Machine Vision and Applications

Real-Time Tracking-with-Detection for Coping With Viewpoint Change

Shaul Oron - Aharon Bar-Hillel - Shai Avidan

Received: 11 May 2014 / Revised: 02 Nov 2014 / Accepted: 09 Mar 2015

Abstract We consider real-time visual tracking with targets
undergoing view-point changes. The problem is evaluated
on a new and extensive dataset of vehicles undergoing large
view-point changes. We propose an evaluation method in
which tracking accuracy is measured under real-time com-
putational complexity constraints and find that state-of-the-
art agnostic trackers, as well as class detectors, are still strug-
gling with this task. We study tracking schemes fusing real-
time agnostic trackers with a non-real-time class detector
used for template update, with two dominating update strate-
gies emerging. We rigorously analyze the template update
latency and demonstrate such methods significantly outper-
form stand-alone trackers and class detectors. Results are
demonstrated using two different trackers and a state-of-
the-art classifier, and at several operating points of algo-
rithm/hardware computational speed.

Keywords Tracking - Detection - Real time - Fusion

S.Oron

Tel Aviv University

Tel Aviv 69978, Israel

E-mail: shauloro@post.tau.ac.il

A.Bar-Hillel

Advanced Technical Labs Israel,
Microsoft research, Israel
E-mail: aharonb @microsoft.com

S.Avidan

Tel Aviv University

Tel Aviv 69978, Israel
E-mail: avidan@eng.tau.ac.il

1 Introduction

Visual tracking is a fundamental problem in computer vi-
sion and a key component in many higher level vision appli-
cations such as surveillance [40], robotic vision [34], active
vehicle safety systems [3] and natural user interface [37] to
name a few.

Performing reliable tracking is very challenging with many
obstacles to overcome. One such challenge is handling large
view-point changes or out-of-plane rotations. In such cases
the tracking problem becomes extremely difficult as it gains
an almost unsupervised nature: the target has to be detected
after seeing one (or few) relevant examples, and its simi-
larity even to these examples is limited. Coping with se-
vere view-point changes requires updating the target tem-
plate which is a difficult task with many pitfalls. In addition,
in an application context, visual tracking is almost always
required to operate in real-time, i.e. frames must be pro-
cessed as fast as they are streaming in. This constraint is an
essential aspect of the problem, as complying with it usually
comes at the expense of accuracy.

We focus on real-time tracking of targets from a known
class, in scenarios where these targets undergo severe view-
point changes. Unlike agnostic trackers, that are not aware
of the target class and train classifiers on-line, we assume
the target class is known and train a class detector off-line.

We demonstrate that real time tracking under large view-
point changes is difficult for state-of-the-art agnostic track-
ing methods and class detectors. To address this problem we
propose several strategies for real-time tracking with detec-
tor assisted template update which we name tracking-with-
detection. These methods are shown to outperform both track-
ers and class detectors when evaluated under run-time con-
straints.

In order to systematically span a space of targets under-
going severe view-point changes, we have created a chal-

Shaul Oron et al.

lenging new dataset, which will be made publicly available.
This dataset contains 167 annotated vehicle sequences cap-
tured from cameras mounted on a moving car. These se-
quences were chosen from a larger corpus mainly focusing
on road scenes in which the target vehicle undergoes large
view-point and scale changes (examples shown in figure 6).

The reason we propose a new dataset in this work is that
we want to focus specifically on view-point changes in a
setup where both camera and target are maneuvering. We
are not aware of any other dataset with a similar empha-
sis. Moreover, as we show in the experimental section, per-
formance of state-of-the-art tracking methods on this newly
proposed dataset indicate that the tracking problem is still
far from being solved, even in this simplified setup where
the deformation space is limited almost exclusively to view
point change and targets are rigid. This is true either with or
without runtime constraints.

We propose a new evaluation methodology in which ac-
curacy is measured under a computational complexity con-
straint. Correct evaluation methodology is important both
for evaluating overall algorithm performance as well as for
parameter tuning. Previous work on tracking evaluation fo-
cus only on algorithm accuracy. In this work we take the
discussion on tracking evaluation one step further and argue
that run-time is an integral part of tracking and as such track-
ing evaluation cannot be done without considering run-time
constraints.

We attempt to systematically introduce real-time con-
straints into tracking performance evaluation and proposed
a new evaluation protocol. The proposed method has the de-
sired property of being generic with respect to the accuracy
evaluation metric chosen, meaning any accuracy measure
can be used.

In the proposed evaluation method computation time is
measured on the fly and an algorithm is evaluated in a strictly
causal manner. An algorithm operating slower than the frame
rate would obtain a delayed state hypothesis, and missed
frames will be evaluated using the last known state. We demon-
strate how this evaluation methodology can be generalized,
emulating more efficient algorithm implementations and faster
/ slower hardware configurations, allowing one to gain a
fairly general understanding of the accuracy / processing-
speed trade-off and providing a powerful design tool.

We establish a benchmark for real-time tracking under
severe view point changes using our data. This is done by
evaluating six publicly available, state-of-the-art, tracking
methods. We find that all methods struggle when evaluated
for real-time performance, and even when unconstrained ac-
curacy is considered (i.e. algorithms are assumed to perform
in real-time), the tested methods still leave room for im-
provement. These results demonstrate the difficulty of tra-
ditional tracking methods in coping with large target view-
point changes, even without run-time constraints.

In light of these results we propose incorporating a de-
tector into the tracking system, and demonstrate that with-
out run-time constraint a detector carefully designed for the
tracking task can deliver superior performance. We then ad-
dress the question: how to compose a tracking system that
incorporates a detector and runs in real-time ? Although
tracking-by-detection or incorporating trackers and detec-
tors is not a new concept, most such systems run detec-
tion exhaustively and are unable to deliver real-time perfor-
mance. In general, some real-time detectors do exist, but still
most state-of-the-art classifiers are computationally complex
and not real-time. Therefore tracking-with-detection which
enables non-real-time detectors to be incorporated into real-
time tracking systems is an important contribution.

In this context we propose several strategies for perform-
ing tracking-with-detection, using the detector to validate
the tracker response as well as for template update purposes.
We demonstrate the performance improvement obtained both
over individual system components as well as state-of-the-
art methods. In addition, we analyze the template update la-
tency associated with each such system and look into the
relation between latency, tracking accuracy and template up-
date accuracy.

The contributions of our work are two fold: i) Intro-
ducing and analyzing several tracking-with-detection meth-
ods and demonstrating their superior performance for track-
ing a known class under severe view point changes, and
discussing latency accuracy relations. ii) Providing a new
dataset and benchmark for tracking under severe view-point
changes, and a new methodology for evaluating tracking al-
gorithms under run-time constraints.

2 Related work

In this work we benchmark several trackers on our proposed
dataset demonstrating the difficulty of tracking under view
point changes and establishing that this problem is far from
being solved. Readers interested in benchmark results for
visual tracking methods are referred to the work of Wu et al.
[42]. For a through survey of the vast literature on tracking
techniques we refer the reader to Yilmaz et al. [43]. We focus
our attention on real-time visual tracking research and work
related to detector-tracker fusion and template update.
Handling drift in visual tracking systems is a difficult
task, often addressed by some form of target template up-
date. Different strategies have been proposed to perform tem-
plate update. The work of Matthews, Ishikawa and Baker
[31] is an early attempt to address this problem directly.
Their method, like many others that followed, propose a
template update strategy regularized by the first template
(i.e. at frame 1) and using some template appearance basis
that can change over time [10,30]. This work inspired meth-
ods using multiple templates and sparse representations to

Real-Time Tracking-with-Detection for Coping With Viewpoint Change

represent target appearance [6,23,35,45]. Another widely
used strategy for template update is using on-line learning
based methods. This can be achieved either by pixel-wise
classification [4,21], or exemplar based classification [5,44].
These methods learn a classifier on-line adjusting it accord-
ing to target appearance changes. One prominent work in
this category is that of Kalal et al. [24] learning an on-line
target detector, updating it by mining positive and negative
examples. However, this technique is agnostic to the target
class and learns a detector on-line. It also keeps using the
initial target appearance to avoid drift, unlike our proposed
method. An additional strategy that can be viewed as a type
of template update is updating the template not directly but
rather through adjusting parameters controlling the space of
possible matches [26,32].

Tracking-by-detection or incorporating trackers and de-
tectors [2,12,27,38] is an appealing approach for limiting
drift and producing reliable tracking. This idea can be used
when one knows the class of objects being tracked. Unfor-
tunately the above mentioned methods require running the
detector exhaustively on each frame and thus are unable to
run in real-time. Fan et al.[15] propose a unified approach
of tracking and recognition incorporating trackers and detec-
tors for multiple object classes, however their method is also
unable to run in real-time and not evaluated under such con-
straints. Some template-based detectors for specific classes
(pedestrians, faces) achieve real-time detection [8,11] and
enable real-time tracking-by-detection. However, state-of-
the-art general-purpose classifiers usually do not operate in
real-time. Such classifiers often include multiple deformable
parts [7,19], and/or multiple prototypes for handling dif-
ferent viewpoints or large class variability. More generally,
classification is far from being a solved problem, and in
many cases requires considerable computations. It is likely
that while performance improves, state-of-the-art classifiers
will remain slow in the near future (for example because of
the need to run on weak hardware) and the best classifiers
will usually not be real-time ones. On the other hand, many
visual tracking algorithms are able to operate at close to real-
time or faster [30,31,45]. Our work hence focuses on fusing
non real-time detectors with real-time tracking algorithms.

Evaluation methodology for visual tracking was discussed
in multiple papers and an elaborated review of performance
measures and evaluation programs can be found in [9,25,
28]. However we are not aware of any previous work at-
tempting to systematically introduce run-time constraints into
tracking evaluation.

3 Tracking-with-detection

We present several tracker-detector fusion schemes, evalu-
ating them under real-time constraints. We consider trackers
of various speeds integrated with a slow’ detector for which

typical detection takes a few frames to carry out. In these
systems the tracker is responsible for continuously tracking
the target while the detector provides updates to the appear-
ance of the target being tracked. In this context we analyze
the latency associated with updating the template, i.e. the
time or number of frames that pass between the beginning
of a detection process until the template is updated.

For the latency analysis the following notations are used.
Let us denote the input frame rate f;,, and the interval be-
tween frames ¢;,, = ﬁ We denote ¢4, the time required to
obtain a detection and ¢y, the tracker processing time for a
single frame. Assuming this tracker operates in real-time i.e.
tirr < tin, we denote by ¢;4;. the time between consecutive
frames not used for tracking computations:

tidie = tin — tirk (1)

This idle processing bandwidth can be used to perform ad-
ditional tasks such as detection as will be discussed later.
Intuitively, larger latency entails accuracy decrease since by
the time a new template is available, it is already outdated.
In section 4 we show empirically that this is indeed the case.

3.1 Tracking-by-detection

We begin with the known tracking-by-detection scheme
(e.g. [2,12,27]). In this scheme a detector is used for track-
ing by performing detection for every frame streaming in.
In this system the detector performs the tracking and there
is no additional tracker. We can compute the latency .40
associated with the detection process:

tdet

2

l =
det0 tin
This means that every time we perform detection it takes us
lgeto frames until the results is obtained and updated. We
note that, of course, if t4e; < t;,, resulting in lge;0 < 1 then
we have a system working in real time without any latency.

3.2 Template update with near-real-time tracker

We consider scenarios where ty,.1. = t;, i.e. the tracker
is near-real-time, but not much faster (or slower). In this sit-
uation applying the tracker requires almost all the computa-
tional bandwidth i.e ;4. — 0. In such a scenario, for any
given frame, we can either run tracking or perform detection
in order to update our template (but not both). If we perform
detection then we suffer a latency of 4.1 frames, as in the
tracking-by-detection case, and this affects accuracy. On the
other hand if we do not perform template update our tracker
may drift, losing the target all together. This trade off leaves
us with the difficult question of “When should we update

Shaul Oron et al.

the template?”. A trivial solution would be to perform tem-
plate update on a regular basis, using some fixed interval i.e.
performing template update every K frames. However we
would like to perform tracking most of the time updating the
template only when necessary in order to avoid state extrap-
olation which damages accuracy. A key observation in this
respect is that classification is much faster than detection,
since the latter requires, at least implicitly, classification of
many locations and scales. A single detector query (classifi-
cation) can usually be done very fast even for a complex de-
tector. In light of this observation we propose the validation
scheme, resembling [41]. In this scheme the tracker result,
i.e. its proposed state, is validated by classifying it using the
detector. If the validation succeeds, meaning the proposed
state is a valid detection, we continue tracking. Only when
the validation fails we resort to template update by running a
detection scheme in a window around the last known target
state, while extrapolating until a detection is obtained. Once
we obtain the detection results (although delayed) we up-
date template appearance and continue from the last known
target state. The described scheme answers the question of
“when should we update the template?”, and is expected to
outperform the naive fixed interval template update.

3.3 Template update with a fast tracker

In this scenario t;,.; < t;,, which means that ¢;4,. > 0,
i.e. we have substantial idle time, not used for tracking com-
putations, that can be used for other purposes. We propose
using this idle time to perform detection and update the tem-
plate. The most simple way to do this would be to run the
detector in the idle time and update the template once a de-
tection is obtained. Using this update scheme would result
in template update latency of /.1 frames.

tdet o tdet
tidle tin - ttrk

3)

ldetl =

The interpretation of this scenario is that tracking is per-
formed continuously with template updates occurring ev-
ery lger1 frames. In this scenario the template is updated
once obtained although it is relevant to l4.;; frames ago. We
note that equation (3) is only meaningful when ¢;, > t:.,
also naturally lgero < lg4et1 (for any feasible setup where
tier > 0).

We consider a second option. Since any detection ob-
tained is delayed, i.e. relevant to some past frame, we pro-
pose tracking it to the current frame rather than instanta-
neously updating the template. This means we take the new
detection, ’catch-up’ to the input stream, and only then per-
form the template update. This would of course result in
longer latency but might provide more accurate appearance
update. We denote the latency associated with this strategy

by l4et2. This latency can be broken down into two parts:

ldet2 = ldetl + ltrk (4)

where l4.41 is the detection latency calculated earlier and
lri; the tracking latency induced by tracking the detection
to the current frame (the ’catch-up’). We can deduce lge¢2
from the following equation:

Lirk - tigte = (ldet1 + lirk) - terk)

To understand this equation note that the number of frames
between the time a detection is obtained and until we catch-
up is l4-x. This means the catch-up tracker has a time interval
of lyri, - tiqre (left-hand side) in which it has to track through
lget1 + lrp frames (right hand side). Isolating [y, we have:

l -t l -t
ltrk _ detl * Uirk _ detl * Utrk (6)
tidle - ttrk’ tv’,n - 2ttrk

Substituting [, and l4.¢1 in equation (4) gives:

tirk taer
l e = l e 1 = 7
det2 d tl(+ tin — 2ttrk) tin — 2ttrk ()

We observe that equation (7) is only meaningful when ¢;,, >
2tk since this method can only work if two tracker appli-
cations can be done faster than the inter-frame interval (one
for the main tracker, and one for the ’catch-up’ tracker).

From a system design perspective, in order to avoid very
long latencies, limitations on t;.; emerge. In the scenario
of instantaneous update, with latency l4¢;1, we should have
tirr << tin. If we perform ’catch-up’, with latency lges0,
then we require ¢, < tip.

Comparing the performance of these two strategies pro-
vides interesting insights into the trade off between tracking
accuracy, template update accuracy and template update la-
tency, and will be further explored in the experimental sec-
tion.

4 Experiments

We evaluate tracking-with-detection using the vehicle object
class. We present a new dataset, which will be made pub-
licly available'. The data contains 167, fully annotated se-
quences, ranging from 100 to 1200 frames. These sequences
were captured from 3 cameras (two grayscale, one color),
recording 640 x 480p images at f;, = 15fps. The cameras
were mounted on a moving car, facing backwards. These se-
quences were mostly chosen to exhibit road scenes in which
cars undergo large view-point and scale changes. The data
contains 77 overtake sequences, 22 traffic circles, 42 turn
and 26 tailing sequences with over 35,000 frames overall.
Typical examples from this data are presented in figure 6.
For our experiments the data was divided into a training set

! http://www.eng.tau.ac.il/~oron/TWD/TWD.html

Real-Time Tracking-with-Detection for Coping With Viewpoint Change 5
comprised of 117 sequences and a test set of 50 sequences. Algorithm 1: Evaluation protocol considering run-
The sequences were divided between the train and test sets time constraints
such that both sets have examples of overtakes, traffic cir- Input: {f;})¥_| Sequence of video frames
cles, turns and tailing. Output: {X;}}Y, State hypothesis for each input frame
1 Set t <+ O (initialize time line)
The rest of this section is organized as follows. We be- ; stel:if;:?]v / fin do
gin by introducing a new real-time evaluation methodology 4 Set f < [t fin]
for real-time and non-real-time algorithms under run-time 5 if frame f has already been processed then
constrains. We then provide implementation details related 6 | Sett <[t fin]/fin
to our experiments. Next, we present benchmark results of ; else Send frame f to Alg for processing
several state-of-the-art tracking methods on our dataset, fol- 9 Upon receiving algorithm response X and tp-oc
lowed by tests demonstrating the performance of our tracking- 10 Sett <t + tproc
with-detection schemes. We validate empirically our latency u Record state X for frame |t - fin | (but not for earlier
analysis equations. Finally we demonstrate how our real- 2 end frames)
time evaluation methodology can be used to emulate more 13 end
efficient algorithm implementations or different hardware 14 for each frame f from 0 to N — 1 do
operating points providing a powerful system design tool. 15 3‘1 {;ame f was not processed i.e. has no recorded response
16 Use the last recorded response (prior to f) as the state
at frame f
17 end
18 end

4.1 Evaluation methodology

Most applications requiring tracking also require it to
operate in real-time. Therefore evaluation of tracking algo-
rithms should also be carried out considering run-time con-
straints. We suggest a methodology allowing any algorithm
to be evaluated under real-time constraints, inherently demon-
strating the speed-accuracy tradeoff. The proposed protocol
is complementary to previous works on tracking evaluation
in the sense that it is accuracy measure independent mean-
ing any accuracy measure can be used with our protocol.
We also discuss and demonstrate how the proposed method-
ology can be used to simulate acceleration of different sys-
tem components as well as simulate running on platforms
with different computational power. In doing so one can gain
an understanding of the speed-accuracy tradeoff in a given
tracking system.

Simulating real-time is done by measuring actual pro-
cessing times, on the fly (not including I/O), of the algorithm
used for tracking, denoted Alg. We note that Alg is a track-
ing algorithm in the broad sense of the word and can be a
tracker, a detector (used for tracking), or a fusion of the two.
Denote the input frame rate f;,, and the number of frames in
the video by N, indexing them 0, .., N — 1. The algorithm
Alg receives a certain frame f and returns a state X and
its processing time tp,oc. Algorithm Alg is evaluated based
on a sequence of IV responses, with response ¢ reflecting its
knowledge of state X at time (i+1)/ fi5,, i.e. when frame 7 is
replaced by its successor. The algorithm response sequence
is determined using the protocol given in algorithm 1.

The scheme described in algorithm 1 can be trivially ex-
tended to handle tracking with multiple components (e.g.
a tracker and a classifier). Note that for ’skipped’ frames

(frames with no recorded response) we perform zero-order-
hold (ZOH) extrapolation i.e. holding the last known tar-
get state. Our main justifications for using ZOH over more
complex extrapolation techniques is the desire to make a
clean comparison, that does not depend on the extrapolation
method and its fit to various tracking schemes.

As presented above, the evaluation protocol is limited
to measuring real-time tracking performance of specific al-
gorithm implementations and specific hardware. However,
the protocol can easily simulate faster or slower computing
speed of all, or part, of the algorithms, simply by dividing
the measured computation time ?,,,. by an ’acceleration
factor’ a. For example, dividing ... by o = 2 predicts
the tracking performance using twice-as-powerful hardware.
Moreover, this evaluation scheme may guide more subtle en-
gineering decisions. For example, given some fused detector-
tracker system one might be interested in knowing: What
would happen if we implement one of the components more
efficiently? Where should we invest our optimization efforts?
To answer such questions one can assign two different vir-
tual acceleration coefficients for both tracker o, and de-
tector aget.

For measuring tracking accuracy we adopt the method
presented in a recently published tracking benchmark [42].
For each frame we measure the bounding box overlap given
by overlap = %ﬂ]gﬁ where By and B, denotes the
detected and ground truth bounding boxes respectively. We
build a curve showing success rate, i.e. the fraction of frames
with overlap > threshold for threshold € [0,1] for each

sequence and average over all sequences in order to obtain

Shaul Oron et al.

a final success curve. We then measure the area under the
curve (AUC). This measure quantifies both centering accu-
racy as well as scale accuracy giving a broad performance
overview, not restricted to a single threshold value (which
might be biased).

4.2 Implementation detail

We have implemented the different tracking with de-
tector assisted template update systems presented in sec-
tion 3. The detector used in our implementations is a DPM
[17]-based detector, which was adapted for the tracking task.
The classifier is based on the cascade implementation [17]
available with the on-line code package [16]. We trained a
view-point invariant vehicle classifier with resemblance to
the vehicle classifier of Leibe et al.[27]. Four models were
trained, each capturing the vehicle in a different-view point
(0°, £30°, £60°, +=90°). The classifiers were trained on ex-
amples extracted from our training set of 117 sequences.

The basic tracker used is our own implementation of the
standard optical flow LK tracker [30], this tracker searches
for a rigid 2D warp, with 3 degrees of freedom (x,y,scale),
between the target template and the new frame starting from
the last known target location and scale.

Turning the DPM classifier into a tracking-by-detection
algorithm that runs at a reasonable rate was done in the
following manner. First, spatial, scale and view-point con-
sistencies were considered, i.e. detection is performed in a
small region-of-interest (ROI), around the last known target
state, and only in the last known and adjacent view-points
(e.g. if the last view-point was 30° we search at 0°, 30°, 60°).
Multiple detections, in the ROI, are ranked based on classi-
fication score as well as spatial and scale consistencies rela-
tive to the last known state (modeled using normal distribu-
tions around the last known location and scale). Secondly,
standard DPM implementation performs a fine grain scale
space search using 6 octaves each of which is divided into
many sub-scales resulting in ~ 90 scales. This is done since
the detector has no prior knowledge regarding target scale.
In tracking, on the other hand, one has a good estimation of
target scale using the current state. This allows using fewer
scales and in fact we limit DPM scale search to 3 octaves
(0.25 — 2) containing only 25 fine grain scales. The scale
0.75 is located in the middle of this scale range (i.e. at scale
index 13) and we resize our image aiming that the target is
detected at this scale. This is done in order to ensure the tar-
get is detected in the limited scale space searched and also
in order to help maintain constant detection time. Perform-
ing this is easily done as we know for each DPM detection
at which scale it occurred. In order to limit degradation in
resolution we also limit image resizing factor to the range
(0.25 - 2).

All our experiments were conducted using a machine
equipped with an Intel® CORE™ i7-2620M 2.7GHz pro-
cessor and 8GB of RAM. All our code is Matlab® based
with some mex implementations. The input frame rate was
fin = 15fps, typical runtime performance for our tracker
and detector for this setup are as follows: The DPM de-
tector runs at ~ 2.5fps (= f;,/6) for a search window
of 150 x 150 pixels. Our LK tracker runs at ~ 60fps (=
4 X fin), and when also performing validation we run at
~ 30fps (= 2 X fin), both for a 100 x 50 pixel target.

Table 1 summarizes all the tracking methods evaluated
in this work. We note that any parameter used by any algo-
rithm was kept fixed in all experiments.

Table 1 Summary of tracking methods evaluated.

[Method | Description]
ASLA Tracking via Adaptive Structural Lo-
cal Sparse Appearance Model [23]
CT Compressive Tracking [44]
DPM Tracking based on DPM only
L1 Real-time Robust L1 Tracker [6]

L1-DPM fusion with ay,k, @ger ac-
celeration factors for tracking and de-
tection

LK Basic LK tracker [30]

LK with DPM based template update
at fixed intervals

LK at each frame with DPM using LK
idle time

As LK-DPM-WO-CUP only LK also
used for “catch-up”

LK with validation and DPM based
template update

LOT Locally orderless tracking [32]

SCM Tracking via Sparsity-based Collabo-
rative Model [45]

TLD Tracking-Detection-Learning [24]

L1 'XOCt'rk'DpM'Xadet

LK-DPM-FIX

LK-DPM-WO-CUP

LK-DPM-CUP

LK-DPM-VLD

4.3 Experiment 1 - Tracking under severe view point
changes is difficult

We benchmark several tracking methods on our new dataset.

Among these methods are several state-of-the-art algorithms
producing top tier results in a recently published tracking
benchmark [42]. The algorithms are: Tracking-Detection-
Learning (TLD) [24], Locally Orderless Tracking (LOT)
[32], Real-time Robust L1 Tracker (L1) [6], Tracking via
Sparsity-based Collaborative Model (SCM) [45], Compres-
sive Tracking (CT) [44] and Tracking via Adaptive Struc-
tural Local Sparse Appearance Model (ASLA) [23].

Real-Time Tracking-with-Detection for Coping With Viewpoint Change

The tracking performance of the benchmarked methods
are presented in figure 1. Figure 1-(a) shows real-time track-
ing results, measured using the methodology outlined in sec-
tion 4 (TLD results are missing from this graph as it is only
available in an executable version and could not be adjusted
for running with our evaluation methodology). It is clear
that all methods perform rather poorly in these conditions,
with all methods having AUC< 0.5. Also if we look at
overlap = 0.65, which is a reasonable operating point for
tracking, we observe that all methods produces a success
rate < 0.4.

Since most of the provided implementations are academic
codes, one may claim that they are not optimized and can
be better implemented to meet the real-time constraint. To
estimate the potential for improvement, we evaluated these
algorithms without run-time constraints, i.e. assuming they
run at real-time. These results are shown in figure 1-(b). Re-
moving the real-time constraint significantly improves the
tracking performance, yet still at an overlap of 0.65, the best
methods provide a success rate of ~ 0.65 which is still not
suited for any practical application.

4.4 Experiment 2 - Tracking-with-detection

We evaluate the performance of the proposed tracking-
with detection systems. To do so we implement these sys-
tems using our DPM detector and LK-tracker. Results are
presented in figure 2.

Tracking-by-detection discussed in section 3 is imple-
mented using the DPM detector. We first evaluate tracking-
by-detection without run-time constraints, i.e. performing
detection at every frame, denoting it DPM-NOT-RT. We
observe that, as expected, this specially designed view-point
invariant detector is able to produce good results with AUC
of 0.766 and a success rate > 0.9 for overlap threshold of
0.65. These results indicate that using a detector can in-
deed solve the accuracy problem. However once tracking-
by-detection is evaluated under real-time constraints (de-
noted DPM), we see that accuracy decreases significantly.
These results, along with the benchmark results, motivate us
to perform tracking-with-detection incorporating a detector
in the tracking system in an attempt to achieve more reliable
tracking performance under real-time constraints.

Both template update with near-real-time tracker meth-
ods, presented in section 3, are implemented. The first, in-
cludes template update at fixed intervals, denoted LK-DPM-
FIX. The second, where the template is update using the
validation scheme is denoted LK-DPM-VLD. The template
update latency of both methods is /4,49 and the main dif-
ference between the two is the update interval. In order to
make a fare comparison we measure the performance of
LK-DPM-FIX with all update interval values between 2

frames and 10 frames (K = {2,3,..,10}) and present the
best results (obtained for K = 5).

The two strategies of section 3 which use a fast tracker
(prre < %tm) are implemented next. These algorithms per-
form tracking at each frame then use ¢;4; for template up-
date purposes. We denote by LK-DPM-WO-CUP, the strat-
egy where the template is updated as soon as a detection is
obtained. This strategy has an update latency of l4.¢1. The
second option is not to update the template once it is ob-
tained but rather use t;4;. to perform ’catch-up’. This strat-
egy is denoted LK-DPM-CUP and has an update latency of
ldet2~

In addition to the above methods we also present the per-
formance of the LK tracker on its own as well as the “best-
tracker” curve showing the best performance achieved by
any of the benchmark trackers tested with real-time con-
straint at each operating point independently (i.e. for each
threshold we choose the tracker from figure 1-(a) that per-
formed best).

oS
o

Success rate

* © R
04 T
>0
I , Pk
031 -¢- DPM-NOT-RT (0.766) TN
-B-LK-DPM-CUP (0.709) “& g
|| 0~ LK-DPM-WO-CUP (0.697) 2
021 A (K-DPM-VLD (0.686) MR AN
* LK-DPM-FIX (0.623) R
0.1~ V-DPM (0.583) ‘2 R,
% BEST-TRK (0.488) KIS
D LK _(0432) ‘ ‘ ‘ ‘ 1’“_3

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Overlap threshold

Fig. 2 Experiment 2 - Tracking-with-detection: LK-DPM methods
dominate over LK and DPM alone which have low performance, the
former due to lack of information, the latter due to lack of processing
speed. Cyan curve shows performance of DPM tracker without any
computational constraints, demonstrating potential performance. See
text for more detail (best viewed in color).

Results presented in figure 2 show that the different tem-
plate update strategies provide significant improvement of ~
40% (multiplicative) in AUC over the best tracking method,
and a 17% — 21% improvements over the DPM tracker. The
results show the significance of template update and the syn-
ergy obtained by tracker-detector fusion, producing a system
superior to its components. Moreover, the LK-DPM meth-
ods, evaluated under real-time constraint, have a 3% — 6%
increase in AUC over the best tracking methods evaluated
without real-time constraint. For overlap = 0.65 perfor-

Shaul Oron et al.

o
5
‘
:
»yad

Success rate
o
kN
T

02f-v-L1 (0472 R 9
-B-ASLA (0.450) K “, .
A-CT (0.392) ? A ‘s
01f -b- LK (0.432)
% LOT (0.251)
0-SCM_ (0.258)

0.1 0.2 03 0.4

05 0.6
Overlap threshold

(a) With real-time constraint

Success rate
o
o

o
=

o
w

- -ASLA (0.665)
0-SCM (0.635) o,

V-Ll (0.668) A

% LOT (0.611) A
——TLD (0.606) ~ A
-A-CT (0392 *

> LK 4] ‘ ‘ ‘ ‘

T T Il !
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 T
Overlap threshold

o
N

0.1

(b) Without real-time constraint

Fig. 1 Experiment 1 - Tracking is difficult: Benchmark of several state-of-the-art tracking methods on the proposed dataset both with (a) and
without (b) real-time constraint. Graphs show the tracking success rate for overlap threshold € [0, 1]. Numbers in the legend indicate the AUC
for each method. The task is difficult due to frequent view-point changes, and this difficulty is stressed when methods are evaluated under a

computational complexity constraint (best viewed in color).

mance jumps from 0.6 (L1 not real-time) to ~ 0.75 for
the LK-DPM methods. This performance gain can be at-
tributed to the additional class prior information available
for the LK-DPM methods.

We compared LK-DPM-VLD which uses the validation
scheme to decide when to perform template update and LK-
DPM-FIX which updates the template at fixed intervals. In
the comparison, we notice that using the validation scheme
outperforms fixed interval updates. This indicates that the
template update rate is not uniformly distributed, which of
course makes sense, as we expect the template to be updated
more frequently when appearance changes occur, e.g. turn-
ing, relative to a simple tailing scenario.

4.5 Experiment 3 - Latency and accuracy

We simulate different detection and tracking operating
points for two tracking-with-detection methods, LK-DPM-
WO-CUP with latency l4.:1 and LK-DPM-CUP with la-
tency lges2. This is done by accelerating or decelerating our
system assigning different values of ’acceleration factor’ «
as explained in section 4. Introducing « into latency equa-
tions (3) and (7) gives:

tdet
lget1 = ﬁ ®)
m T T
tdet
lget2 = i 9

We measure the empirical average tracking and detec-
tion processing intervals ¢;,; and t4.; when the algorithms
run without acceleration (i.e. @ = 1). We plug in these val-
ues along with t;,, into equations (8) and (9) with different
values of a, ranging from 0.5 to 10, and obtain a prediction
for the latency of each method at several operating points.
We then run the tracking methods with these « values us-
ing our evaluation methodology and compare the predicted
latency values with the latency values measured empirically.

Results are presented in figure 3 showing the predicted
latency for different values of «v as obtained from equations
(8) and (9) along with the latency measured experimentally.
The empirical latencies are highly correlated with the pre-
dicted ones, with p = 0.996 for LK-DPM-CUP and p =
0.997 for LK-DPM-WO-CUP, validating our latency anal-
ysis.

After seeing our latency predictions are correct we turn
our attention to the relation between tracking accuracy and
latency, plotting this data for the different « values, as pre-
sented in figure 4. We first note the trends showing an in-
crease in accuracy for decreasing latency, for each method
on its own. This trend is broken for LK-DPM-CUP at o >
2 where the performance reaches that of the DPM detec-
tor. We observe the performance margin between the meth-
ods, meaning that for a given latency LK-DPM-CUP out-
performs LK-DPM-WO-CUP (again this is true for a <
3) . These results indicate that more accurate template up-
date, achieved by performing ’catch-up’, leads to better sys-
tem accuracy compared to instantaneous appearance update.
More generally we note that producing more accurate tem-
plate update should be considered even at the expense of in-

Real-Time Tracking-with-Detection for Coping With Viewpoint Change

301

—@— LK-DPM-WOCUP Measured
-B- LK-DPM-WOCUP Predicted
¢ A LK-DPM-CUP Measured
¢~ LK-DPM-CUP Predicted

251

Latency [frames]
= ~
& S
T T

=
1S}
T

6
Acceleration factor o

Fig. 3 Experiment 3 - Latency prediction: Measured and predicted
latency value for two tracking-with-detection methods. Prediction and
measurements are highly correlated (p < 0.996 for both methods),
validating our latency analysis (best viewed in color).

creased latency, as this might improve overall performance.

081

§l00 ~ @ - LK-DPM-WOCUP
o8 7(3(19,3%%)00 20 9~ LK-DPM-CUP
N WS
\
0.76 5 50
32.00
. (3(1'25
0.74F LI
~@x1.50
.
—~0.721 %
o) L2
3 1.00
2 % &
g o7t ~§L00
8 Tl Lgos ¢
£ o068F ~62"
-
0.66/- : Teell
..
0,64 ~~ g050
0.62F
L L L L I

5 10 5 20 25

1!
Latency [frames]

Fig. 4 Experiment 3 - Accuracy and latency: For each of the meth-
ods lower latency leads to higher accuracy. The performance margin
between methods indicates that more accurate template update can re-
sult in better overall system performance even at the expense of in-
creased latency. See text for more details (best viewed in color).

4.6 Experiment 4 - Real-time evaluation for better
design

In the following experiment we take the L1 tracker, which
is the leading tracking algorithm under real time constraints,
and combine it with our DPM detector using the validation
scheme presented in section 3, we denote this system L1-
DPM. We assign individual acceleration factors, cy g, det,
for tracking and detection respectively. Using these factors
we emulate the following scenarios i) Accelerating only the
tracker by X2 (ayr, = 2, ager = 1) ii) Accelerating only the
detector by X2 (agrr = 1, ager = 2) iii) Running the sys-
tem on twice as powerful hardware (at - = 2, ger = 2).
We denote the different accelerated systems by L1xoay,.x-
DPMxa.: e.g. L1x1-DPMXx1 denotes the original system
without any accelerations.

Results are presented in figure 5, on the left side, (a),
is the full scale results and on the right, (b), we zoom in
to the region threshold € [0.5,0.8] which is the most in-
teresting region for practical applications. We first observe
that L1-x1-DPM-x1 significantly outperforms both of its
components (L1 and DPM). In addition we observe that
this system also outperforms LK-DPM-VLD, which can be
attributed to the performance margin between L1 and LK
trackers. The results for accelerating the detector and tracker
provide interesting design insights. We observe that the per-
formance gained by accelerating the detector by a factor of
X2 is equivalent to the expected performance gain obtained
by accelerating the tracker by a factor of x2. Such a re-
sult is of high practical engineering interest as one can now
decide where to direct research resources. Typically, accel-
erating a tracker is easier than accelerating a detector and,
according to these results, is expected to produce the same
performance gain. Moreover we can see that increasing the
computational power by a factor of x2 is only marginally
better than accelerating only the tracker, with improvement
noticed mostly at low threshold values, this again may sug-
gest that for this system accelerating the tracker is the most
cost-effective coarse of action for increasing performance.

5 Conclusions

Tracking, even rigid, targets undergoing severe view-point
changes is a challenging task, made even more difficult un-
der runtime constraints. Using our newly proposed dataset
we have demonstrated that state-of-the-art tracking meth-
ods still struggle with tracking rigid targets undergoing large
view point changes both with and without runtime constraints.
When the target class is known, using a class detector is key
for making a successful tracking system. Using a carefully
trained classifier can boost performance significantly, trans-
ferring a system from ’almost always fail’ to "usually suc-
ceed’.

Shaul Oron et al.

Success rate
S o o
w i o

o
N

[| - ¢ -DPM-NOT-RT

- L1x2-DPMx2

|| —@—L1x2-DPMx1

4 L1x1-DPMx2
O - L1x1-DPMx1

(0.766)

(

(0.736)
(0.734)
(0.725)

0.1 A LK-DPM-VLD (0.686) YAv
-y- DPM (0.583) .
v-LL (0.472) ‘ ‘ ‘ ‘ : ;

o= : :
0.1 0.2 03 04 07 0.8 0.9

05 0.6
Overlap threshold

(a) Full scale

Success rate

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.61

0.55f

0.5

¢ -DPM-NOT-RT
- L1x2-DPMx2

—@—L1x2-DPMx1

< L1x1-DPMx2
O - L1x1-DPMxL
A | K-DPM-VLD
-y~ DPM

v-Ll

(0.766)
(0.740)
(0.736)
(0.734)
(0.725)

(0.686)
(0.583)

(0.472)

0.45 g V
0.45 05 0.55 0.6
Overlap threshold

(b) Zoom in

Fig. 5 Experiment 4 - Real-time evaluation as system design tool: We examine L1-DPM when accelerating only the tracker, only the detector
or both. Results indicate that the performance gained by tracker acceleration is similar to detector or full system acceleration providing invaluable
insight into where optimization efforts should be focused (best viewed in color).

When working under runtime constraints wise fusion of a
detector into a tracking system is advised and is expected to
deliver superior performance compared to plain fusion tech-
niques. Advanced fusion schemes, such as the ’validation’
or ’catch-up’ schemes, proposed in this work, were demon-
strated to out perform simpler fusion techniques such as sim-
ply running the detector on every possible frame ("DPM’)
of updating the template at fixed intervals using the detector
(CLK-DPM-FIX’).

Finally, when practical real-time tracking systems are de-
signed one cannot evaluate tracking accuracy alone but rather
consider accuracy subject to runtime constraints. In this con-
text our newly proposed evaluation methodology will give a
better estimate of actual system performance, enable better
understanding of its latency and allow an insight into the
sensitivity of SW/HW acceleration.

References

1. Thirteenth ieee international workshop on performance evaluation
of tracking and surveillance (pets) (2010)

2. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection
and people-detection-by-tracking. CVPR (2008)

3. Avidan, S.: Support vector tracking. PAMI (2004)

4. Avidan, S.: Ensemble tracking. CVPR (2005)

5. Babenko, B., Yang, M., Belongie, S.: Visual tracking with online
multiple instance learning. CVPR (2009)

6. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust 11 tracker using
accelerated proximal gradient approach. CVPR (2012)

7. Bar-Hillel, A., Levi, D., Krupka, E., Goldberg, C.: Part-based fea-
ture synthesis for human detection. ECCV (2010)

8. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian
detection at 100 frames per second. CVPR (2012)

9.

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

Bernardin, K., Stiefelhagen, R.: Evaluating multiple object track-
ing performance: the clear mot metrics. EURASIP Journal on Im-
age and Video Processing (2008)

Cootes, T., Edwards, G., Taylor, C.: Active appearance models.
TPAMI (2001)

Dollr, P, Belongie, S., Perona, P.: The fastest pedestrian detector
in the west. BMVC (2010)

Ess, A., Leibe, B., Schindler, K., Van-Gool, L.: Robust multi-
person tracking from a mobile platform. TPAMI (2009)
Everingham, M., Van Gool, L., Williams, C., Winn,
J., Zisserman, A.. The PASCAL Visual Object Classes
Challenge 2011 (VOC2011) Results. http://www.pascal-
network.org/challenges/VOC/voc201 1/workshop/index.html
Everingham, M., Van-Gool, L., Williams, C., Winn, J., Zisserman,
A.: The pascal visual object classes (voc) challenge. IJCV (2010)
Fan, J., Shen, X., Wu, Y.: What are we tracking: a unified approach
of tracking and recognition. IEEE Transactions on Image Process-
ing 22(2), 549-560 (2013)

Felzenszwalb, P., Girshick, R., McAllester, D.: Dis-
criminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/

Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object de-
tection with deformable part models. CVPR (2010)

. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Ob-

ject detection with discriminatively trained part based models.
TPAMI (2010)

. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object

recognition. IJCV 61(1) (2005)

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous
driving? the kitti vision benchmark suite. In: CVPR (2012)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-
line boosting. BMVC (2006)

Hager, G., Belhumeur, P.: Efficient region tracking with paramet-
ric models of geometry and illumination. TPAMI (1998)

Jia, X., Lu, H., Yang, M.: Visual tracking via adaptive structural
local sparse appearance model. CVPR (2012)

Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection.
TPAMI (2010)

Kasturi, R., Goldgof, D., Manohar, S., Garofolo, J., Bowers, R.,
Boonstra, M., Korzhova, V., Zhang, J.: Framework for perfor-

Real-Time Tracking-with-Detection for Coping With Viewpoint Change

Frame 90

Frame 100

&
Frame 1 Frame 32

Frame 182

Frame 137 Frame 210

Frame 174

Frame 110

Fig. 6 Sample frames for several sequences. Tracking results for LK-DPM-CUP marked in Green. (best viewed in color)

26.
27.

28.

29.

30.

31.

32.

33.

34.

mance evaluation of face, text, and vehicle detection and tracking
in video: data, metrics, and protocol. PAMI (2009)

Kwon, J., Lee, K.: Visual tracking decomposition. CVPR (2010)
Leibe, B., Schindler, K., Cornelis, N., Van-Gool, L.: Coupled ob-
ject detection and tracking from static cameras and moving vehi-
cles. TPAMI (2008)

Leichter, I., Krupka, E.: Monotonicity and error type differentia-
bility in performance measures for target detection and tracking in
video. In: CVPR (2012)

Lucas, B., Kanade, T.: An iterative image registration technique
with an application to stereo vision. In: Proccedings of Imageing
Understanding Workshop (1981)

Matthews, 1., Baker, S.: Lucas-kanade 20 years on: A unifying
framework. IJCV (2004)

Matthews, 1., Ishikawa, T., Baker, S.: The template update prob-
lem. TPAMI (2004)

Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless
tracking. CVPR (2012)

Panin, G., Klose, S., Knoll, A.: Real-time articulated hand detec-
tion and pose estimation. Advances in Visual Computing (2009)
Papanikolopoulos, N., Khosla, P., Kanade, T.: Visual tracking of a
moving target by a camera mounted on a robot: a combination of
control and vision. IEEE transactions on robotics and automation

(1993)

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for ro-
bust visual tracking. IJCV (2007)

Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.:
Prost:parallel robust online simple tracking. CVPR (2010)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., Blake, A.: Real-time human pose recog-
nition in parts from a single depth image. CVPR (2011)

Siebel, N., Maybank, S.: Fusion of multiple tracking algorithms
for robust people tracking. ECCV (2002)

Stalder, S., Grabner, H., van Gool, L.: Beyond semi-supervised
tracking: Tracking should be as simple as detection, but not sim-
pler than recognition. ICCV workshops (2009)

Stauffer, C., Grimson, E.: Learning patterns of activity using real-
time tracking. PAMI (2000)

Williams, O., Blake, A., Cipolla, R.: Sparse bayesian learning for
efficient visual tracking. TPAMI (2005)

Wu, Y., Lim, J., Yang, M.: Online object tracking: A benchmark.
In: CVPR (2005)

Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM.
Comp. Survey 38(4) (2006)

Zhang, K., Zhang, L., Yang, M.: Real-time compressive tracking.
ECCV (2012)

Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-
based collaborative model. CVPR (2012)

12 Shaul Oron et al.

46. Zhu, X., Ramanan, D.: Face detection, pose estimation, and land-
mark localization in the wild. CVPR (2012)

