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Abstract. The fundamental matrix defines a nonlinear 3D variety in
the joint image space of multiple projective (or “uncalibrated perspec-
tive”) images. We show that, in the case of two images, this variety
is a 4D cone whose vertex is the joint epipole (namely the 4D point
obtained by stacking the two epipoles in the two images). Affine (or
“para-perspective”) projection approximates this nonlinear variety with
a linear subspace, both in two views and in multiple views. We also show
that the tangent to the projective joint image at any point on that image
is obtained by using local affine projection approximations around the
corresponding 3D point. We use these observations to develop a new ap-
proach for recovering multiview geometry by integrating multiple local
affine joint images into the global projective joint image. Given multiple
projective images, the tangents to the projective joint image are com-
puted using local affine approximations for multiple image patches. The
affine parameters from different patches are combined to obtain the epi-
polar geometry of pairs of projective images. We describe two algorithms
for this purpose, including one that directly recovers the image epipoles
without recovering the fundamental matrix as an intermediate step.

1 Introduction

The fundamental matrix defines a nonlinear 3D variety1 in the joint image space,
which is the 4-dimensional space of concatenated image coordinates of corre-
sponding points in two perspective images. Each 3D scene point X = (X, Y, Z)
induces a pair of matching image points (x, y, x′, y′) in the two images, and this
stacked vector of corresponding points is a point in the joint image space. The
locus of all such points forms the joint image for the two cameras. Since there
is a one-to-one correspondence between the 3D world and the joint image, the
joint image forms a 3-dimensional variety in the joint image space. Every pair of
cameras defines such a variety, which is parametrized by the fundamental matrix
which relates the two cameras.

The idea of the joint image space has been previously used by a few resear-
chers – notably, by Triggs [15] who provided an extensive analysis of multi-view
matching constraints for projective cameras in the joint image space, and by
Shapiro [11] who analyzed the joint image of 2 affine (“para-perspective” projec-
tion) camera images. Triggs also observed that for multiple (say m > 2) views
1 namely, a locus of points defined by a set of polynomial constraints, in this case the

epipolar constraint, which is quadratic in the joint image space.
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Fig. 1. Illustration of the 4D cone in the joint image space. The two perspective images
view a 3D model of the house. The fundamental matrix forms a point-cone in the joint
image space, whose axes are defined by x, y, x′ and y′. The vertex of the cone is the
joint epipole (namely the 4D point formed by stacking both epipoles). Each patch (i.e,
the window or the door) in the 2D images is approximated by an affine projection
which corresponds to a tangent hyperplane in the joint image space.

the “projective” joint image for any number of cameras is still a 3-dimensional
submanifold of the 2m dimensional joint image space. This manifold is parame-
trized (up to a set of gauge invariances) by the m camera matrices.

Affine (or “para-perspective”) projection approximates the nonlinear variety
with a linear subspace. In multiple views, the affine joint image is a 3-dimensional
linear space in the 2m dimensional joint image space. This insight has led to
the factorization approach, which simultaneously uses correspondence data from
multiple views to optimally recover camera motion and scene structure [9,11]
from para-perspective images.

The non-linearity of the projective joint image makes the multi-view pro-
jective structure from motion problem harder to solve. A natural question is
whether the affine approximation could be used to benefit the projective case.
This question has been previously explored by a few researchers. For exam-
ple, [4,2,3] use the affine model globally over the entire image to bootstrap the
projective recovery. On the other hand, Lawn and Cipolla [7,8] use the affine ap-
proximations of over local regions of an image. They combine the affine parallax
displacement vectors across two frames from multiple such regions in order to
obtain the perspective epipole.

In this paper, we use the joint image space to show the intimate relationship
between the two models and exploit it to develop a new algorithm for the recovery
of the fundamental matrix and the epipoles. We establish the following results:

1. The joint image of two projective views of a 3D scene is a point cone[12] in
the 4-dimensional joint image space. See figure 1.

2. The tangent to the projective joint image is the same as the linear space
formed by the joint image obtained by using an affine projection approxi-
mation around the corresponding 3D scene point. This is true both in 2 and
in multiple views.



Global Projective Images in the Joint Image Space 909

The process of recovering the fundamental matrix is thus equivalent to fitting
a 4D cone. For example, the 8-point algorithm [5] for recovering the fundamental
matrix can be viewed as fitting a 4D cone to 8 points in the joint image space,
since every pair of matching points in the 2D images gives rise to a single data
point in the joint image space. Any technique for recovering the fundamental
matrix can be regarded this way.

Alternatively, the projective joint image can also be recovered by using the
tangents to it at different points. In our case, a tangent corresponds to using a
local para-perspective (or “affine”) projection approximation for an image patch
around the corresponding 3D scene point. This leads to a practical two-stage
algorithm for recovering the fundamental matrix, which is a global projective
constraint, using multiple local affine constraints.

1. The first stage of our algorithm simultaneously uses multiple (m > 2) images
to recover the 3-dimensional affine tangent image in the 2m dimensional
joint image space. This can be done by using a factorization or “direct” type
method.

2. In the second stage the two-view epipolar geometry between a reference
image and each of the other images is independently recovered. This is done
by fitting the 4D cone to the tangents recovered in Stage I from multiple
image patches. We take advantage of the fact that all the tangents to the
cone intersect at its vertex - the joint epipole - to compute it directly from
the tangents. Thus, local affine measurements are used to directly estimate
the epipoles without recovering the fundamental matrix as an intermediate
step.

It is worth noting that this approach to directly recover the epipoles is a
generalization of the aforementioned work by Lawn & Cipolla [7,8], as well as an
algorithm by Rieger & Lawton [10] for computing the focus of expansion for a
moving image sequence from parallax motion around depth discontinuities. We
postpone more detailed comparison and contrast of our work with these previous
papers to Section 5, since we believe that a clear understanding our method will
be useful in appreciating these relationships.

2 The Affine and Projective Joint Images

This section establishes the tangency relationship between projective and affine
joint images and shows that the projective joint image of two images is a 4D
cone. Our derivations proceed in 3 stages: (i) We start by showing that the
affine projection is a linear approximation to the projective case. We use the
affine projection equations to derive the affine motion equations in 2 frames and
the associated affine fundamental matrix. These results are already known (e.g,
see [9,1,4]) but they serve to lay the ground for the remaining derivations in the
paper. (ii) Next we show that for two (uncalibrated) perspective views the joint
image is a 4D cone. (iii) Finally we show that the hyperplane described by the
affine fundamental matrix is tangent to this 4D cone.
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2.1 The Projective Joint Image

We use the following notational conventions. x = (x, y)T denotes a 2D image
point, while p = (x, y, 1)T denotes the same point in homogeneous coordinates.
Likewise X = (X, Y, Z)T denotes a 3D scene point, and P = (X, Y, Z, 1)T deno-
tes its homogeneous counterpart. The general uncalibrated projective camera is
represented by the projection equation:

p ∼= MP = HX + t,

where M denotes the 3×4 projection matrix, H (referred to as the “homography”
matrix) is the left 3×3 submatrix of M, and the 3×1 vector t is its last column,
which represents the translation between the camera and the world coordinate
systems.

Since our formulation of the joint-image space involves stacking the in-
homogeneous coordinates x from multiple views into a single long vector, it
is more convenient to describe the projection equations in in-homogeneous co-
ordinates2. The projection of a 3D point X on to the 2D image point xi in the
i-th image is given by:

xi =


 Hi

1X+ti
1

Hi
3X+ti

3
Hi

2X+ti
2

Hi
3X+ti

3


 (1)

where Hi
1,Hi

2 and Hi
3 are the three rows of Hi, the homography matrix of the

i-th image. Likewise (ti1, t
i
2, t

i
3) denote the three components of ti the translation

for the i-th image.
Consider the stacked vector of image coordinates from the m images – namely,

the 2m dimensional joint-image vector (x1 y1 x2 y2 . . . xm ym)T . We see from
Equation 1 that each component of this vector is a non-linear function of the 3D
position vector X of a scene point. Hence, the locus of all such points forms a 3-
dimensional submanifold in the 2m dimensional space. This defines the projective
joint image. (We have chosen to call it “projective” only to indicate that the joint
image of multiple perspectively projected views of a 3D scene do not require any
knowledge or assumptions regarding calibration.)

2.2 The Affine Joint Image

Around some point X0 on the object we can rewrite the x−component of Equa-
tion 1 as

x =
H1X0 + t1 + H1∆X
H3X0 + t3 + H3∆X

(2)

where ∆X = X − X0. (Note that we have dropped the super-script i for ease of
readability.) Let us denote Z0 = H3X0 + t3 and ∆Z = H3∆X. We divide the
numerator and denominator by Z0 to obtain

x =
H1X0+t1

Z0
+ H1

∆X
Z0

1 + ∆Z
Z0

(3)

2 In this regard, our formulation is slightly different from the more general projective
space treatment of [15]. Our approach turns out to be more convenient for deriving
the affine approximations.
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Considering a shallow portion of the 3D scene around X0, i.e, ε = ∆Z/Z0 �
1, we can use the approximation 1/(1 + ε) ≈ 1 − ε to obtain

x ≈ (x0 + H1
∆X
Z0

)(1 − ∆Z

Z0
) (4)

Expanding this equation, replacing ∆Z with H3∆X, and neglecting second-
order terms ∆X2 gives us the first-order Taylor expansion for the perspective
projection equation for x:

x ≈ x0 + H1
∆X
Z0

− x0
H3∆X

Z0
(5)

Performing a similar derivation for y we get the affine projection equations
that relate a 3D point to its 2D projection:

(
x
y

)
=

(
x0
y0

)
+

1
Z0

(
H1 − x0H3
H2 − y0H3

)
∆X (6)

Since these equations are linear in ∆X, they define a 3-dimensional linear variety
in the 2m dimensional joint-image space. Stacking all such equations for the m
views gives us the parametric representation of the linear affine joint-image.
Also, in each of the m images these equations represent the first-order Taylor
expansion of the perspective projection equations around the image point x0.
This means that the 2m dimensional affine joint-image is the tangent to the
projective joint image at the point represented by the 2m dimensional vector
(x1

0 y1
0 x2

0 y2
0 . . . xm

0 ym
0 )T .

2.3 Two View Affine Motion Equations

Next, we want to derive the affine motion equations that relate matching points
across two images. Such equations have also been previously used by a number of
researchers (e.g., see [11,9]). We present them here in terms of the homography
matrix H and a matching pair of image points (x0, y0) and (x′

0, y
′
0) in two views,

around which the local affine approximation to perspective projection is taken.
Let us align the world coordinate system with that of the first camera so its

homography becomes the 3×3 identity matrix and translation is a zero 3-vector.
Let H, t be the homography matrix and translation, respectively of the second
camera. We will not present the entire derivation here, but simply note that the
key step is eliminating ∆X and ∆Y from equation 6. Let γ = ∆Z

Z0
= Z−Z0

Z0
be the

“relative” depth of a (x, y) in the reference image. Then, (after some algebraic
manipulation), we can show that the corresponding point (x′, y′) in the second
image is given by (

x′
y′

)
= A


x

y
1


 + γta (7)

where A is a 2 × 3 affine matrix

A = (G | x′
0 − Gx0) (8)
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G is a 2 × 2 matrix

G =
Z0

Z ′
0

(
H11 − x′

0H31 H12 − x′
0H32

H21 − y′
0H31 H22 − y′

0H32

)
(9)

and

ta =
Z0

Z ′
0

(
(H1 − x′

0H3)p0
(H2 − y′

0H3)p0

)
. (10)

Equation 7 can be interpreted as follows. A defines a 2D affine transformation
of the image which captures the motion of points for whom ∆Z = 0, i.e., they
are on a “frontal” plane at depth Z0 in the first image. Off-plane points undergo
an additional parallax motion γta. The parallax magnitude γ is determined by
the relative depth γ = ∆Z

Z0
. The direction of parallax is ta, and is the same for

all points, i.e, the “affine epipole” is at infinity3.
We observe that Equation 7 (affine motion) is valid for any view relative to

a reference view. The 2D affine transformation matrix A and the vector ta vary
across the images while the local shape γ varies across all points, but is fixed
for any given point across all the images. The fact that γ is constant over mul-
tiple view enables us to simultaneously recover all the 2D affine transformation
matrices A, the affine parallax vectors ta (see Section 3).

The two-view affine epipolar constraint: The affine motion equations de-
fined in Equation 7 also imply an affine epipolar constraint [11]:

p′T Fap = 0,

where:

Fa =


 0 0 t2

0 0 −t1
−t2 t1 0





A11 A12 A13

A21 A22 A23
0 0 1


 , (11)

is the “affine” fundamental matrix. Note that this matrix is of the form

 0 0 f3

0 0 f4
f1 f2 f5


 ,

Let us denote f = (f1, . . . , f5)T = (−t2A11 + t1A21,−t2A12 + t1A22, t2,−t1, 1)T .
Also let q = (x, y, x′, y′) be the stacked vector of the two pairs of image coor-
dinates in the 4-dimensional joint image space. The affine epipolar constraint
says that the affine joint image consists of all points q which lie on a hyperplane
given by the equation

fT

(
q
1

)
= 0. (12)

3 It can also be shown that this vector lies along the direction of the line connecting
the point p′

0 to the epipole defined by t in the second perspective image.
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This implicit form (as opposed to the parametric form described by Equation 6)
will be useful later for us (see Section 5) to relate to the perspective Fundamental
matrix4. (Of course, this approximation is only reasonable for points p and p′
which lie near the matching pair of points p0 and p′

0.)

2.4 The Fundamental Matrix as a Point-Cone

Given two views, the well-known epipolar constraint equation can be written in
our notation as:

p′T Fp = 0 (13)

where p and p′ denote the 2D image location of a scene point in two views
specified in homogeneous coordinates, and F is the 3×3 fundamental matrix. In
the joint image space, this equation can be written as:

1
2
(qT 1)C

(
q
1

)
= 0 (14)

where as before, q = (x, y, x′, y′)T is the stacked vector of the image coordinates
of a matching point, and C is the 5 × 5 matrix defined below.

C =




0 0 F11 F21 F31
0 0 F12 F22 F32

F11 F12 0 0 F13
F21 F22 0 0 F23
F31 F32 F13 F23 2F33


 . (15)

This equation describes a quadric in the 4 dimensional joint image space of
(x, y, x′, y′). We now analyze the shape of this quadric.
Theorem: The joint-image corresponding to two uncalibrated perspective views
of a 3D scene is a point cone.
Proof: First, we show that the rank of the 5 × 5 matrix C is 4. To do this, we
rewrite C as the sum of two matrices C1 and C2, where

C1 =




0 0 FT
1

0 0 FT
2

0 0 0T

0 0 0T

0 0 FT
3


 , (16)

and
C2 = C1

T

where FT
i denotes the i − th row of FT (equivalently, Fi is the i − th column of

F) and 0 is a 3D zero vector. Now C1 and C2 are both Rank 2, since the 3 × 3
submatrices contained in them are in fact the fundamental matrix F and FT

4 The parameters (f1, . . . , f5) can be derived in terms of H, p0 and p′
0. However, these

expressions are somewhat tedious and do not shed any significant insight into the
problem. Hence, we have not elaborated them here.
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which are of Rank 2. Also, it can be easily verified that C1 and C2 are linearly
independent of each other. Hence C = C1 + C2 is of Rank 4.

According to [12] a quadric defined by a 5 × 5 matrix C which is of Rank 4
represents a 4D cone called a point cone, which is simply a term to describe a
4-dimensional cone. Since the projective joint image is defined by our C which
is rank 4, the joint image has the shape of a point cone. QED

Let e = (e1 e2 1)T and e′ = (e′
1 e′

2 1) denote the two epipoles in the two
images in homogeneous coordinates. Let us define the point qe = (e1 e2 e′

1 e′
2 1)T

in the joint image space as the “joint epipole”.

Corollary: : The vertex of the projective joint image point cone is the joint
epipole.

Proof: From the definition of C is easy to verify that Cqe = Fe + FT e′.
But since the epipoles are the null-vectors of the F matrix, we know that Fe =
FT e′ = 0. Hence, Cqe = 0. This means that the joint epipole is the null-vector
for C, and once again according to [12], this means that the point qe which
denotes the joint epipole is the vertex of the point cone. QED

2.5 The Tangent Space of the Projective Joint Image

As per Equation 14, in the case of 2 views, the projective joint image variety is
a level set of the function

f(q) =
1
2
(qT 1)C

(
q
1

)

corresponding to level zero. Hence,

∇f = C
(

q
1

)
(17)

defines its orientation (or the “normal vector”) at any point q. Considering a
specific point q0, let p0 = (x, y, 1)T and p′

0 = (x′, y′, 1)T be the corresponding
image point in the two views (in homogeneous coordinates). By looking into the
components of C, it can be shown that:

Πq0 = ∇fq0 = C
(

q0
1

)
=




FT
1 p′

0
FT

2 p′
0

F1p0
F2p0

F3p0 + FT
3 p′

0


 (18)

We have denoted the normal by Πq0 . The equation of the tangent hyperplane
at q0 is:

ΠT
q0

(
q
1

)
= 0 (19)

In other words, all points q in the joint-image space that satisfy the above
equation lie on the tangent hyperplane. Note that the joint epipole qe lies on
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the tangent plane5 since

ΠT
q0

(
qe
1

)
= (qT

0 1)CT
(

qe
1

)
= (qT

0 1)C
(

qe
1

)
= 0, (20)

since C is symmetric. We already showed in Section 3 that the tangent hyper-
plane to the projective joint image is given by the local affine joint image. Hence,
the components of Πq0 given above must be the same as (f1, . . . , f5) defined in
Section 3, which are estimated from the local affine patches. This fact will be
useful in our algorithm described in Section 3.3.

3 Algorithm Outline

We use the fact that the local affine projection approximation gives the tangent
to the 4D cone for recovering the epipolar geometry between a reference view
and all other views. Our overall algorithm consists of two stages:

1. Estimate the affine projection approximation for multiple local patches in the
images. For each patch, use all the images to estimate the affine projection
parameters. This is equivalent to computing the linear 3D subspace of the
multiview joint image in the 2m-dimensional joint image space of the m
input images. This is described in Section 3.1.

2. Determine the epipolar geometry between each view and the reference view
by integrating the tangent information computed for different local affine
patches in Step 1 above. This is described in Sections 3.2 and 3.3.

We actually present two different methods for Step 2. The first method (see 3.2)
samples the joint image around the location of different affine tangents in the
4-dimensional joint image space to obtain a dense set of two-frame corresponden-
ces, and then applies the standard 8-point algorithm to recover the fundamental
matrix between each view and the reference view.

The second described in Section 3.3 is more novel and interesting and uses
the fact that all tangent planes to the cone must pass through its vertex (i.e.,
the joint epipole) to directly recover the epipole between each views and the
reference view without computing the fundamental matrix as an intermediate
step.

3.1 Local Affine Estimation

Any algorithm for estimating affine projection can be used. For example, each
affine patch could be analyzed using the factorization method. However, within
a small patch it is usually difficult to find a significant number of features.
Hence, we use the “direct multi-frame” estimation by [6] that attempts to use all
available brightness variations with the patch. The algorithm takes as input three
or more images and computes the shape and motion parameters to minimize a
brightness error. Specifically, let aj , tj be the affine motion parameters from
5 This is not surprising, since every tangent plane to a cone passes through its vertex,

which in this case is the joint epipole.
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the reference image to image j. (Each aj is a 6-vector corresponding to the 6
elements of the 2D affine matrix in equation 8 and tj corresponds to the vector
ta in equation 10). Also, let γi be the “relative depth” of pixel i in the reference
image. We minimize the following error function:

E({aj}, {tj}, {γi}) =
∑

j

∑
i

(∇IT
i uj

i + It
j
i )

2,

where ∇Ii is the gradient of pixel i at the reference image and It
j
i is the temporal

intensity difference of the pixel between frame j and the reference frame 0, and

uj
i = xj

i − x0
i = Yiaj + tjγi,

is the displacement of the pixel i between frame 0 (the reference frame) and
frame j. The matrix Y has the form:

Y =
(

x y 1 0 0 0
0 0 0 x y 1

)
(21)

Taking derivatives with respect to aj , tj and γi and setting to zero we get:

∇ajE =
∑

i

∑
j

Yi∇Ii(∇IT
i (Yiaj + tjγi) + It

j
i )

∇tjE =
∑

i

∑
j

γi∇Ii(∇IT
i (Yiaj + tjγi) + It

j
i )

∇γiE =
∑

j

tj∇Ii(∇IT
i (Yiaj + tjγi) + It

j
i ) (22)

Because tj and γi are coupled in ∇E we take a back-and-forth approach to
minimizing E. At each step we fix aj , tj and compute γ∗

i as:

γ∗
i =

∑
j tT

j ∇Ii(∇IT
i Yiaj + It

j
i )∑

j tT
j ∇Ii∇IiT tj

(23)

and minimize the new error function

E∗({aj}, {tj}) =
∑

j

∑
i

(∇IT
i (Yiaj + tjγ

∗
i ) + Ij

ti
)2 (24)

The new parameters aj , tj are used to recalculate γ∗
i and so on. This entire

process is applied within the usual coarse-to-fine estimation framework using
Gaussian pyramids of the images.

3.2 From Local Affine Approximation to the Global Fundamental
Matrix

In this method, we use the affine motion parameters of all the patches between
the reference and a given image to recover the projective fundamental matrix
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between these two images. For a particular image and particular patch we con-
sider the affine motion parameters a, t, as recovered in the previous subsection,
to calculate the tangent plane. For increased numerical stability, we uniformly
sample points on a 3D “slab” tangent to the cone. This is done using the equa-
tion:

p′ = ap + γt (25)

where p = (x, y, 1)T , x, y are uniformly sampled within the patch and γ takes
the values −1, 0, 1. This sampling procedure has the effect of “hallucinating”
[14] matching points between the two images, based on the affine parameters of
the patch. These hallucinated matching points correspond to virtual 3D points
within a shallow 3D slab of the 3D scene. This is repeated for every patch. We
use Hartley’s normalization for improved numerical stability and compute the
fundamental matrix, from the hallucinated points, using the 8-point algorithm.
Note that since the matching points are hallucinated, there is no need to use
robust estimation techniques such as LMeDS or RANSAC.

3.3 Estimating the Joint Epipole Directly from the Local Affine
Approximations

While the previous method was useful to recover the global projective F matrix,
it does not take full advantage of the tangency relationship of the local affine
joint images to the global projective and joint image. Here we present a second
method that uses the fact that the tangent hyperplane defined by the local affine
patches to the 4D cone must pass through the vertex of the cone (see Section 2.5).
Thus, we can use the affine motion parameters (which specify the tangent plane)
to recover the epipoles directly, without recovering the fundamental matrix as
an intermediate step. Let a, t be the affine motion parameters of a given patch
and let f be the hyperplane normal vector given in (see equation 11). Then in
the joint image space, the tangent πq0 to the patch is given by:

Πq0 = f = (t1a21 − t2a11, t1a22 − t2a12, t2,−t1, t1a23 − t2a13)T (26)

where a13 = ((a11 −1)x0 +a12y0 +a13)) and a23 = (a21x0 +(a22 −1)y0 +a23) are
modified to account for the relative position of the patch in the global coordinate
system of the image, and (x0, y0) is the upper-left corner of the patch.

Let qe = (e1 e2 e′
1 e′

2 1)T be the joint epipole composed from the two epipole
then we have that (refer to equation 18):

ΠT
qi

(
qe
1

)
= 0 (27)

This equation is true for every patch in the image, thus given several patches we
can recover the joint epipole qe by finding the null space of:




ΠT
q1

ΠT
q2

.
ΠT

qn


 (28)
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Once the epipole e′ is known we can recover the homography using the fol-
lowing equation:

p′T Fp = p′T


 0 1 e′

2
1 0 −e′

1
−e′

2 e′
1 0


Hp = 0 (29)

In this equation the epipole (e1, e2, 1) is known from the step just described
above. Given p = (x, y, 1)T and p′ = (x′, y′, 1)T are hallucinated matching
points that are sampled as in the method described in Section 3.2, the only
unknown is the homography H. This equation defines a homogeneous linear
constraint,

sT h = 0

in the 9 unknown parameters of the homography H. Here s is a 9 × 1 vector
which depends on the point, and h is the homography parameters stacked as
a 9-dimensional vector. Every hallucinated matching point provides one such
constraint. Given a set of N hallucinated matching points indexed by i, the
vector h must lie on the null space of the matrix formed by stacking the vectors
sT
i into a N × 9 matrix.

Note that the null space of this equation is a 4-dimensional space as described
in [13], since any planar homography consistent with the given camera geometry
and an arbitrary physical plane in 3D will satisfy these equations. Hence, we are
free to choose any linear combination of the null vectors to form a legitimate
homography matrix H.

4 Experiments

We performed a number of experiments on real images. In all the cases we used
the progressive scan Canon ELURA DV cam-corder that produces RGB images
of size 720 × 480 pixels. In all the experiments we used the “direct multi-frame”
estimation technique to recover the affine model parameters of a local patch
across multiple images. We collected several such patches and used them as
tangents to compute either the fundamental matrix or the epipole directly.

4.1 Recovering the Fundamental Matrix

This experiment consists of 6 images. We manually selected 5 patches in the
first image and recovered the affine motion parameters for each patch for all
the images in the sequence. We then hallucinated matching points between the
first and last images and used them to compute the fundamental matrix. To
measure the quality of our result, we have numerically measured the distance
of the hallucinated points to the epipolar lines generated by the fundamental
matrix and found it to be about 1 pixels. The results can be seen in figure 2.

4.2 Recovering the Joint Epipole

We conducted two experiments, one consisting of 6 images, the other consisting
of 8 images. We manually selected a number of patches in the first image and
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(a) (c)

Fig. 2. First (a) and last (b) images in a 6-frame sequence. The rectangles represent
the manually selected patches. A “direct multi-frame” algorithm was used to estimate
the affine motion parameters of every patch throughout the sequence. “Hallucinated”
matching points were used to compute the fundamental matrix between the reference
and last image. We show the quality of the fundamental matrix on a number of hand-
selected points. Note that the epipolar lines pass near the matching points with an
error of about 1 pixel.

recovered the affine motion parameters for each patch for all the images in the
sequence . The patches were used to recover the joint-epipole. From the joint
epipole we obtained the epipole and used it to recover the 4-dimensional space of
all possible homographies. We randomly selected a homography from this space,
and together with the epipole, computed the fundamental matrix between the
first and last images. The fundamental matrix was only used to generate epipolar
lines to visualize the result. The results can be seen in figures 3 and 4.

5 Discussion and Summary

We have shown that the fundamental matrix can be viewed as a point-cone in
the 4D joint image space. The cone can be recovered from its tangents, that are
formed by taking the affine (or “para-perspective”) approximation at multiple
patches in the 2D images. In fact, the tangency relationship between affine and
projective joint images extend to multiple images. These observations lead to
a novel algorithm that combine the result of multi-view affine recovery of mul-
tiple local image patches to recover the global perspective epipolar geometry.
This leads to a novel method for recovering the epipoles directly from the affine
patches, without recovering the fundamental matrix as an intermediate step.

As mentioned earlier, our work generalizes those of Rieger & Lawton [10] and
Lawn & Cipolla [7,8]. Rieger & Lawton used the observation that the difference
in image flow of points (namely, parallax) on two sides of a depth discontinuity is
only affected by camera translation, and hence points to the focus-of-expansion
(FOE) . They use multiple such parallax vectors tom recover the FOE. Their
approach has been shown to be consistent with human psychological evidence.
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(b) (c)

Fig. 3. First (a) and last (b) images in a 6-frame sequence. The rectangles represent the
manually selected patches. A “direct multi-frame” algorithm was used to estimate the
affine motion parameters of every patch throughout the sequence. The affine parameters
are used to recover the epipoles directly. The fundamental matrix is recovered from the
epipoles and an arbitrary legitimate homography only to visualize the epipolar lines.
We show the quality of the fundamental matrix on a number of hand-selected points.
Note that the epipolar lines pass near the matching points.

As mentioned earlier, Lawn and Cipolla use the affine approximation for
two-frame motion within local regions. However, they do not require that the
region contain discontinuities. Our algorithm generalizes their approach by using
multiple views simultaneously. The use of multiple views allows the use of the
(local) rigidity constraint over all the views. We expect that this will increase
the robustness of the affine structure from motion recovery. This generalization
comes naturally as a result of treating the problem in the joint-image space.
In particular, the identification of the tangency relationship between the affine
and projective cases and realization that the two-view projective joint image is
a cone are the key contributions of the paper that enable this generalization.
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