / 2} \mathbf{V}_{A}$ and Bob applies \mathbf{Q}_{B}
- $\mathbf{D}_{B}=\left(\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N}\end{array}\right) \Rightarrow \begin{gathered}y_{1}=d_{1} x_{1}+z_{1} \\ y_{2}=d_{2} x_{2}+z_{2} \\ \vdots \\ y_{N}=d_{N} x_{N}+z_{N}\end{gathered}$
- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply filling to $\left\{x_{1}, \ldots, x_{N}\right\}: x=V_{A} W \mathbf{N} \boldsymbol{x}=K^{1 / 2} \mathbf{V}_{A} \mathbf{C}$

SVD-based scheme for a given input covariance K

- SVD scheme with given K achieves : $R=\log \left|\mathbf{I}_{N_{A}}+\mathbf{H}_{B} \mathrm{KH}_{B}^{\dagger}\right|$
- For optimal choice of K attains capacity
- Can be used to attain capacity for other covariance constraint scenarios (e.g., individual power constraints)

V-BLAST Scheme: QR Decomposition Based Scheme

Zero-forcing V-BLAST [Foschini '96][Wolniansky et al. '98]

- $\mathbf{H}_{B}=\mathbf{Q}_{B} \mathbf{T}_{B}$
- \mathbf{Q}_{B} - unitary; \mathbf{T}_{B} - triangular
- Bob applies \mathbf{Q}_{B}^{\dagger} (no SP is required by Alice)
$-\mathbf{T}_{B}=\left(\begin{array}{ccccc}t_{1} & * & * & \cdots & * \\ 0 & t_{2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & * \\ 0 & 0 & \cdots & 0 & t_{N}\end{array}\right) \quad \Rightarrow \quad \begin{gathered}y_{1}^{\mathrm{eff}}=t_{1} x_{1}+z_{1} \\ y_{2}^{\mathrm{eff}}=t_{2} x_{2}+z_{2} \\ \vdots \\ \\ y_{N}^{\mathrm{eff}}=t_{N} x_{N}+z_{N}\end{gathered}$
- Off-diagonal elements are canceled via successive interference cancellation (SIC)

V-BLAST Scheme: QR Decomposition Based Scheme

MMSE-VBLAST for a given covariance K [Hassibi '00]

- $\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$
- \mathbf{Q}_{B} - unitary; $\tilde{\mathbf{Q}}_{B}-N_{B} \times N_{A}$ submatrix of \mathbf{Q}_{B}
- Bob applies $\tilde{\mathrm{Q}}_{B}^{\dagger}$ (no SP is required by Alice)
- $\tilde{\mathbf{Q}}_{B}^{\dagger}$ contains Wiener-filtering ("FFE")
- Effective noise has channel noise and "ISI" components
- Effective SNRs satisfy: $t_{i}^{2}=1+$ SNR $_{i}$

$$
\log \left(t_{i}^{2}\right)=\log \left(1+\operatorname{SNR}_{i}\right)=I\left(c_{i} ; \mathbf{y}_{B} \mid c_{i+1}^{N_{A}}\right)
$$

- Off-diagonal elements above diagonal canceled via SIC

V-BLAST Scheme: QR Decomposition Based Scheme

- For square invertible \mathbf{H}, ZF-VBLAST achieves:

$$
R=\log \left|\mathbf{H}_{B} \mathbf{H}_{B}^{\dagger}\right|
$$

(Using K at the transmitter achieves: $R=\log \left|\mathbf{H}_{B} \mathbf{K H}_{B}^{\dagger}\right|$)

- MMSE-VBLAST achieves: $R=\log \left|\mathbf{I}_{N_{B}}+\mathbf{H}_{B} \mathbf{K} \mathbf{H}_{B}^{\dagger}\right|$

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K
$\cdot\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$

- V_{A} can be used to design diagonal values \Leftrightarrow design SNRs

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K
$-\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$

- V_{A} can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)

Choosing V_{A} of the SVD of $\mathrm{H}_{B} \mathrm{~K}^{1 / 2} \Rightarrow$ SVD scheme (no SIC needed)

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K
$-\left[\begin{array}{c}\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}}\end{array}\right]=\mathbf{Q}_{B} \mathbf{T}_{B}$

- \mathbf{V}_{A} can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)
Choosing \mathbf{V}_{A} of the SVD of $\mathbf{H}_{B} \mathrm{~K}^{1 / 2} \Rightarrow$ SVD scheme (no SIC needed)

Geometric-mean decomposition [Jiang et al. '05]/ QRS [Zhang et al. '05]

- \mathbf{V}_{A} is choosing s.t. all diagonal values (all SNRs) are equal
- The same codebook can be used over all subchannels
- No need for bit-loading

V-BLAST: What Codes Can be Used?

Problem

- Not any codebooks can be used!
- At each stage of V-BLAST: Noise $=$ Gaussian noise + ISI
- Aligned codes impair decoding

Alignment phenomenon

For the decoding of sub-stream x_{i}

- Bob Cancels out x_{i+1}, \ldots, x_{N}
- Applies maximum ratio combining for the recovery of x_{i}
- Example: Suppose the resulting effective channel is

$$
y_{i}^{\mathrm{eff}}=2 x_{i}+\underbrace{x_{i-1}+z_{i}}_{\text {Effective noise }}
$$

- If x_{i}, x_{i-1} belong to same lattice codebook $\Rightarrow 2 x_{i}+x_{i-1}$ is not uniquely decodable!

V-BLAST: What Codes Can be Used?

- In V-BLAST: Bob observes a MAC channel at each stage i

Multiple-access (MAC) SIC codes

- A collection of AWGN codes that are "sufficiently different"
- No MAC gains can align them
- Relaxation of the "MAC capacity-achieving codes" of [Baccelli, El Gamal, Tse 2011]

How to generate such codes?
Theoretical: Encapsulate in dithered modulo lattice of high dim.

- Not black box! ${ }^{-}$

Practical: Simple randomization process suffice (not rigor!):

- Multiplicative (phase) dithering
- Different interleaving / permutation of each code

Putting It All Together

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{E} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{E} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs ($\left.b_{i}^{2}-1, e_{i}^{2}-1\right)$

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{E} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{E} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}^{\mathbf{T}_{E}}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs $\left(b_{i}^{2}-1, e_{i}^{2}-1\right)$
- \mathbf{V}_{A} of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{E} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{E} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs ($b_{i}^{2}-1, e_{i}^{2}-1$)
- \mathbf{V}_{A} of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- \mathbf{V}_{A} of Bob's SVD \Rightarrow No need for V-BLAST

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{H}_{B} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{B} \overbrace{\left(\begin{array}{ccc}
b_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & b_{N}
\end{array}\right)}^{\mathbf{T}_{B}}, \quad b_{i}^{2}=1+\mathrm{SNR}_{i}^{B}} \\
& {\left[\begin{array}{c}
\mathbf{H}_{E} \mathbf{K}^{1 / 2} \mathbf{V}_{A} \\
\mathbf{I}_{N_{A}}
\end{array}\right]=\mathbf{Q}_{E} \overbrace{\left(\begin{array}{ccc}
e_{1} & * & * \\
0 & \ddots & * \\
0 & 0 & e_{N}
\end{array}\right)}, \quad e_{i}^{2}=1+\mathrm{SNR}_{i}^{E}}
\end{aligned}
$$

- Use good SISO wiretap codes for SNR-pairs ($b_{i}^{2}-1, e_{i}^{2}-1$)
- \mathbf{V}_{A} of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- \mathbf{V}_{A} of Bob's SVD \Rightarrow No need for V-BLAST
- $\operatorname{diag}\left\{T_{B}\right\}, \operatorname{diag}\left\{T_{E}\right\}$ are const. \Rightarrow Same code over all channels

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

But...

- Proof used random binning \Rightarrow Existence result

New Scheme for General SNR [Kh., Kochman, Khisti ISIT2014]

But...

- Proof used random binning \Rightarrow Existence result

Theorem
Good two-level MAC-SIC codes approach the MIMO WTC capacity.

Two-Level MAC-SIC Codes Achieve MIMO WTC Capacity

Proof idea

- Bob's optimal (?) receiver of sub-message i :
- Sub-messages $(i+1), \ldots, N$ are known
- Subtract interference of x_{i+1}, \ldots, x_{N}
- Treat x_{1}, \ldots, x_{i-1} as noise
- Project onto subspace of x_{i}
- Eve's genie-aided optimal (?) receiver of sub-message i :
- Sub-messages $(i+1), \ldots, N$ are revealed to Eve for decoding x_{i}
- Subtract interference of x_{i+1}, \ldots, x_{N}
- Treat x_{1}, \ldots, x_{i-1} as noise
- Project onto subspace of x_{i}
- Secrecy: Codes need to be two-level
- Optimality: Codes need to be MAC-SIC

End-to-End Scheme

"Nested black-box" type approach

End-to-End Scheme

"Nested black-box" type approach

or

"Матрёшка" ("Matryoshka") type approach

End-to-End Scheme

Modulation

- Apply the MIMO wiretap matrix decomposition scheme
- Bob uses standard V-BLAST for decoding

End-to-End Scheme

Modulation

- Apply the MIMO wiretap matrix decomposition scheme

Coding: Good two-level MAC-SIC codes

- Take any good AWGN codes of appropriate rates $\left\{R_{i}+\tilde{R}_{i}\right\}$
- Transform into "good MAC-SIC codes" via a randomization process (modulo-lattice, interleaving,...)
- Transform into "good two-level codes" via random indexing / two-universal hashing
- Bob uses standard V-BLAST for decoding

End-to-End Scheme

Modulation

- Apply the MIMO wiretap matrix decomposition scheme

Coding: Good two-level MAC-SIC codes

- Take any good AWGN codes of appropriate rates $\left\{R_{i}+\tilde{R}_{i}\right\}$
- Transform into "good MAC-SIC codes" via a randomization process (modulo-lattice, interleaving,...)
- Transform into "good two-level codes" via random indexing / two-universal hashing
- Bob uses standard V-BLAST for decoding

Alignment has a double-bad effect in wiretap

- Bob cannot recover the whole message
- ISI that serves as noise for Eve might align

Complementary

Good Wiretap Codes for SISO

Explanation of last requirement

$$
\left.\begin{array}{rl}
I\left(x^{n} ; y_{E}^{n}\right) & =I\left(m, f ; y_{E}^{n}\right) \\
=I\left(m ; y_{E}^{n}\right)+I\left(f ; y_{E}^{n} \mid m\right) \\
& =\underbrace{H\left(m ; y_{E}^{n}\right)+}-\underbrace{H(f)}_{\leq n \delta_{2}} \leq n\left(y_{E}^{n}, m\right)
\end{array} n C_{E}\right)
$$

