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Abstract Locally Orderless Tracking (LOT) is a visual tracking algorithm that automati-
cally estimates the amount of local (dis)order in the target. This lets the tracker specialize
in both rigid and deformable objects on-line and with no prior assumptions. We provide
a probabilistic model of the target variations over time. We then rigorously show that this
model is a special case of the Earth Mover’s Distance (EMD) optimization problem where
the ground distance is governed by some underlying noise model. This noise model has sev-
eral parameters that control the cost of moving pixels and changing their color. We develop
two such noise models and demonstrate how their parameters can be estimated on-line dur-
ing tracking to account for the amount of local (dis)order in the target. We also discuss the
significance of this on-line parameter update and demonstrate its contribution to the perfor-
mance. Finally we show LOT’s tracking capabilities on challenging video sequences, both
commonly used and new, displaying performance comparable to state-of-the-art methods.
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1 Introduction

When addressing the visual tracking problem one often makes an explicit or implicit as-
sumption about the type of target being tracked, treating it as either a rigid object or a
deformable one. For example, when tracking a rigid object, where the only change in ap-
pearance is due to rigid geometric transformations, it is reasonable to use a method such as
template matching where the location of pixels is fixed and governed by a geometric trans-
formation and similarity is reduced to per-pixel intensity difference. If, on the other hand,
the object is extremely deformable, then tracking based on color histogram matching might
be more suitable reducing the similarity between target and candidate to similarity between
their color distributions.

In this work we present a novel visual tracking algorithm we call Locally Orderless
Tracking (LOT). This algorithm uses a joint spatial-appearance space representation and
is able to estimate, on-line, the amount of local (dis)order in the target. Thus if the target
is rigid and there is little or no local disorder then LOT preserves spatial information like
template matching. However, if the target is nonrigid, LOT disregards spatial information as
in histogram matching.

The first contribution of our work is a new probabilistic interpretation of the Earth
Mover’s Distance (EMD) that we name Locally Orderless Matching (LOM). Using this
interpretation one can calculate the likelihood of patch P being a noisy replica of patch Q
where noise can be introduced by change in the spatial order of pixels in the patch, change
in their appearance, or both. In other words, LOM infers the probability Pr(P |Q,Θ) where
Θ are noise model parameters, some of which control the cost of moving pixels spatially
while others control the cost of changing a pixels appearance, for example due to illumi-
nation variation. Since our derivation is general one can plug in any noise model into this
framework and we demonstrate the use of two such noise models.

The second contribution of our work is introducing Locally Orderless Tracking which
applies Locally Orderless Matching to visual tracking. Locally Orderless Tracking is a par-
ticle filter based tracker that uses Locally Orderless Matching to infer the likelihood of each
observed particle being a noisy replica of the target. Particles are represented as signatures
in a joint spatial-appearance space, using superpixels for better efficiency. Key to our ap-
proach is the ability to adapt to both rigid and deformable targets. This ability is obtained
by an on-line noise model parameter estimation scheme driven by the LOM solution. This
adaptation is a fully automated process that requires no user intervention.

This work is an extension of Oron et al. (2012), providing additional experiments and
more discussions.

The rest of this paper is organized as follows. Section 2 covers related work. Section 3
presents Locally Orderless Matching. Section 4 discusses noise models. Section 5 introduces
Locally Orderless Tracking. Section 6 covers experiments and we conclude in section 7.

2 Related Work

We are inspired by the work of Koenderink and Van Doorn (1999) on the structure of lo-
cally orderless images which proposes an image representation method where the amount
of spatial order preserved globally and locally can be tuned using two parameters. This rep-
resentation was shown by Ginneken and Haar Romeny (1999) to be useful for applications
such as adaptive histogram equalization, noise removal and segmentation. In our case, we
wish to determine the optimal extent of local disorder of the data for the purpose of tracking.
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In rigid object tracking one usually attempts to exploit spatial information in the object
by using template based methods. In some cases the template is used in a simple manner
(Hager and Belhumeur (1998)) while others use multiple templates and sparse representa-
tions (Ross et al. (2004, 2007); Mei et al. (2011); Kwon and Lee (2010)). These approaches
offer good stability and can handle occlusions and scale estimation but are less suitable for
handling non-rigid deformations and dynamics such as out-of-plane-rotations.

When tracking deformable objects one often uses histogram representations (Comaniciu
(2002)) or discriminative methods that treat the problem as a pixel-wise binary classification
problem (Godec et al. (2011); Avidan (2005); Grabner et al. (2006)). These approaches
mostly disregard spatial order, and can therefore handle difficult non-rigid transformations.
However they are more prone to drift and are often less stable especially at scale estimation
or occlusion handling.

Some attempt to combine rigid and deformable object approaches. For example Wang
et al. (2011) use mid level cues that capture spatial information to some extent while Santner
et al. (2010) heuristically combine discriminative and generative components . However,
unlike LOT, these methods do not measure nor adapt to local disorder in the data in an
explicit manner.

The work most related to ours is that of Elgammal et al. (2003), proposing a tracker
that uses a joint spatial-appearance space and can specialize to either histogram tracking
or sum-of-square-difference (SSD) tracking by an off-line adjustment of parameters. The
proposed method is significantly different in several ways. First and foremost, due to the
on-line parameter estimation which enables LOT to specialize in rigid template tracking
or deformable object tracking on-line and secondly due to the use of Particle Filtering and
EMD instead of the kernel based gradient decent approach of Elgammal et al.

The Earth Mover’s Distance (EMD) has a long history in computer vision. EMD was
first considered by Peleg et al. (1989) as an image similarity metric and popularized by
Rubner et al. (2000) (who coined the name) for content based image retrieval. A proba-
bilistic analysis of EMD and its relation with the Mallows distance was proposed by Levina
and Bickel (2001) although that analysis differs from the proposed probabilistic framework
which introduces a noise process that governs the ground distance in the EMD. Recently,
Zhao et al. (2010) proposed a differential EMD approach that derives a gradient descent
method to find the object location quickly using the EMD as a similarity measure. How-
ever, the focus of that paper is on using EMD to handle illumination changes, the object is
represented as a color signature and no consideration is given to pixels inner location in the
template.

Generative probabilistic Bayesian approaches also known as Particle Filters or Sequen-
tial Monte Carlo (Doucet et al. (2001)) are widely used for visual tracking (Kwon and Lee
(2010); Ross et al. (2007)). In our work we closely follow the Condensation algorithm pro-
posed by Isard and Blake (1998) which suggest a Particle Filtering technique using factored
sampling.

Superpixels first proposed by Ren and Malik (2003) have been used in recent years for
many computer vision applications such as segmentation and classification (Hoiem et al.
(2005); He et al. (2006)) and tracking (Wang et al. (2011)). In our work, similar to Boltz
et al. (2010), superpixels are used to reduce the computational cost of EMD.

We refer interested readers to a thorough survey of the vast work in visual tracking done
by Yilmaz et al. (2006).
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3 Locally Orderless Matching

Locally Orderless Matching measures the similarity between two images or two image
patches based on the EMD. Pixels are represented in a joint spatial-appearance domain.
For appearance we use color values but other descriptors such as gradients or local texture
can also be used. For position pixel coordinates in a patch, normalized to the range [0, 1],
are taken. A pixel is represented as pi = (pLi , p

A
i ) where pLi = (x, y) is the pixels location

and pAi ∈ RD its appearance.
We want to probabilistically explain a candidate patch P as a noisy replica of the tem-

plate Q. We begin by looking at the pixel-wise inference problem, where patches P and Q
are treated as sets of pixels, and show that in this case the problem is equivalent to a form of
EMD optimization problem. We then propose using signature representations for P and Q
in which pixels are clustered together using superpixel segmentation and claim the problem
can now be formulated as the signature EMD problem (Rubner et al. (2000)). This is done
in order to reduce the computational cost of EMD and we justify it by bounding the error
resulting from the related coarsening of the representation.

Let us consider patches P and Q as sets of pixels. We start with a probabilistic perspec-
tive of EMD and wish to show that it measures the conditional probability of one set, given
the other set and model parameters. Formally, denote the two sets by P = {pi}ni=1, Q =

{qi}ni=1, and assume that we have a probabilistic model stating the probability that a spe-
cific element p ∈ P originated from a specific element q ∈ Q, Pr(p|q,Θ), with Θ the model
parameters. We want to extend it to the conditional probability between the sets Pr(P |Q,Θ).

The extension relies on a hidden 1:1 mapping between elements of P and Q. Denote
such a mapping by h : {1, .., n} → {1, .., n} with h(i) = j meaning that element pi was
generated from element qj . We can get the probability of P being generated from Q by
marginalizing over the possible hidden assignments (dropping Θ from the notation as it is
currently constant):

Pr(P |Q) =
∑
h

Pr(P |Q,h)Pr(h) (1)

Assuming a uniform prior over the h’s (no reason to assume anything else) we have:

Pr(P |Q) =
1

n!

∑
h

Pr(P |Q,h) (2)

Approximating the average using maximum a posteriori (MAP) estimation, i.e. assuming
the sum is dominated by the highest term (the best hidden map) we get:

Pr(P |Q) ∼ c ·max
h
Pr(P |Q,h) (3)

Dropping the constant c, assuming independence between the set elements and taking the
logarithm we get:

logPr(P |Q) ∼ max
h
logPr(P |Q,h)

= max
h

∑n
i=1 logPr(pi|qh(i), Θ)

(4)
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Proposition 1 Optimization problem (4) is the signature EMD problem EMD(P,Q,d) for the
following signatures and ground distance:

P = {(p1, 1), (p2, 1), . . . , (pn, 1)}
Q = {(q1, 1), (q2, 1), . . . , (qn, 1)}
d(p, q) = −logPr(p|q,Θ)

(5)

Where the signatures are comprised of objects, e.g. (pi, wi), each having a description pi
and weight wi. In our case the signatures are simply collections of all the pixels in patches
P and Q equally weighted.

Proof Starting with Equation (4) we have:

max
h

∑n
i=1 logPr(pi|qh(i), Θ) =

min
h

∑n
i=1−logPr(pi|qh(i), Θ) =

min
h

∑n
i=1 d(pi, qh(i))

(6)

where the mapping h can be expressed as a permutation matrix F in which fij = 1 iff h(i) =
j. Denoting dij = d(pi, qj) the problem statement becomes:

min
∑
i,j fijdij

such that ∑
i fij = 1,

∑
j fij = 1, fij ∈ {0, 1}

(7)

If we put this integer linear programming problem in the canonical form {min c · x|Ax =

b, x ≥ 0} we find that the matrix A is totally unimodular (Heller and Tompkins (1956)).
This implies the linear programming problem in which we relax the constraint fij ∈ {0, 1}
to fij ≥ 0 has an integral optimum, meaning the constraint can be relaxed without changing
the result.

The linear programming problem obtained by this relaxation is identical to the one ob-
tained for signature EMD with identical mass as presented by Rubner et al. (2000).

min
∑
i,j
fijdij

such that
fij ≥ 0,

∑
i fij ≤ wqj ,

∑
j fij ≤ wpi∑

i,j
fij = min(

∑
i wpi ,

∑
j wqj )

(8)

Where in our case all wpi and wqj are equal to 1. In which case the inequalities
∑
i fij ≤

wqj ,
∑
j fij ≤ wpi can be replaced by equalities and then the last constraint can be dropped.

ut

In other words, conditional set probability, under 1:1 mapping and element indepen-
dence assumptions, is equivalent to signature EMD with singleton bins. However, the equiv-
alence naturally extends to conditional probabilities with P and Q containing repeating ele-
ments and signature EMD with general integer bin quantities.

Proposition 2 Let

P = {(p1, wp1), (p2, w
p
2), . . . , (pn1 , w

p
n1)}

Q = {(q1, wq1), (q2, w
q
2), . . . , (qn2 , w

q
n2)}

(9)
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be signatures for which we cluster repeating elements into single objects increasing their
weights accordingly (i.e. p1 appears wp1 ∈ N times in P , etc.). Solving the pixel matching
problem for P and Q as formulated in optimization problem (7) (which has m2 variables
where m =

∑n
i=1 w

p
i ) is equivalent to solving the EMD problem (8) for P and Q (which

has n1 · n2 variables) i.e. both problems have the same minima.

The proof of proposition 2 is given in the appendix. We see that when sets P and Q contain
identical items it lowers the computational cost of the matching using EMD formulation.
Hence clustering similar items and replacing them with a single object is an attractive ap-
proximation to the likelihood. However this approximation degrades as the clustering be-
comes coarser. We can bound this error in likelihood estimation as follows:

Proposition 3 Assuming that the ground distance d(p, q) is a metric.
Let P = {(p1, wp1), . . . , (pn1 , w

p
n1)} , Q = {(q1, wq1), . . . , (qn2 , w

q
n2)} be two signatures

and let P̂ , Q̂ be crude versions of P,Q such that any object in P̂ is created by uniting
objects in P and the same holds for Q̂,Q. Denote by hp, hq the functions mapping each
object P,Q to its containing object in P̂ , Q̂. Then:

|EMD(P,Q, d)− EMD(P̂ , Q̂, d)| ≤∑n1

i=1 w
p
i d(pi, p̂hp(i)) +

∑n2

i=1 w
q
i d(qi, q̂hq(i))

(10)

In other words, the EMD approximation gap is bounded by the sum of distances between
the original cluster centers and their cruder counterparts in the crude signatures. The proof
is given in the appendix.

4 Noise Model

We have shown that Locally Orderless Matching attempts to explain a set P as a noisy
replica of set Q, under some pixel-pair noise model with parameters Θ. We now present and
discuss the Gaussian noise model for pixel-pairs. We give special attention to the parameter
estimation scheme, demonstrating how these noise model parameters and their estimation
allow our algorithm to adapt, on-line, to both rigid and deformable objects.

We note that since the derivation presented in section 3 is general with respect to the
noise model, any distribution can be used as a noise model. One can use prior knowledge,
theoretical or empirical, about the noise to make an educated choice. Furthermore, since our
problem is cast in term of probabilistic inference the noise model parameters can be inferred
using maximum-likelihood (ML) estimation based on the EMD solution, as we demonstrate
for the models we present here.

We focus on the Gaussian noise model as it is simple and intuitive and also as it was
found to be empirically superior to a second noise model we tested, as presented in section
6.5. Information on additional noise models is provided in appendix A.

4.1 Gaussian Noise

A Gaussian distribution with zero mean and scalar covariance is considered for both lo-
cation and appearance, assuming independence between the two, i.e. Pr(p|q,ΘL, ΘA) =

Pr(pL|qL, ΘL) · Pr(pA|qA, ΘA), in which case we have:

Pr(pL|qL) ∼ N(0, ΣL = σL · I)
Pr(pA|qA) ∼ N(0, ΣA = σA · I)

(11)
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Denoting Θ = (σL, σA). The conditional probability is:

Pr(p|q,Θ) =
1

2πσ2L
e
− ||p

L−qL||22
2σ2
L · 1

(2π)D/2σDA
e
− ||p

A−qA||22
2σ2
A (12)

Ground distance in this case is:

d(p, q) =
1

2σ2L
||pL − qL||22 +

1

2σ2A
||pA − qA||22 + C (13)

WhereC = D+2
2 log(2π)+2log(σL)+Dlog(σA). This model is simple and intuitive, closely

related to Koenderink and Van Doorn (1999) locally orderless image representation.
Observing equation (13) it is easy to see that if σA >> σL the ground distance is

dominated by the first term, i.e. the cost of moving a pixels spatially is much higher than the
cost of appearance errors. In this case the optimal EMD solution would leave all the pixels
in place, reducing to a sum-of-square-difference, as in rigid template matching. If however
σL >> σA then the ground distance is dominated by the second term, making it very costly
to change pixels appearance compared with moving them spatially. In this case all spatial
information is lost and the EMD is reduced to histogram matching (in the EMD sense).

This property is key to LOT’s ability to adapt to both rigid and deformable targets. More-
over, since the noise model parameter update is done on-line, based on the EMD solution
obtained at each frame, the “rigidity” adaptation is also done on-line in a fully automatic
manner requiring no user intervention and very little parameter tuning.

4.1.1 Gaussian Noise Parameter Estimation

Locally Orderless Matching with a Gaussian noise model of the form discussed above has
two parameters σA and σL. Due to the independence assumed between appearance and lo-
cation each parameter can be estimated separately using the same Maximum Likelihood
(ML) estimator. Therefore, p, q, σ,D will be used without the superscripts A,L. Recall
from propositions 1,2 that logPr(P |Q,Θ) ∼

∑
i,j
dijfij , where the fij providing the map-

ping, are obtained from the EMD solution. Maximum likelihood can hence be obtained by
differentiating

∑
i,j
dijfij with respect to σ and comparing to zero. For dij = d(pi, qj) =

1
2σ2 ||pi − qj ||22 + D

2 log(2π) +Dlog(σ) we get:

σ2 =
1

D

∑
i,j
fij ||pi − qj ||22∑

i,j
fij

. (14)

5 Locally Orderless Tracking

Locally Orderless Tracking applies Locally Orderless Matching to tracking. This is done in
a Baysian approach using Particle-Filtering (PF) where the likelihood that a certain particle
has originated from the tracked object is inferred using Locally Orderless Matching. The
overall algorithm is given in Algorithm 1. Specific details are provided below.
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Algorithm 1 Locally Orderless Tracking

Input: Frame I(n), target signature Q0 = {qi, wqi }
MQ0
i=1 , noise parameters Θ(n−1), particle states

{X(n)
k }

N
k=1

Output: New target state X(n)
Target, updated parameters Θ(n), new particle states {X(n+1)

k }Nk=1

1. Partition ROI in I(n) into superpixels ISP
2. For each particle X(n)

k do:

(a) Build signature P (n)
k = {pki , w

pk

i }
MPk
i=1 using ISP

(b) Compute ground distances:
{dk}ij = d(pki , qj) = −log(pki |qj , Θ(n−1))

(c) Compute EMDk ← EMD(P
(n)
k , Q0, dk)

(d) Compute particle weight according to (17)
3. Find new target state X(n)

Target according to (18)

4. Build target signature P (n)
Target and ground distance dTarget

5. Compute EMD flow fi,j ← EMD(P
(n)
Target, Q0, dTarget)

6. Update parameters Θ(n) according to (19).
7. Create new particle set {X(n+1)

k }Nk=1 using the Condensation algorithm Isard and Blake (1998).

We use a Bayesian tracking formulation where the goal is to find the most probable state
at frame n denoted X(n)

Target. This state in our case is a rectangle defined by (x, y, w, h).

Given some particle state at frame n, X(n)
k and the observations up to frame n , Z(1:n)

k ,
which are the signatures associated with that state. We assume that target dynamics form
a temporal Markov chain so that Pr(X(n)

k |X
(n−1)
k , . . . , X

(1)
k ) = Pr(X

(n)
k |X

(n−1)
k ). We

would like to estimate the posteriori probability Pr(X(n)
k |Z

(1:n)
k ). Using Bayesian formu-

lation we have:

Pr(X
(n)
k |Z

(1:n)
k ) = c

(n)
k · Pr(Z(n)

k |X
(n)
k )Pr(X

(n)
k |Z

(1:n−1)
k ) (15)

where

Pr(X
(n)
k |Z

(1:n−1)
k ) =

∫
Pr(X

(n)
k |X

(n−1)
k )Pr(X

(n−1)
k |Z(1:n−1)

k )dX
(n−1)
k (16)

and c(n)k is a normalization constant that does not depend on X(n)
k . Computing equation

(15) requires multiplying the observation density Pr(Z
(n)
k |X

(n)
k ) by the effective prior

Pr(X
(n)
k |Z

(1:n−1)
k ). This effective prior term is generated based on the process dynam-

ics which determine Pr(X(n)
k |X

(n−1)
k ) and using the posterior from the previous time step

Pr(X
(n−1)
k |Z(1:n−1)

k ) which will be discussed later. The observation density in (15) is in

fact the probability Pr(P (n)
k |Q0, Θ) inferred using LOM, where P (n)

k is the corresponding
patch representation for the k’th particle in the n’th frame and Q0 is our target patch rep-
resentation. To define this conditional probability between patches we only have to define
the probabilistic noise model for single pixels Pr(p|q,Θ). Then the ground distance for the
EMD is defined as d(p, q) = −log(p|q,Θ) and Pr(P (n)

k |Q0, Θ) is obtained by solving the
EMD problem.

Since solving an EMD problem can be a computationally challenging task, instead of us-
ing raw pixel values we work with superpixels. Specifically, we use Levinshtein et al. (2009)
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TurboPixels clustering algorithm to produce over segmentation in a region-of-intrest (ROI)
which supports all the particle related patches. Candidate patches are then represented by
signatures which are generated from this superpixel image. A signature consists of M clus-
ters that reside in the signature support, i.e. a rectangle. Each cluster is represented by its
location , i.e. geometric center of mass (in patch canonical coordinates ranging [0, 1]), and
average appearance (e.g. average HSV values). We note that each signature is normalized
to have unit weight. In this setup running LOM maps all the weight of the target patch to
the candidate patch. This does not result in a 1:1 mapping of superpixles nor pixels, since
target superpixels can be split into several candidate superpixels, also each patch might be
comprised of a different number of pixels. This however does not pose a theoretical problem
(see proposition 2) nor a practical one since solving the EMD optimization problem is still
feasible and the flow obtained can still be used for parameter estimation.

The full Particle Filtering scheme we use follows closely the Condensation algorithm
of Isard and Blake (1998). For each new frame that comes in we do the following: Build
a signature for each of the N particles according to their state i.e. each particle represents
a rectangular image patch. Then calculate the EMD between each of these candidate sig-
natures {P (n)

k }Nk=1 and the target signature Q0 with ground distances as explained above

(calculated using the noise model parameters Θ). The EMD scores {EMD
(n)
k }

N
k=1 are then

used to set particle weights according to:

π
(n)
k =

e−β·EMD
(n)
k∑N

k=1 e
−β·EMD

(n)
k

(17)

We now have a set of weighted particle states {X(n)
k , π

(n)
k }

N
k=1 with which we do two things.

The first is compute the final state X(n)
Target according to:

X
(n)
Target = E[X(n)] =

N∑
k=1

X
(n)
k · π(n)k (18)

The second thing we do with this weighted particle set is create a new particle set for the
next frame that comes in. This is done as described in Isard and Blake (1998) by sampling
particles from the current weighted set (with probability proportional to their weight) then
subjecting them to a prediction phase according to the process dynamics which also include
some random noise process. This factored sampling process uses Pr(X(n−1)

k |Z(1:n−1)
k ) in

order to produce a particle set approximating the required Pr(X(n)
k |Z

(1:n−1)
k ).

Finally the last step of each iteration is noise model parameter update based on the
new target state found. This stage is carried out as follows. We begin by building P (n)

Target

the signature for our new target state X(n)
Target. Then we compute the EMD flow between

this signature and the target signature Q0 providing the most probable mapping between
source and target signatures. Using this flow we estimate the noise distribution parameters
Θ

(n)
ML according to what is described in section 4. These estimated parameters are then

regulated using a prior ΘPrior and a moving average (MA) process before producing the
final parameters Θ(n):

Θ
(n)
MAP =

Θ
(n)
ML+ΘPrior·wPrior

1+wPrior

Θ(n) = (1− αMA) ·Θ(n−1) + αMA ·Θ
(n)
MAP

(19)
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We emphasize that noise model parameters reflect the degree of rigidity in the target,
thus on-line noise model parameter update enables LOT to adapt to different types of targets.

Although we do not update the target template explicitly, noise parameter update can be
viewed as a limited form of template update. This is because setting noise model parameters
directly affects the EMD solutions space thus effectively changing the space of possible
matches.

We note that currently our algorithm does not handle occlusions explicitly, however par-
tial occlusions are handled quite well due to two mechanisms: one is the use of particle
filtering which allows locking back to a target after it was lost due to an occlusion. Addi-
tionally since in many cases the visible part of an occluded target shares its color statistics
with the entire target, LOT can reduce to tracking only the visible part of the target, allowing
it to overcome partial occlusions.

6 Experiments

This section presents experimental results. We begin with a synthetic experiment demon-
strating noise parameter estimation in a simplified scenario. Then we present the experi-
mental setup, parameter configurations, data-sets and performance evaluation method that
will be used throughout the rest of the experimental section. We present the on-line param-
eter estimation of LOT on both a toy-example and real data, followed by an experiment
illustrating the significance of updating the noise parameters on-line using benchmark se-
quences. We then consider two noise models and compare their performance after which we
present quantitative results comparing LOT with 6 state-of-the-art tracking algorithms.

6.1 Synthetic Noise Model Parameter Estimation Experiment

The following synthetic experiment demonstrates parameter estimation for the Gaussian
noise model in a simplified scheme. We estimate the noise in location σL and the noise
in appearance σA. This estimation is done in a Maximization-Maximization (MM) scheme
where we solve the EMD then estimate the noise model parameter using an ML estimator,
we then use these parameters to solve the EMD again and so on until both EMD and param-
eters converge. We note that convergence to a local maxima is guaranteed as both MM steps
(i.e. EMD and ML) increase the likelihood.

Figure 1 shows the result of two such experiments. We started with an image over-
segmented into super-pixels and coarsened it appropriately. This coarsened image was con-
taminated by two types of noise. In the first case additive-white-Gaussian-noise (AWGN),
σA = 0.4, was added to the cluster appearances. σA was also empirically calculated from the
known cluster correspondence (σEmpiricA = 0.417). We performed parameter estimation us-
ing our MM scheme allowing both σL and σA to vary (starting from σL = 0.05, σA = 0.05)
and found that σA converged to 0.396 . For better visualization of the results we colored
each cluster of the noisy image according to the coarsened image cluster which contributed
the maximal amount of weight to it based on the EMD flow. For comparison, we repeated
the experiment with randomly chosen parameter values σL = 0.35, σA = 0.11 (drawn uni-
formly from the interval [0, 0.5]), and found that using the estimated parameters produces
better visual results.

In the second case cluster appearances were locally permutated (i.e. cluster colors were
swapped) to produce localization noise. This time σL was empirically calculated using
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(a) Input (b) Noisy versions (c) Correct matches (d) Wrong matches

Fig. 1 Synthetic Experiment : (a) Original image with super-pixel boundaries (top) and image coarsened
into super pixels (bottom) (b) Coarsened image with additive-white-Gaussian-noise added to the color of the
super pixels (top) and super-pixel appearance permutation (bottom). (c) Matching found of images in (b) to
coarsened image using estimated σA, σL (top/bottom accordingly). Colors projected from coarsened image.
(d) Matching found of images in (b) to coarsened image using random σA, σL (top/bottom accordingly).
Colors projected from coarsened image.

Fig. 2 In blue: Values of σA estimated using Maximization-Maximization (MM) vs. empirical values calcu-
lated based on known noise values. Contaminating noise was additive-white-Gaussian-noise (AWGN), with
different variance values, added to cluster appearance. In red: σL values estimated using MM vs. empiri-
cal values calculated based on known noise (permutation). Localization noise was modeled as local cluster
appearance permutation i.e. swapping cluster colors in different neighborhood sizes.

the known correspondence (σEmpiricL = 0.497) and compared to our estimated parame-
ters (same initialization) calculated without knowing the permutation. Again, our estima-
tions converged correctly to the value σL = 0.492, taking σA → 0 . Colors were pro-
jected as explained before to demonstrate the advantage over using random parameter values
(σL = 0.28, σA = 0.32).
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This experiment was repeated for 2 additional σA and σL values. Figure 2 presents the
values of σA, σL found using our MM estimation versus empirical values measured from
the actual noises. The graphs show we can consistently estimate the parameters correctly for
a wide range of noises.

We conclude that parameter estimation based on the EMD solution can produce results
highly correlated with the contaminating noises at least in the case of the Gaussian noise
model.

6.2 Experimental Setup

In the experiments reported here HSV color space is used for appearance description. Both
appearance and location spaces are used in a canonical form, i.e. normalized to the range
[0, 1]. Cluster weights are determined according to the fraction of pixels associated with
them in the signature (thus ensuring a total signature weight of 1). The state vector includes
position and scale, i.e. Xi = (xi, yi, wi, hi), and a zero-order motion model is assumed
thus the process model for the Condensation algorithm includes only effects of noise. For x
and y the process noise is additive-white-Gaussian-noise (AWGN) with σxy = 7. For scale
parameters w and h we use multiplicative-Gaussian-noise with mean 1 and σwh = 0.07

(i.e. STD reflecting 7% scale change). The noise is added to each of the state variables
independently. We use N = 250 particles with particle weighing parameter β set to 10 in
order to better differentiate between particle scores.

Superpixels are built in a ROI that supports all the particles. The desired number of su-
perpixels (a parameter of the Turbopixel algorithm) is set in the range 300− 1000 where the
actual value is determined such that the target region would consist of roughly 20 superpix-
els. All the parameters are kept fixed for all experiments.

Using a standard PC equipped with an Intel Core i7 processor our Matlab-Mex imple-
mentation runs at ∼ 1 frame per second for a target window size of ∼ 50 × 50 pixels. The
run time is divided almost equally between two major time consuming operations which are
the superpixel clustering and the EMD calculation for all the particles.

Our evaluation dataset is comprised of two subsets. The first includes 9 commonly used
sequences (5 color and 4 grayscale) appearing in recent related publications (Ross et al.
(2004, 2007); Babenko et al. (2009); Mei et al. (2011); Kwon and Lee (2010); Wang et al.
(2011); Santner et al. (2010)). The second subset presents 6 challenging new sequences in-
cluding gray-scale and color examples with both static and moving cameras. The targets
in these sequences are subject to many appearance changes due to different types of de-
formations, pose changes, out-of-plane-rotations, massive scale changes, motion blur and
illumination changes.

We adopt the widely used PASCAL VOC (Everingham et al. (2010)) criterion which
quantifies both the centering accuracy as well as the scale accuracy. The criterion is a0 =
area(Bp∩Bgt)
area(Bp∪Bgt) where Bp and Bgt denotes the predicted and ground truth bounding boxes
accordingly. Successful tracking is considered as a0 > 0.5 (50%). We note that some of
the sequences were re-annotated in order to provide ground truth for each frame that also
accounts for scale changes disregarded in some of the original annotations.
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6.3 On-line Parameter Update

Before we start the performance evaluation on the main dataset we would like to first
demonstrate the on-line noise parameter update capabilities of LOT. We begin with a 500

frame toy-example of a LEGO target subject to both appearance and localization noises.
We use the Gaussian noise model which means Gaussian noise for both appearance and
localization (as presented in section 4.1). This Gaussian model has two parameters i.e.
Θ = {σA, σL} which are updated according to (19). Parameters are initialized according
to σAprior = 0.05, σLprior = 0.1, with prior weights set to w

σpriorA
= w

σpriorL
= 0.25. The

ML estimators are calculated according to equation (14) and the MA parameter is fixed to
αMA = 0.3. Figure 3 presents the behavior of the noise parameters σL and σA and sample
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Fig. 3 Parameter estimation for the LEGO sequence: (Top) Noise parameter values, σL (Dashed-Red) and
σA (Solid-Blue) per frame showing their on-line update.(Bottom) Four sample frames. First the target is
illuminated with a strong light causing an appearance change handled by increasing σA. Next the target
is rotated and since we only model 2D translation (w/o rotation) this creates localization noise which is
handled by a large σL variation. Finally the target moves away from the camera causing a scale change
which is correctly tracked without significant noise parameter changes.

frames for the LEGO sequence. The target is first subject to an illumination change. LOT
detects the appearance change and increases the appearance noise parameter σA while main-
taining perfect tracking. As the illumination returns to normal the value of σA decreases.
Next the target is rotated about its origin. The tracker state space does not include rotation
therefore this rotation is effectively localization noise. As before the target is tracked per-
fectly while LOT estimates and adapts the value of σL on-line, increasing σL as the rotation
angle increases and then decreasing σL as the target is rotated back. Towards the end of
the sequence the algorithm correctly tracks target scale changes without altering the noise
parameters which is a desired behavior.

We proceed to demonstrate the on-line parameter update using two sequences from our
dataset. Figure 4 presents the noise parameter values as well as sample frames for the Dog
and Shirt sequences. For the Dog sequence (Top) we observe that as there are no illumination
or other appearance changes the value of σA remains low and almost constant throughout
the entire sequence. The value of σL on the other hand is updated due to localization noise
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Fig. 4 Parameter estimation for the Dog (upper half) and Shirt (bottom half) sequences demonstrating on-
line noise parameter update. For each sequence, on top is Noise parameter values, σL (Dashed-Red) and
σA (Solid-Blue) per frame showing their on-line update. On the bottom four sample frames. For the Dog
sequence there are no appearance changes and mainly out-of-plane rotations which cause localization noise
affecting only σL. For the Shirt we observe appearance noise dominates over localization noise explaining
motion blur and local self occlusions.

in the form of target out-of-plane rotations and scale changes that push part of the target out
of the frame support.

For the Shirt sequence (bottom part of figure 4) we notice that both noise model pa-
rameters are actively updated although σA dominates over σL. The main reasons for this
behavior are: 1) the rapid movement of the shirt creates motion blur mixing the different
colors creating appearance changes. 2) The waving of the bottom part of the shirt cause lo-
cal deformations and self occlusions that most of the time do not affect the top-left part of
the target (which does not suffer localization changes). Due to these reasons LOM tends to
associate matching errors with appearance changes rather than localization noise.

6.4 Significance of On-line Parameter Update

In order to point out the importance and significance of on-line parameter estimation we
compare the performance of LOT with and without on-line parameter update. To do so we
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use the Gaussian noise model considering two fixed parameter configurations. In the first
configuration we fix σA = 0.05, σL = 0.2 making the cost of changing cluster appearances
more expensive then the cost of changing a clusters locations. In the second configuration
we fix σA = 0.2, σL = 0.05 making appearance changes less costly compared with location
changes. We evaluate the tracking performance as explained above using our full dataset (15
sequences).

Table 1 Comparison of tracking performance with fixed noise parameters vs. on-line updating parameters.
Table entries are the percent of frames for which the PASCAL criterion was a0 > 0.5. Best result are in
bold preface. As can be seen on-line parameter estimation improves tracking performance in 12 out of 15
sequences.

Sequence Dataset σA = 0.05, σL = 0.2 σA = 0.2, σL = 0.05 On-line
Shop Common 33.6 33.6 34.6
Girl Common 32.3 49.1 67.6
Human Common 94.2 7.3 97.6
Skating Common 13.4 15.6 29.4
Lemming Common 67.4 56.4 73.8
Dog Common 91.3 51.4 97.4
David Common 8 3.5 10
Sylv Common 48.7 2.6 46
Face Common 42.5 21.7 44.4
DH New 33.9 16.8 92.3
Shirt New 75 60.9 88.1
Train New 53.2 82 69.6
UCSDPeds New 6.5 1.5 73.9
Boxing New 72.8 55.7 70.1
Towel New 97.3 93 99.7

Results presented in Table 1 demonstrate the significance of on-line parameter update.
When using on-line update the algorithm outperforms the fixed parameter configuration in
12 out of 15 cases. For some of these sequences performance with on-line update is close
to the best results produced by fixed parameters (e.g. Human and Face) while for other
sequences on-line update allows better performance relative to both fixed parameter con-
figuration (e.g DH, Skating and Girl) demonstrating the advantage of the on-line parame-
ter updating scheme. Closely examining the remaining 3 examples where fixed parameters
do better (Sylv,Train,Boxing), we can see that for Sylv and Boxing fixed parameters, with
σA = 0.05 and σL = 0.2, only give a marginal absolute improvement of less than 3%. Thus
only in one case (Train) fixed parameters, with σA = 0.2 and σL = 0.05, are able to produce
substantially better results than on-line updating parameters (82% vs. 69.6%). In this specific
case the performance gain is due to better behavior under several partial occlutions allowing
the fixed parameters to retain large overlap while the updating parameters cause the target
to shrink only to the visible part of the target. Overall, although on occasion fixed parameter
configurations can lead to better performance, in general, fixed parameters lack the much
needed flexibility to cope and explain different object types and different levels of target
rigidity. On-line parameter update grants us this adaptation flexibility which leads to better
tracking performance in most cases, many times exceeding what a single fixed parameter
configuration can achieve.
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6.5 Noise models

LOM derivation is general in the sense that any noise model can be plugged into this frame-
work. The noise model controls the ground distance in the EMD optimization and therefore
its choice can have a substantial affect on tracking performance especially if the noise used
does not model the true nature of the noise domain.

We experiment with two noise models based on our derivations from section 4 and ap-
pendix A. The first is the Gaussian model, already presented, where both appearance and
localization noises are Gaussian. The initialization configuration for this model is as ex-
plained in section 6.3. The second noise model we test is a Gaussian-Uniform model where
the appearance noise is Gaussian while the localization noise is a mixture-of-uniforms (as
discussed in appendix A.2). This model has 3 parametersΘ = {σA, r, α}. Appearance noise
variance σA was initialized as in the Gaussian case. The mixture-of-uniforms parameters
r, α were set according to the following priors rprior = 0.2 and αprior = 0.9 with all prior
weights set to 0.25 as before.

Table 2 Tracking using different noise models. Comparing performance with two different noise models the
Gaussian-Uniform and Gaussian. Table entries are the percent of frames for which the PASCAL criterion was
a0 > 0.5. Best result are in bold preface. Results suggest that the Gaussian noise model is better suited for
modeling the noises at hand and their parameter domain.

Sequence Dataset Gaussian-Uniform Gaussian-Gaussian
Shop Common 33.8 34.6
Girl Common 16.6 67.6
Human Common 94.2 97.6
Skating Common 11.2 29.4
Lemming Common 76.3 73.8
Dog Common 41.1 97.4
David Common 4.5 10
Sylv Common 45.7 46
Face Common 36.3 44.4
DH New 54.9 92.3
Shirt New 76.8 88.1
Train New 4.12 69.6
UCSDPeds New 71.3 73.9
Boxing New 71.5 70.1
Towel New 98.1 99.7

Tracking performance using both noise models is presented in Table 2. We see that the
Gaussian model outperforms the Gaussian-Uniform model in almost every case. Even when
the Gaussian-Uniform model provides better tracking performance (i.e. Lemming and Box-
ing) the improvement is only marginal. These results demonstrate the importance of noise
model selection and its effect on tracking performance. Evidently, choosing an adequate
noise model and parametrization can enhance tracking performance.

In light of these results the rest of our experiments are conducted using the Gaussian
model.
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6.6 Comparison with other tracking algorithms

We compare LOT’s performance with 7 state-of-the-art tracking algorithms with publicly
available implementations: Incremental Visual Tracking (IVT) Ross et al. (2007), Online
AdaBoost (OAB) Grabner et al. (2006), Multiple Instance Learning (MIL) Babenko et al.
(2009), Visual Tracking Decomposition (VTD) Kwon and Lee (2010), Tracking-Learning-
Detection (TLD) Kalal et al. (2010) , Robust Object Tracking via Sparsity-based Collabo-
rative Model (SCM) Zhong et al. (2012) and Visual Tracking via Adaptive Structural Local
Sparse Appearance Model (ASLA) Jia et al. (2012).

6.6.1 Commonly Used Sequences

Quantitative results for the commonly used sequences data-set are presented in Table 3,
where it can be seen that LOT exhibits performance comparable to the state-of-the-art al-
gorithms producing best performance in 3 out of 9 sequences (Human, Skating, Lemming)
and ranks second in 2 additional sequences (Dog and Girl) .

Table 3 Quantitative comparison, for 9 commonly used sequences, showing the percent of frames for which
the PASCAL criterion was a0 > 0.5. Best result are in bold preface.It can be seen that LOTs performance is
comparable to the state-of-art algorithms.

Sequence RGB / GL IVT OAB MIL VTD TLD SCM ASLA LOT
Shop RGB 36.4 20.9 20.9 35 23.9 100 36.4 34.6
Girl RGB 15.4 26.2 25 93.4 54.5 34.5 16.6 67.6
Human RGB 88.8 26.2 25 64.6 75 92.5 97.1 97.6
Skating RGB 3.8 8.8 9.8 11.5 4.1 11.9 5.1 29.4
Lemming RGB 16.2 37.1 37.6 54.3 25.2 16.6 16.8 73.8
Dog GL 87 57 45.5 70 30.4 82.3 100 97.4
David GL 83.1 9.7 19.3 18.8 63.4 100 34.2 10
Sylv GL 45.7 31 73.2 93.4 93.5 78.1 56.2 46
Face GL 99 75 54.5 70.1 99.3 88.1 94.4 44.4

When we examine sequences where LOT experiences difficulties we find that: For the
Shop sequence all methods, except SCM which has an occlusion handling scheme, lose
track when the target is occluded at around frame 200. It can be seen that IVT, VTD and
LOT (which do not handle occlusions explicitly) produce almost identical results in this case
(36.4%, 35%, and 34.6% accordingly), and ASLA which has an occlusion handling mecha-
nism produces similar results as these methods. In the Girl sequence the target (a girls head)
makes a 360-degree out-of-plane rotation. At the point where the girls face is completely
occluded and only the hair is visible LOT looses track and drifts to a background object.
In its current form LOT does not change the object template and although our noise model
parameter update can be viewed as a form of constrained template updating it is still insuffi-
cient for handling long and full occlusion such as the one experienced in the Girl sequence.
The remaining 3 sequences (David, Sylv and Face) are gray-scale sequences. LOT can run
in both color and gray-scale (e.g. Dog), however using color appearance representation (i.e.
HSV ) makes gray-scale more challenging as it leaves the algorithm with only a single ap-
pearance channel. This makes coping with severe global and local illumination changes a
difficult challenge and it is mainly for this reason that LOT’s performance degrades on the
last 3 sequences where it ranks last in David, fifth in Sylv and last in Face. Although some
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Frame 270 Frame 825 Frame 977 Frame 1343

Frame 1 Frame 135 Frame 245 Frame 707

Frame 325 Frame 405 Frame 595 Frame 1336

Fig. 5 Sample frames from three sequences: Dog, Skating and Lemming. The different algorithms are: IVT
in Yellow, OAB in Cyan, MIL in Red, VTD in Magenta and LOT in light Green.

methods produce better results for some sequences, looking at the entire dataset it can be
seen that the overall performance of LOT is comparable to the state-of-the-art methods.
We believe that MIL and OAB have poorer performance mainly due to their lack of scale
adaptability.

Figure 5 presents sample frames from 3 sequences (Dog, Skating and Lemming) qual-
itatively showing LOT’s ability to cope with difficult appearance changes such as massive
scale changes and out-of-plane-rotations.

6.6.2 New Sequences

LOT was also compared to the state-of-the-art algorithms using our second data-set of 6
challenging new sequences. Sample frames from these sequences are presented in Figure 6.

The first, 481 frame long, sequence shows a Down-Hill (DH) bike ride. As the rider
jumps and moves in and out of shade a lot of motion blur, deformations and illumination
changes are created. IVT, TLD and SCM drift after the first jump at around frame 56, MIL
and OAB keep tracking until around frame 400 where they also drift. Only VTD and LOT
are able to track the rider until the end of the sequence.

The second, 951 frame long, sequence we captured is of a T-shirt undergoing severe
non-rigid deformations and motion blur. LOT with its inherent ability to explain non-rigid
deformations is able to track the shirt throughout the entire length of the sequence. LOT
outperforms all other methods except ASLA which is able to produce more accurate results.

The third, 900 frame long, sequence was taken from the PETS-2006 dataset1. It shows a
man walking around a busy train station making many pose changes and undergoing several
occlusions. Although LOT does not have an explicit mechanism for handling occlusions it
is able to handle partial occlusions by tracking the remaining visible part of the target which
often captures the full target color statistics. In this sequence the first partial occlusion occurs
around frame 35 causing IVT, OAB, TLD, ASLA and MIL to drift. A second occlusion at

1 http://www.cvg.rdg.ac.uk/PETS2006/data.html
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Table 4 Quantitative comparison, for 6 new sequences, showing the percent of frames for which the PASCAL
criterion was a0 > 0.5. Best result are in bold preface. LOT has the best overall performance on this dataset.

Sequence RGB / GL IVT OAB MIL VTD TLD SCM ASLA LOT
DH RGB 8.9 47.8 45.5 69.4 10.8 8.3 8.7 92.3
Shirt RGB 0.5 66.7 32.5 79 0.6 80.8 92.4 88.1
Train RBG 2.7 3.4 2.3 2.9 2.8 10 4.6 69.6
UCSDPeds GL 26.4 42.5 26.8 60.5 55.6 100 99.2 73.9
Boxing RGB 7.3 18.7 18.4 21.2 28.8 34.8 55.2 70.1
Towel RGB 8.8 5 46 34.5 94.7 90.1 44 99.7

around frame 60 throws VTD and SCM off track as well. LOT is able to overcome these 2
occlusion by shrinking and matching to the remaining visible part of the target. It continues
tracking the man for the entire length of the sequence while overcoming pose changes and
additional occlusions. We note that the final tracking score for this sequence is only 69.7%

since during the occlusions the predicted bounding box shrinks to the visible part of the
target while the ground truth annotation continues marking the whole occluded target.

The forth, 261 frame long, gray-scale, sequence taken from the UCSD crowd dataset2

shows two people walking and fighting. We track both people as a single target. This crowd
target undergoes non-rigid deformations as the people draw nearer and apart and as they
fight with each other. All the methods are able to track the targets location throughout most
of the sequence with only minor glitches, LOT ranks in 3rd place producing results better
than most trackers and second only to SCM and ASLA.

The fifth, 352 frame long, is a boxing sequence. At the beginning of this sequence only
LOT is able to correctly track the boxer through the difficult pose changes. All methods drift
between frame 200-225 due to a rapid movement followed by a full occlusion however LOT
is able to lock back on at frame 261 and continue tracking the target until the end of the
sequence.

The sixth and last, 374 frame long, sequence (taken from Alterman et al. (2012)) was
shot from underwater into air. Our target is a towel hanging on a fence. This target is subject
to a complex non-uniform deformation field caused by the waters movement. Due to the
inherent properties of LOT it is able to handle these difficult deformations and produce
nearly perfect tracking. TLD and SCM also produce good results for this sequence but not
as good as LOT. Other algorithms drift.

Quantitative results are presented in Table 4. LOT has the best overall performance, it
outperforms the other tracking methods producing better results for all but one sequence
(where it comes second).

7 Conclusions

Locally Orderless Tracking is a new visual tracking algorithm that estimates and adapts,
on-line, to the rigidity of the tracked object. The algorithm is governed by a small set of
parameters Θ that are estimated on-line allowing it to go from rigid template matching on
one end to histogram-like tracking on the other, or be anywhere in between. At the heart
of this framework lies Locally Orderless Matching, a new probabilistic interpretation of
EMD that rigorously shows how EMD can be used to infer the likelihood that patch P is a
noisy replica of patch Q using some noise model with parameters Θ. Since the framework

2 http://www.svcl.ucsd.edu/projects/peoplecnt/index.htm
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Frame 1 Frame 56 Frame 126 Frame 471

Frame 1 Frame 686 Frame 820 Frame 927

Frame 1 Frame 280 Frame 552 Frame 898

Frame 1 Frame 65 Frame 156 Frame 243

Frame 1 Frame 84 Frame 286 Frame 337

Frame 1 Frame 47 Frame 176 Frame 350

Fig. 6 Sample frames from the new sequence set: DH, Shirt, Train, UCSDPeds, Boxing and Towel. The
different algorithms are: IVT in Yellow, OAB in Cyan, MIL in Red, VTD in Magenta and LOT in light
Green.

is generic any noise model can be plugged in and we have demonstrated the use of two
such noise models. We have shown the significance and importance of estimating noise
model parameters on-line and demonstrated how this parameter estimation and adaptation
can be achieved using the data at hand both theoretically and empirically. Finally we have
shown that LOT’s performance is comparable to state-of-the-art methods on a wide range of
commonly used and new videos presenting superior performance in many cases.

Future work is intended in 3 main aspects: The first is exploiting the flow produced dur-
ing the EMD calculation not merely for parameter update but also for on-line template up-
date and foreground-background target segmentation which can help in overcoming occlu-
sions. The second aspect is speed where we believe that using different Superpixel schemes
and maybe some EMD approximations can make this algorithm run at real-time. The third
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aspect is looking into different noise models and appearance representations that might be
better suited for specific applications (such as tracking in gray-scale sequences).

A Additional noise models

A.1 Uniform Noise

A Uniform distribution with parameter r can be used as location and/or appearance noise model again. Due
to the independence assumed between appearance and location parameters p, q, r,D will be used without the
superscripts A,L.

Pr(p|q, r) =
{

1
(2r)D

||p− q||∞ ≤ r
0 otherwise

(20)

Where D is the dimension of p and q. The ground distance in this case is:

d(p, q) =

{
D · log(2r) ||p− q||∞ ≤ r
∞ otherwise (21)

This distance means the cost of changing the appearance and/or location of a pixel by less than a certain quant
costs nothing (the same as not moving it at all), and changing it by more than that is not allowed.

This model may pose some problems as certain mismatches are not allowed at all and also since the
signature EMD problem can become unfeasible in some cases i.e. giving∞ distance. Therefore a mixture of
two uniforms might be a better choice.

A.2 Uniform-Mixture Noise

Using a mixture of two uniforms provides us with one low cost for small perturbations and a second high
cost (but not ∞) for large ones.This means we allow any match but with high cost. The parameter for the
second uniform should include the entire space. We formulate this model using a mixture variable h ∼
Bernoulli(α) and marginalizing over it:

Pr(p|q, r, α) = αPr(p|q, h = 0) + (1− α)Pr(p|q, h = 1) (22)

Where P (p|q, h = {0, 1}) are both uniform distributions. The ground distance is given by:

d(p, q) =

{
−log( α

(2r)D
+ 1−α

S
) ||p− q||∞ ≤ r

−log( 1−α
S

) otherwise
(23)

Where S is the hyper-volume of the entire space (e.g. for un-normalized RGB space S = (28)3 which is the
RGB cube volume).

A.2.1 Uniform-Mixture Parameter Estimation

This model has two parameters Θ = {α, r}. We use the EMD correspondence mapping fij and the ground
distance matrix dij = d(pi, qj) from which we build a CDF of the transported distance. We denoted this
CDF by c(r) : [0, R] → [0, 1] where R is the maximal distance a mass can move in our subspace i.e.

∀r c(r) =

∑
i,j:dij≤r

fij ḋij∑
i,j
fij ḋij

. We can now estimate α and r using an ML consideration:

logPr(P |Q, r, α) =
∑
i
logPr(pi|qj) =

∑
i∈D1

log( α
(2r)D

+ 1−α
S

) +
∑
i∈D2

log( 1−α
S

) =

N [c(r) · log( α
(2r)D

+ 1−α
S

) + (1− c(r)) · log( 1−α
S

)]
(24)
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where D1 = {i : ||pi − qj ||∞ ≤ r}, D2 = {i : ||pi − qj ||∞ > r} and N is the total mass. If we only
want to estimate r and leave α constant we can numerically find r that maximizes (24). For estimating both
r and α we differentiate (24) with respect to α and compare to 0 which leads to:

α =
c(r)S − (2r)D

S − (2r)D
(25)

Plugging this result back to equation (24) we see that we need to find:

argmax
r

(
c(r) · log(

c(r)

(2r)D
) + (1− c(r)) · log(

1− c(r)
S − (2r)D

)

)
(26)

Equation (26) can be solved numerically given c(r) built using the EMD result and then α is calculated based
on equation (25).

B Proof of Proposition 2

Proof For all i, j in (7), we take all the variables {fk1j , . . . , fkwp
i
j} that correspond to wpi similar pixels

(with singleton weights). We then collapse each set into a single variable representing their sum gij =∑w
p
i

l=1 fklj . This can be done as their coefficients (dklj ) in the optimization argument
∑
ij
fijdij are the

same. Thus the wpi constraints of the form
∑
j fklj = 1 can be replaced with a single constraint demanding∑

j gij = wpi and the wqj constraints of the form
∑
i fikl = 1 can be replaced with a single constraint

demanding
∑
i gij = wqj . We then obtain the following integer linear program (ILP):

min
n1∑
i=1

n2∑
j=1

gijdij

such that
n1∑
i=1

gij = wpi ,
n2∑
j=1

gij = wqj , gij ∈ {0, 1, . . . ,min(wpi , w
q
j )}

(27)

By construction we have that the space of feasible solutions w.r.t to optimization problem (7) did not change

i.e. min
m∑
i=1

m∑
j=1

fijdij = min
n1∑
i=1

n2∑
j=1

gijdij where the dij on the left and right side of the equation are set

according to the appropriate source and sink nodes. Again this is true since every gij is simply a sum of fij
having the same ground distance dij . If we now write (27) in the canonical form (as we did in proposition 1)
we see that the matrix A is again totally unimodular which means that the relaxed linear programming (LP)
problem has an integral solution. This relaxed LP is exactly optimization problem (8) and given a solution
(i.e. the gij ) to this problem we can always find an assignment to the fij such that would satisfy (7). This is
true since we can always break down the compact signatures back into the pixel-wise problem with singleton
bins which as we have shown would have the same minima. ut

C Proof of Proposition 3

Proof It is enough to look at a single step of uniting two clusters. Assume we unite pn1 , pn1−1 into a single
cluster p̂n−1. For weight/flow assignment fij we have:

n1∑
i=1

n2∑
j=1

fijdij =

n1−2∑
i=1

n2∑
j=1

fijdij +

n2∑
j=1

fn−1,jd(pn1−1, qj) + fn1,jd(pn1 , qj) (28)
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Denoting C =
n1−2∑
i=1

n2∑
j=1

fijdij and using the triangle inequality we have:

C +
n2∑
j=1

fn−1,jd(pn1−1, qj) + fn1,jd(pn1 , qj)

≤ C +
n2∑
j=1

fn1−1,j [d(pn1−1, p̂n1−1) + d(p̂n1−1, qj)] + fn,j [d(pn1 , p̂n1−1) + d(p̂n1−1, qj)]

(29)
Reorganizing the last expression by collecting elements related to the distance between the original clusters

and their crude version and elements related to the distance between the crude cluster and its assignment leads
to,

C +
n2∑
j=1

(fn1−1,j + fnj)d(p̂n1−1, qj) + wn1−1d(pn1−1, p̂n1−1) + wn1d(pn1 , p̂n1−1)

= C +
n2∑
j=1

f̂n1−1,jd(p̂n1−1, qj) + wn1−1d(pn1−1, p̂n1−1) + wn1d(pn1 , p̂n1−1)
(30)

Where f̂n1−1 = fn1−1+fn1 . The expression
n1−2∑
i=1

n2∑
j=1

fijdij+
n2∑
j=1

f̂n1−1,jd(p̂n1−1, qj) appearing

in the last line is the optimization argument EMD(P̂ , Q, d). Lets fix now the variables {fij}n−2
i=1 , f̂n1−1

to the argmin values of the problem (the values achieving the minimun for EMD(P̂ , Q, d). Now using the
inequality in (30) we have

EMD(P̂ , Q, d) =
n1−2∑
i=1

n2∑
j=1

fijdij +
n2∑
j=1

f̂n1−1,jd(p̂n1−1, qj)

≥
n1∑
i=1

n2∑
j=1

fijdij − wn1−1d(pn1−1, p̂n1−1)− wnd(pn1 , p̂n1−1)

≥ argmin
fij

n1∑
i=1

n2∑
j=1

fijdij − wn1−1d(pn1−1, p̂n1−1)− wnd(pn1 , p̂n1−1)

= EMD(P,Q, d)− wn1−1d(pn1−1, p̂n1−1)− wnd(pn1 , p̂n1−1)

(31)

Since wn1−1d(pn1−1, p̂n1−1) + wnd(pn1 , p̂n1−1 > 0 it follows that,

|EMD(P,Q, d)− EMD(P̂ , Q, d)| ≥ wn1−1d(pn1−1, p̂n1−1) + wn1d(pn1 , p̂n1−1) (32)

In an analogous way it can be shown that,

|EMD(P,Q, d)− EMD(P, Q̂, d)| ≥ wn2−1d(qn2−1, q̂n2−1) + wn2d(qn2 , q̂n2−1) (33)

The proposition follows by repeating this argument for all p̂i, q̂j
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