From Ordinary AWGN Codes to Optimal MIMO Wiretap Schemes

Anatoly Khina, Tel Aviv University

Joint work with: Yuval Kochman, Hebrew University Ashish Khisti, University of Toronto

> ITW 2014 Hobart, Tasmania, Australia November 05, 2014

Channel Model: Gaussian MIMO Wiretap Channel

- $\mathbf{x} N_A \times 1$ input vector of power P
- \mathbf{y}_B , $\mathbf{y}_F N_B \times 1$, $N_F \times 1$ received vectors
- H_B , $H_E N_B \times N_A$, $N_E \times N_A$ channel matrices
- $\mathbf{z}_{B} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{N_{B}}), \ \mathbf{z}_{F} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{N_{E}})$ noise vectors
- "Closed loop" (full channel knowledge everywhere)

Capacity

Gaussian SISO channel capacity [Leung-Yan-Cheong, Hellman '78]

$$C_{S}(h_{B}, h_{E}) = \left[\underbrace{\log\left(1 + |h_{B}|^{2} P\right)}_{I(X;Y_{E})} - \underbrace{\log\left(1 + |h_{E}|^{2} P\right)}_{I(X;Y_{E})}\right]_{+}$$

Gaussian MIMO channel capacity [Khisti, Wornell '10] [Oggier, Hassibi '11]

$$C_{S}\left(\mathbf{H}_{B}, \mathbf{H}_{E}\right) = \max_{\mathbf{K}: \, \operatorname{trace}\{\mathbf{K}\} \leq P} \left[\overbrace{\log \left| \mathbf{I} + \mathbf{H}_{B} \mathbf{K} \mathbf{H}_{B}^{\dagger} \right| - \log \left| \mathbf{I} + \mathbf{H}_{E} \mathbf{K} \mathbf{H}_{E}^{\dagger} \right|}^{I(\mathbf{X}; \mathbf{Y}_{E})} \right]$$

- Maximization over all admissible covariance matrices K
- Power constraint can be replaced with covariance constraint [Liu, Shamai '09]

How to Construct a Practical Capacity-achieving Scheme?

Black box approach

- Construct MIMO Wiretap Codes from "ordinary" SISO ones
- Any good "ordinary" SISO AWGN codes
- Signal processing (SVD-based scheme [Telatar '99], V-BLAST [Foschini '96], ...)
- Codeword indexing
- Achieves capacity
- Gap-to-capacity dictated by gap-to-capacity of the SISO codes

How to Construct a Practical Capacity-achieving Scheme?

Two-step procedure

- Reduce MIMO to SISO (as in "ordinary" MIMO case)
- Transform "ordinary" (non-secrecy) codes to wiretap ones

Weak/strong secrecy

- Concentrate on achievability of weak secrecy
- One specific structure achieves strong secrecy

"Ordinary" Codes \rightarrow Wiretap Codes

Good Wiretap Codes for SISO

Two-level AWGN code of rates $(R, ilde{R})$

- $x^n = g(m, f)$
- ullet $m \in \left\{1,\ldots,2^{nR}
 ight\}$ Information message
- ullet $f \in \left\{1,\ldots,2^{n ilde{R}}
 ight\}$ Fictitious message
- g Mapping known to all (including Eve!)
- Bob can decode (m, f) and then discard f
- Eve can recover f from (y_E, m)

 \downarrow

Eve cannot recover m from y_E : $I(m; y_E) \leq n\epsilon$

Ordinary Codes \rightarrow Two-level AWGN Codes

Randomized procedure

- Base AWGN codebook C_0 of rate R_0 : $R + \tilde{R} < R_0 < C_R$
- $\forall (m, f)$: Draw an index $\theta(m, f) \in \text{Unif}(\{1, \dots, 2^{nR_0}\})$
- Average codebook = good two-level AWGN codebook
- De-mapping of random indexing is hard!

Practical procedure

- Two-universal hash function [Hayashi, Matsumoto 2010][Bellare, Tessaro, Vardy 2012]
- Low-complexity structured approach
- Valid for Gaussian channels [Tyagi, Vardy ISIT2014]

MIMO Without Secrecy (No Eve)

Singular-Value Decomposition (SVD) Scheme [Telatar '99]

- $\bullet \ \mathsf{H}_B = \mathsf{Q}_B \mathsf{D}_B \mathsf{V}_\Delta^\dagger$
- Q_B and V_Δ unitary
- Alice applies \mathbf{V}_A and Bob applies \mathbf{Q}_B

$$\bullet \ \mathbf{D}_{B} = \begin{pmatrix} d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N} \end{pmatrix} \Rightarrow \begin{cases} y_{1} = d_{1}x_{1} + z_{1} \\ y_{2} = d_{2}x_{2} + z_{2} \\ \Rightarrow & \vdots \\ y_{N} = d_{N}x_{N} + z_{N} \end{cases}$$

- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply water-filling to $\{x_1, \ldots, x_N\}$: $\mathbf{x} = \mathbf{V}_A \mathbf{W} \mathbf{c}$

SVD-based scheme for a given input covariance K

- $\bullet \ \mathsf{H}_B \mathsf{K}^{1/2} = \mathsf{Q}_B \mathsf{D}_B \mathsf{V}_{\Delta}^{\dagger}$
- \mathbf{Q}_B and \mathbf{V}_A unitary
- Alice applies $K^{1/2}V_A$ and Bob applies Q_B

$$\bullet \ \mathbf{D}_{B} = \begin{pmatrix} d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{N-1} & 0 \\ 0 & \cdots & 0 & 0 & d_{N} \end{pmatrix} \Rightarrow \begin{cases} y_{1} = d_{1}x_{1} + z_{1} \\ y_{2} = d_{2}x_{2} + z_{2} \\ \Rightarrow & \vdots \\ y_{N} = d_{N}x_{N} + z_{N} \end{cases}$$

- Results in parallel scalar sub-channels (each sub-channel has a different SNR)
- Apply water-filling to $\{x_1, \dots, x_N\}$: $\mathbf{x} = \mathbf{V}_A \mathbf{W} \mathbf{c}$ $\mathbf{x} = \mathbf{K}^{1/2} \mathbf{V}_A \mathbf{c}$

SVD-based scheme for a given input covariance K

- ullet SVD scheme with given old K achieves : $R = \log \left| old I_{N_A} + old H_B old K old H_B^\dagger
 ight|$
- For optimal choice of K attains capacity
- Can be used to attain capacity for other covariance constraint scenarios (e.g., individual power constraints)

V-BLAST Scheme: QR Decomposition Based Scheme

Zero-forcing V-BLAST [Foschini '96] [Wolniansky et al. '98]

- \bullet $H_B = Q_B T_B$
- \mathbf{Q}_B unitary; \mathbf{T}_B triangular
- Bob applies \mathbf{Q}_{B}^{\dagger} (no SP is required by Alice)

$$\bullet \ \, \mathbf{T}_{B} = \begin{pmatrix} t_{1} & * & * & \cdots & * \\ 0 & t_{2} & * & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{N-1} & * \\ 0 & 0 & \cdots & 0 & t_{N} \end{pmatrix} \qquad \begin{array}{c} y_{1}^{\mathrm{eff}} = t_{1}x_{1} + z_{1} \\ y_{2}^{\mathrm{eff}} = t_{2}x_{2} + z_{2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{N}^{\mathrm{eff}} = t_{N}x_{N} + z_{N} \end{pmatrix}$$

 Off-diagonal elements are canceled via successive interference cancellation (SIC)

V-BLAST Scheme: QR Decomposition Based Scheme

MMSE-VBLAST for a given covariance K [Hassibi '00]

$$\bullet \ \left[\begin{matrix} \mathbf{H}_B \mathbf{K}^{1/2} \\ \mathbf{I}_{N_A} \end{matrix} \right] = \mathbf{Q}_B \mathbf{T}_B$$

- ullet ${f Q}_B$ unitary; ${f ilde Q}_B$ ${\it N}_B imes {\it N}_A$ submatrix of ${f Q}_B$
- ullet Bob applies $ilde{f Q}_B^\dagger$ (no SP is required by Alice)
- ullet $ilde{\mathbf{Q}}_{B}^{\dagger}$ contains Wiener-filtering ("FFE")
- Effective noise has channel noise and "ISI" components
- Effective SNRs satisfy: $t_i^2 = 1 + SNR_i$

$$\log(t_i^2) = \log(1 + \mathsf{SNR}_i) = I(c_i; \mathbf{y}_B | c_{i+1}^{N_A})$$

Off-diagonal elements above diagonal canceled via SIC

- DQQ

V-BLAST Scheme: QR Decomposition Based Scheme

For square invertible H, ZF-VBLAST achieves:

$$R = \log \left| \mathbf{H}_B \mathbf{H}_B^{\dagger} \right|$$

$$\left(\text{ Using K at the transmitter achieves: } R = \log \left| \mathbf{H}_B \mathbf{K} \mathbf{H}_B^\dagger \right| \right)$$

ullet MMSE-VBLAST achieves: $R = \log \left| \mathbf{I}_{N_B} + \mathbf{H}_B \mathbf{K} \mathbf{H}_B^\dagger \right|$

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K

$$\bullet \ \begin{bmatrix} \mathsf{H}_B \mathsf{K}^{1/2} \mathsf{V}_A \\ \mathsf{I}_{N_A} \end{bmatrix} = \mathsf{Q}_B \mathsf{T}_B$$

• V_A can be used to design diagonal values \Leftrightarrow design SNRs

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K

$$\bullet \ \begin{bmatrix} \mathbf{H}_B \mathbf{K}^{1/2} \mathbf{V}_A \\ \mathbf{I}_{N_A} \end{bmatrix} = \mathbf{Q}_B \mathbf{T}_B$$

ullet V_A can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)

Choosing V_A of the SVD of $H_BK^{1/2} \Rightarrow SVD$ scheme (no SIC needed)

Precoded V-BLAST

MMSE-VBLAST with precoding for a given covariance K

$$\bullet \ \begin{bmatrix} \mathsf{H}_B \mathsf{K}^{1/2} \mathsf{V}_A \\ \mathsf{I}_{N_A} \end{bmatrix} = \mathsf{Q}_B \mathsf{T}_B$$

 \bullet V_A can be used to design diagonal values \Leftrightarrow design SNRs

SVD-scheme as MMSE-VBLAST (QR)

Choosing V_A of the SVD of $H_BK^{1/2} \Rightarrow SVD$ scheme (no SIC needed)

Geometric-mean decomposition [Jiang et al. '05]/ QRS [Zhang et al. '05]

- \bullet V_A is choosing s.t. all diagonal values (all SNRs) are equal
- The same codebook can be used over all subchannels
- No need for bit-loading

V-BLAST: What Codes Can be Used?

Problem

- Not any codebooks can be used!
- At each stage of V-BLAST: Noise = Gaussian noise + ISI
- Aligned codes impair decoding

Alignment phenomenon

For the decoding of sub-stream x_i

- Bob Cancels out x_{i+1}, \ldots, x_N
- Applies maximum ratio combining for the recovery of x_i
- Example: Suppose the resulting effective channel is

$$y_i^{\text{eff}} = 2x_i + \underbrace{x_{i-1} + z_i}_{\text{Effective noise}}$$

• If x_i, x_{i-1} belong to same lattice codebook $\Rightarrow 2x_i + x_{i-1}$ is not uniquely decodable!

V-BLAST: What Codes Can be Used?

• In V-BLAST: Bob observes a MAC channel at each stage i

Multiple-access (MAC) SIC codes

- A collection of AWGN codes that are "sufficiently different"
- No MAC gains can align them
- Relaxation of the "MAC capacity-achieving codes" of [Baccelli, El Gamal, Tse 2011]

How to generate such codes?

Theoretical: Encapsulate in dithered modulo lattice of high dim.

Not black box!

Practical: Simple randomization process suffice (not rigor!):

- Multiplicative (phase) dithering
- Different interleaving / permutation of each code

200

Putting It All Together

$$\begin{bmatrix} \mathbf{H}_{B} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{B} \underbrace{\begin{pmatrix} b_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & b_{N} \end{pmatrix}}_{\mathbf{T}_{E}}, \quad b_{i}^{2} = 1 + \mathsf{SNR}_{i}^{B}$$

$$\begin{bmatrix} \mathbf{H}_{E} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{E} \underbrace{\begin{pmatrix} e_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & e_{N} \end{pmatrix}}_{\mathbf{N}_{A}}, \quad e_{i}^{2} = 1 + \mathsf{SNR}_{i}^{E}$$

• Use good SISO wiretap codes for SNR-pairs (b_i^2-1,e_i^2-1)

$$\begin{bmatrix} \mathbf{H}_{B} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{B} \underbrace{\begin{pmatrix} b_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & b_{N} \end{pmatrix}}_{\mathbf{T}_{E}}, \quad b_{i}^{2} = 1 + \mathsf{SNR}_{i}^{B}$$

$$\begin{bmatrix} \mathbf{H}_{E} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{E} \underbrace{\begin{pmatrix} e_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & e_{N} \end{pmatrix}}_{\mathbf{N}_{A}}, \quad e_{i}^{2} = 1 + \mathsf{SNR}_{i}^{E}$$

- ullet Use good SISO wiretap codes for SNR-pairs (b_i^2-1,e_i^2-1)
- ullet ${f V}_A$ of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy

$$\begin{bmatrix} \mathbf{H}_{B} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{B} \underbrace{\begin{pmatrix} b_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & b_{N} \end{pmatrix}}_{\mathbf{T}_{E}}, \quad b_{i}^{2} = 1 + \mathsf{SNR}_{i}^{B}$$

$$\begin{bmatrix} \mathbf{H}_{E} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{E} \underbrace{\begin{pmatrix} e_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & e_{N} \end{pmatrix}}_{\mathbf{N}_{A}}, \quad e_{i}^{2} = 1 + \mathsf{SNR}_{i}^{E}$$

- ullet Use good SISO wiretap codes for SNR-pairs (b_i^2-1,e_i^2-1)
- ullet ${f V}_A$ of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- V_A of Bob's SVD \Rightarrow No need for V-BLAST

$$\begin{bmatrix} \mathbf{H}_{B} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{B} \underbrace{\begin{pmatrix} b_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & b_{N} \end{pmatrix}}_{\mathbf{T}_{E}}, \quad b_{i}^{2} = 1 + \mathsf{SNR}_{i}^{B}$$

$$\begin{bmatrix} \mathbf{H}_{E} \mathbf{K}^{1/2} \mathbf{V}_{A} \\ \mathbf{I}_{N_{A}} \end{bmatrix} = \mathbf{Q}_{E} \underbrace{\begin{pmatrix} e_{1} & * & * \\ 0 & \ddots & * \\ 0 & 0 & e_{N} \end{pmatrix}}_{\mathbf{Q}_{E}}, \quad e_{i}^{2} = 1 + \mathsf{SNR}_{i}^{E}$$

- Use good SISO wiretap codes for SNR-pairs $(b_i^2 1, e_i^2 1)$
- V_A of Eve's SVD \Rightarrow Easy secrecy analysis + strong secrecy
- V_A of Bob's SVD ⇒ No need for V-BLAST
- ullet diag $\{T_B\}$, diag $\{T_E\}$ are const. \Rightarrow Same code over all channels

But...

Proof used random binning ⇒ Existence result

But...

Proof used random binning ⇒ Existence result

Theorem

Good two-level MAC-SIC codes approach the MIMO WTC capacity.

Two-Level MAC-SIC Codes Achieve MIMO WTC Capacity

Proof idea

- Bob's optimal (?) receiver of sub-message i:
 - Sub-messages $(i+1), \ldots, N$ are known
 - Subtract interference of x_{i+1}, \ldots, x_N
 - Treat x_1, \ldots, x_{i-1} as noise
 - Project onto subspace of x_i
- Eve's genie-aided optimal (?) receiver of sub-message i:
 - Sub-messages $(i+1), \ldots, N$ are revealed to Eve for decoding x_i
 - Subtract interference of x_{i+1}, \ldots, x_N
 - Treat x_1, \ldots, x_{i-1} as noise
 - Project onto subspace of x_i
- Secrecy: Codes need to be two-level
- Optimality: Codes need to be MAC-SIC

"Nested black-box" type approach

"Nested black-box" type approach

or

"Матрёшка" ("Matryoshka") type approach

Modulation

• Apply the MIMO wiretap matrix decomposition scheme

Bob uses standard V-BLAST for decoding

Modulation

Apply the MIMO wiretap matrix decomposition scheme

Coding: Good two-level MAC-SIC codes

- Take any good AWGN codes of appropriate rates $\{R_i + \tilde{R}_i\}$
- Transform into "good MAC-SIC codes" via a randomization process (modulo-lattice, interleaving,...)
- Transform into "good two-level codes" via random indexing / two-universal hashing
- Bob uses standard V-BLAST for decoding

Modulation

Apply the MIMO wiretap matrix decomposition scheme

Coding: Good two-level MAC-SIC codes

- ullet Take any good AWGN codes of appropriate rates $\{R_i+ ilde{R}_i\}$
- Transform into "good MAC-SIC codes" via a randomization process (modulo-lattice, interleaving,...)
- Transform into "good two-level codes" via random indexing / two-universal hashing
- Bob uses standard V-BLAST for decoding

Alignment has a double-bad effect in wiretap

- Bob cannot recover the whole message
- ISI that serves as noise for Eve might align

200

Complementary

Good Wiretap Codes for SISO

Explanation of last requirement

$$I(x^{n}; y_{E}^{n}) = I(m, f; y_{E}^{n}) = I(m; y_{E}^{n}) + I(f; y_{E}^{n}|m)$$

$$= I(m; y_{E}^{n}) + \underbrace{H(f)}_{= n\tilde{R}} - \underbrace{H(f|y_{E}^{n}, m)}_{\leq n\delta_{2}} \leq nC_{E}$$

$$\downarrow \downarrow$$

$$I(m; y_{E}^{n}) \leq n(\delta_{1} + \delta_{2})$$