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Stereo Seam Carving A Geometrically
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Abstract—Image retargeting algorithms attempt to adapt the image content to the screen without distorting the important objects in
the scene. Existing methods address retargeting of a single image. In this paper we propose a novel method for retargeting a pair of
stereo images. Naively retargeting each image independently will distort the geometric structure and hence will impair the perception of
the 3D structure of the scene. We show how to extend a single image seam carving to work on a pair of images. Our method minimizes
the visual distortion in each of the images as well as the depth distortion. A key property of the proposed method is that it takes into
account the visibility relations between pixels in the image pair (occluded and occluding pixels). As a result, our method guarantees, as
we formally prove, that the retargeted pair is geometrically consistent with a feasible 3D scene, similar to the original one. Hence, the
retargeted stereo pair can be viewed on a stereoscopic display or further processed by any computer vision algorithm. We demonstrate
our method on a number of challenging indoor and outdoor stereo images.

Index Terms—Stereo, Retargeting, Geometric Consistency.
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1 INTRODUCTION

Digital images are displayed on a variety of digital devices,
each of which might require a different aspect ratio. The
core idea of image retargeting algorithms is to adapt the
image content to the screen without distorting the important
objects in the scene. The rapid pace of technology makes it
possible to view 3D content on a large range of devices, from
cellphones to large TV screens. In addition, stereophotography
is becoming increasingly popular, with a large number of
stereo images appearing online. As a result, image retargeting
algorithms need to be adapted to work on stereo image pairs.

We propose a novel method for retargeting stereo image
pairs. The input to our method is assumed to be a rectified
stereo image pair and a disparity map. The input disparity
map may be computed from the pair of images by an available
stereo algorithm, or be given by any other algorithm or device.
The 3D information provides valuable cues for retargeting,
as previously demonstrated by retargeting algorithms for a
single image [2]. Indeed, stereo image retargeting can also
benefit from the 3D information provided by the other image.
However, since the 3D information must be maintained in
the retargeted pair, maintaining the 3D information poses new
challenges.

Our method retargets the input pair in the horizontal domain
while minimizing the distortion of each image as well as the
distortion in depth. A key property of our method is that the
retargeted stereo pair has a feasible 3D interpretation that is
similar to the original one. Thanks to this geometric consis-
tency, our retargeted pair can be viewed on a stereoscopic
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display or processed by any computer vision algorithm that
makes use of a stereo pair (e.g., cosegmentation or tracking).

1.1 The General Idea

We generalize the single image seam carving algorithm [3], [4]
to work on a rectified stereo pair. Instead of removing a seam
from a single image, our algorithm iteratively removes a pair
of seams from the stereo image pair.

A naive extension of the single image seam carving al-
gorithm is to independently apply it to each of the images
(see the blue box in Figure 1a). It disregards the geometry
and as a result, damages the 3D structure of the scene, for
example by removing a pixel from one image while keeping
its corresponding pixel in the other one. To overcome this
problem, a joint retargeting of both images must be considered.
In particular, the selection of seams in both images should
be coupled. A straightforward approach for stereo retargeting
is to compute the seam in one of the images, say the left
one, and then map it to the right image via the disparity
map. This is clearly sub-optimal as it does not utilize the
information available in the right image or the depth map.
Figure 2 demonstrates the results using this approach (for more
details see Section 6).

In fact, the problems run even deeper, mainly due to occlu-
sions; there is no guarantee that seam pixels in the left image
have matching pixels in the right. And the change in 3D shape
must be carefully considered to avoid an inconsistent change
in the visibility relation of the scene points. In particular,
pixels that are visible only in one of the views should not be
revealed. Thus, the new problem of stereo retargeting creates
new challenges.

The proposed method overcomes the challenges of stereo re-
targeting by generalizing seam carving to simultaneously carve
a pair of seams in both images, while minimizing distortion
in appearance and depth. Seam selection and disparity map



2

Independent Single Image Retagreting Our Stereo Retagreting Approach

a b

Fig. 1. Geometric Evaluation. (a): The results of applying single image SC [4] on each of the input images.(b): The
results of applying our stereo retargeting algorithm. On both left and right sides: D̂SGM is computed by applying SGM [5]
on the retargeted pair; the original disparity values of the remaining pixels are stored in D̂o. Finally, the depth distortion
is measured by |D̂SGM − D̂o|. The color code is blue for low values and red for high ones; red indicates a difference of
at least six pixels.

modification are subject to geometric constraints that take into
account the visibility relations between pixels in the images
(occluded and occluding pixels). These geometric constraints
guarantee consistency of the target images with a feasible
3D scene, as formally proven in Section 5 and empirically
demonstrated in Section 6.

2 BACKGROUND
Image and video retargeting algorithms have been extensively
investigated in recent years. These algorithms attempt to
change the aspect ratio of an image or a video in a way that
does not distort the proportions of the important objects in the
image. The various algorithms differ in how they determine
the importance of different pixels in the image and in how
they use this information. Two main classes of algorithms
have emerged. Discrete methods for single image retargeting,
such as seam carving [3] or shift map [6], remove and shift
pixels in the image. Continuous methods [7], [8] warp a quad
mesh based on image content. An excellent overview and
comprehensive study of the topic is given in [9].

Here, we extend the seam carving algorithm to work on
stereo. The algorithm was first introduced in [3] and was
extended in [4]. The seam carving algorithm works by itera-
tively computing a seam with minimal visual distortion in the
image and removing it. A seam is defined to be a connected
path in the image, yet this is not a necessary assumption
and Grundmann et al. [10] recently showed that piece-wise
connected paths are more flexible for video retargeting. There
the goal is to retarget frames sequentially and rely on piece-
wise connected seams to better fit the retargeting to previous
frames. However, they do not consider stereo data.

Most work reported thus far in the literature has focused
on retargeting a single image or video. However, the rise of
3D content makes it necessary to extend image retargeting
algorithms to work with 3D content. Lang et al. [11] adjust
the disparity map according to various stylistic considerations.
They do not consider the problem of stereo image retargeting,

nor do they discuss the the geometric consistency of their
method.

Mansfield et al. [2] assume the input is a single image and
a relative depth map (provided by the user) and the output is
a single image. They extend seam carving to scene carving
and show that scene carving is indeed scene consistent, can
introduce occlusions, and can also handle pixel reappearance,
say when one layer moves behind another layer and reappears
on the other side. There are a number of important distinctions
between our work and that of [2]. First, we assume that the
input is a pair of stereo images. They, on the other hand,
assume the input to be an image with a depth map. As a result,
they cannot produce a retargeted stereo pair without resorting
to image synthesis techniques to fill in gaps, as they have to
deal with the occlusions caused by the different points of view
of the stereo image pair. Second, we assume a per-pixel stereo
map, as opposed to representing the scene as a collection of
well-defined fronto-parallel planes.

Chang et al. [12] proposed a content-aware display adapta-
tion method that simultaneously resizes a stereoscopic image
to the target resolution and adapts its depth to the comfort
zone of the display while preserving the perceived shapes of
prominent objects. This is done by detecting and matching
a sparse set of feature points that are then used to define a
warping field according to the target display parameters.

In the scene-warping method by Lee et al. [13], the layer-
based approach [2] and the warping-based approach [12] are
combined. Each of the input stereo images is decomposed into
multiple layers according to color and depth information. Each
layer is then warped by its own mesh deformation, and the
warped layers are composited together to form the resized
images. Both methods [12], [13] do not discuss the geometric
consistency of their method, nor how they deal with occlusions
between the left and right views.

Utsugi et al. [14] have also considered the extension of seam
carving to stereo images. However, here too, the primary goal
of preserving the geometric consistency of the output image
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Fig. 2. The straightforward approach for seam coupling. (a-b): The pair of input images, and (c), their ground truth
disparity map. (d): The single image retargeted left image using [4], and (e) the retargeted right image computed by
carving corresponding seams. (f): The disparity map computed by applying the SGM stereo algorithm on the pair
(d-e). (g): The updated disparity map computed by our method.

pair is neither defined nor discussed in their work.
Recently, Birklbauer & Bimber [15] proposed a method

for light-field retargeting that preserves the angular consis-
tency. Their algorithm converts a stack of images into a
light field representation in which seam carving is performed.
The retargeted light field is then mapped back to retargeted
individual images. They avoid the need to recover explicit
3D information, however it is not clear how they deal with
occlusions.

Finally, our work is part of a recent surge in stereo image
editing algorithms, where the goal is to extend image editing
tools to work directly on a pair of stereo images. This includes
inpainting of stereo image pairs [16], stereoscopic 3D cut-and-
paste [17], and viewer-centric editor for 3D movies [18].

3 THE METHOD
The input to our method is a pair of m × n rectified stereo
images, {IL, IR}, and a disparity map, D, where the disparity
map can be computed by any stereo algorithm (we use [5]).
Without loss of generality, we consider the disparity with
respect to the left image, which is taken to be the reference
image. The output of our algorithm is a pair of retargeted
images, {ÎL, ÎR} and an updated disparity map, D̂.

The primary goal of our method is to obtain retargeted
images that are geometrically consistent with a feasible 3D
scene. Namely, it is possible to define correspondence between
pixels that is consistent with the epipolar geometry as well as
with visibility relations between 3D points in the retargeted
pair. To obtain this goal it is sufficient to impose the following
constraints:

C1 : Corresponding pixels in the original images are
either both removed or remain corresponding in the
output images.

C2 : 3D points that are visible in the reference view but
occluded in the other are not revealed.

In Section 5 we formally prove that these constraints are
satisfied by our method.

3.1 Seam Coupling
The geometric coupling of the two seams, SL = {siL}mi=1

and SR = {siR}mi=1, is obtained by using the correspondence
defined by D. Formally, each of the seam’s pixels in the left
image at row i, siL = (i, jL(i)) ∈ SL, is matched to a seam
pixel in the right image, siR = (i, jR(i)) ∈ SR, as follows:

siR = (i, jR(i)) = (i, jL(i) +D(siL)), (1)

where jL, jR : [m]→ [n], and [m] = [1, ...,m]. The estimated
disparity map, D : [n] × [m] → Z ∪ ⊥, maps pixels of IL
to their corresponding pixels in IR, if the correspondence is
known, and to ⊥ otherwise. Note that the seams contain only
pixels for which the disparity is defined.

Note that a continuous seam in the left image generally
corresponds to a piecewise continuous seam in the right image
since the seam may cross depth discontinuities. Therefore,
we drop the assumption that a seam (in either IL or IR) is
continuous and consider piecewise seams from now on, which
we refer to as generalized seams (see Figure 3).

3.2 The Energy Function
The energy function of the stereo seam carving method con-
sists of an intensity term and a 3D geometry term. Removing
a seam’s pixel from each image in the stereo pair has the
local effect of creating new adjacent pixels in the target image.
The resulting gradients in the retargeted left and right images
depend on the seam pixel in the previous row, denoted by j±L
and j±R , respectively. Since the left and right image seams are
coupled, j±R , is uniquely defined by j±L and the disparity map,
D. Therefore, we define the energy function (w.r.t. the left
image) in accordance with the seam pixel in the previous row,
j± (which is short for j±L ). That is,

Etotal(i, j, j
±) = Eintensity(i, j, j

±) + αE3D(i, j, j
±), (2)

where α controls the relative impact of each of the terms.
Since we use generalized seams, j± ∈ [m] can be any pixel
in row i− 1 (unlike the continuous case in which j± ∈ {j −
1, j, j + 1}).

3.2.1 Appearance Energy
We generalize the forward energy criterion from [4], whose
goal is to minimize the resulting distortion in the retargeted im-
age caused by the intensity differences between new adjacent
pixels. The appearance distortion Eintensity(i, j, j

±) is taken to
be the sum of the energy terms, EL and ER, for removing a
pair of coupled pixels from the left and right images. That is,

Eintensity(i, j, j
±) = EL(i, j, j

±) + ER(i, jR, j
±
R ), (3)

where the coupling of the left and right seams is captured via
the disparity map as defined in Section 3.1.

The energy of removing a specific pixel, (i, j) from image I ,
left or right, is given by:

E(i, j, j±) = Ev(i, j, j±) + Eh(i, j), (4)
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Fig. 3. (a): The left image masked with the computed
occluded pixels in green, and occluding pixels in blue; out-
of-field-of-view pixels are colored in yellow. (b): The right
image masked with the corresponding occluding pixels in
blue. In this example both left and right seams (in red) are
discontinuous.

where Eh and Ev are the forward energy terms due to the new
gradients in the horizontal and vertical directions, respectively.
In particular, Eh is given by:

Eh(i, j) = |I(i, j + 1)− I(i, j − 1)|. (5)

In the vertical direction, the new gradients depend on the
position of the seam in row i−1, j±. Accordingly, the vertical
forward energy is given by:

Ev(i, j, j±) =

 V1 j± < j
0 j± = j
V2 j± > j

(6)

where

V1 =
∑j

k=j±+1
|I(i− 1, k)− I(i, k − 1))|

V2 =
∑j±

k=j+1 |I(i− 1, k − 1)− I(i, k))|.
(7)

3.2.2 Depth Energy
The computed depth map provides valuable cues for seam
selection, and a 3D forward energy term, ED, is used to
minimize the disparity distortion. It is defined similarly to
the forward energy of the intensity values, by replacing the
intensity function, I , with the disparity map D in Eq. 4 and
Eq. 7. In practice, in order to compensate for the differences
in range between the intensity and the disparity values, we
normalize both I and D in the range of zero to one.

In addition, the object’s distance from the camera often
correlates with its saliency. Hence, we increase the energy of
pixels that are the projections of nearby 3D points. Moreover,
our method is strongly based on the disparity map, which is
computed by a stereo algorithm that is regarded as a black box.
Errors in the estimated map may result in incorrect coupling
of seam pixels. We prefer removing pixels for which we have
high confidence of disparity values, measured by the difference
in the intensities of corresponding pixels. That is,

G(i, j) = |IL(i, j)− IR(i, j +D(i, j))|. (8)

The total forward 3D energy is a weighted sum between three
components:

E3D(i, j, j
±) = ED(i, j, j±) + β|Dn(i, j)|+ γG(i, j), (9)

where Dn is the normalized disparity map.

3.3 Maintaining Pixel Visibility
An occluded pixel in the reference image is defined as the
projection of a 3D point that is not visible in the right view
due to another 3D point that occludes it (red in Figure 4a).
Occluded pixels do not have corresponding pixels in the right
image; our method does not remove them from the image.

Furthermore, in order to satisfy the geometric constraint,
C2, occluded pixels must not be revealed. Otherwise, no
coherent 3D interpretation can justify the visibility of the
revealed pixel only in one image and not in the other. To this
end, we ensure that occluded pixels in the original right image
remain occluded in the retargeted right image, by avoiding
removing pixels that may reveal them, namely occluding
pixels. An occluding pixel is defined to be the projection
of a visible 3D point in both views that accounts for the
occlusion of one or more 3D points in the right view (see
green in Figure 4a). Our choice of removing only pixels that
are neither occluded nor occluding, guarantees that the original
visibility relation (i.e., occluded-occluding pairs) is preserved.
See Section 5 for the proof.

The set of occluding and occluded pixels is computed once
from the input disparity map, D and represented by a binary
map, O(i, j) where O(i, j) = 1 if pixel (i, j) is an occluded
or occluding pixel. This map is computed using a simplified
Z-buffer approach. Namely, if two or more pixels in the left
image are mapped to the same pixel in the right image, the
pixel with the largest disparity value is the occluder while the
rest are occluded.

In the examples we considered, the number of occluded
and occluding pixels is typically 20%. An example of both
the occluded and occluding maps is given in Figure 3.

3.4 Stereo Seam Selection and Carving
The energy term defined in Eq. 2 is now accumulated in a cost
matrix M to select a pair of seams using dynamic program-
ming. The seams are coupled as defined in Section 3.1. We

a b

Fig. 4. (a): Occluded pixels, green, have no correspond-
ing pixels in the right image. The occluding pixels, blue,
are visible in both views. (b): The ordering constraint does
not hold: removing the red point causes the point p to shift
left while the point q remains in its original location.
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Fig. 5. Horizontal Seams: A horizontal seam in the left
image (a) does not specify a seam the right (b).

set M(i, j) = ∞ for pixels that do not satisfy the visibility
constraints, namely if O(i, j) = 1 (see Sec 3.3).

By default, we prefer continuous seams (where j± ∈
j − 1, j, j + 1), which affect fewer pixels than discontinuous
seams (see Eq. 7). However, if a continuous path is blocked
at pixel (i, j) by occluded/occluding pixels, we allow discon-
tinuous seams. Formally, we consider two cases, according to
whether it is necessary to switch at the pixel (i, j) from a
continuous to discontinuous seam:

M(i, j) =


min

j±∈{j−1,j,j+1}
Etotal(i, j, j

±); T (i, j) = 0

min
j±∈[m]

Etotal(i, j, j
±); T (i, j) = 1,

(10)
where, T is the binary map of size n×m. T (i, j) indicates

whether a continuous path is blocked in row i− 1 by occlud-

Input Our Results Comp. & Eval.

Fig. 6. Moebius Dataset. In the first column (top to bot-
tom), the input left and right images and the input disparity
map. In the second column, our results, with respect
to the first column. The third column shows the results
of applying single image SC [4] to the left input image
(top); the distortion in depth caused by independent single
image retargeting (middle); the distortion in depth caused
by our stereo retargeting method. Depth distortion scores:
single image SC, B=85%; stereo pair SC, B=3.2%.

Our Results Utsugi et al. Single Image SC

Fig. 7. Aloe Dataset. In the first column (top to bottom),
our results for the left and right images and the disparity
map. The input stereo pair is shown in Figure 2(a-b). In
the second column, the results of the method of Utsugi et
al.[14]. In the third column, the results of applying single
image SC [4] to the left input image (top); see caption of
Figure 6. The depth distortion scores: single image SC,
B=47%; stereo pair SC, B=2.9%.

ing/occluded pixels. That is, T (i, j) = 1 if O(i−1, j±) = 1 for
j± ∈ {j − 1, j, j + 1}. Note that piece-wise connected seams
were successfully used for video retargeting [10], where the
goal is to preserve the moving regions.

As in [4], removing a seam pixel from a row results in
shifting pixels in that row. Specifically, all pixels to the right of
the removed pixels are shifted left by one pixel. The remaining
pixels are unchanged. Formally, the shifting function fL(i, j) :
[m] × [n] → [m] × [n − 1] maps the ith input row to the ith

output row. Let siL = (i, jL(i)) be the pixel to be removed
from the left image. Then, the shifting mapping is defined by:

fL(i, j) =

 j if j < jL(i)
j − 1 if j > jL(i)
⊥ if j = jL(i)

(11)

Likewise, fR(i, j) is the corresponding mapping function in
the right image, where jL(i) is replaced by jR(i) (as defined
in Eq. 1).

After carving a seam, the new disparity map, D̂, is obtained
by removing the left seam SL from the previous D and
updating the disparity values of the remaining pixels. In
particular, the updated disparity value, D̂, of a pixel (i, j) is
given by:

D̂(i, fL(i, j)) = fR(i, j +D(i, j))− fL(i, j). (12)

3.4.1 Geometric Interpretation
We next describe the geometric interpretation of the carving.
From Eq. 11 it follows that each pixel may either be shifted
one pixel to the left or remain in its original location. If a



6

a b c d

Fig. 8. Diana Dataset. (a): The input pair of images. (b): The retargeted pair of images produced by our method. (c):
The input disparity map, our result, and the evaluated depth distortion. (d): The result of single image SC on the left
image.

pair of corresponding pixels remains in its original location,
the associated 3D point remains the same as in the original
scene. When pixels are shifted, the position of the associated
3D points change. If the two pixels in a corresponding pair
are both shifted left, the original depth is preserved, namely
D̂(i, j) = D(i, j) (see Eq. 12). The associated 3D point
changes its location accordingly by a left translation, parallel
to the image plane. Most pixels will either remain in their
original location or be shifted together. However, when the
ordering constraint does not hold (see Figure 4b), a pixel may
be shifted in one of the images, while its corresponding pixel
remains in its original location. In this case, the disparity is
changed by one pixel, which corresponds to a small change
in depth.

3.5 Stereo Image Pair Enlarging
So far we have shown how to reduce the width of the input
stereo pair, but our method can also be applied to enlarge
the width. This is done, similarly to the single image seam-
carving algorithm [4], by first selecting the optimal pairs of
seams for removal, and duplicating them in the pair of images.
In addition, we update the disparity map by duplicating the
left image seams, and updating the disparity values when
necessary (i.e., corresponding pixels in the left and right
images are not on the same side of the seam in both images.)

4 HORIZONTAL SEAMS
Existing single image retargeting methods can be directly
applied to change the height of the image as well since the
vertical and horizontal directions are symmetric. However,
when a stereo pair is considered this is no longer the case.
Preserving the geometric consistency of a pair of images is
possible only if restrictive assumptions on the disparity map
are imposed, as we describe below.

To preserve the 3D interpretation of the scene, it is essential
to couple the seams of the pair of images (see Section 3.1).
As in the vertical case, a seam in the left image is mapped to
a set of corresponding pixels in the right image, determined
by the disparity map. However, in the horizontal case, this
set of pixels generally does not specify a horizontal seam
in the right image. That is, there is no guarantee that the
set of corresponding pixels in the right image consists of a
single pixel at each column (see example in Figure 5). An
exceptional case is a constant disparity along the seam, where
the right image seam is simply a shift of the left one. However,
even under this restriction (which is not valid in practice),

the disparity must be further constrained for retargeting while
maintaining the geometric consistency of the stereo pair. In
particular, pixels above the seam remain at the same location,
while pixels below the seam are shifted up in one pixel. Thus,
the epipolar lines of the pixels below the seam are shifted up as
well. It follows that in order to preserve the epipolar geometry,
corresponding pixels in the left and right image must be on
the same side of the seam (below or above) in both images.

We conclude that constraints on both the seam disparity
and on the disparity of pixels in the region bounded by the
rows that participate in the seam are unlikely to be satisfied
for realistic scenes. Hence, horizontal seams cannot be used
for retargeting while keeping the geometric consistency of a
stereo pair. It is worth noting that the image height can be
resized by expanding the image width, followed by uniform
scaling. Clearly, this is not optimal but allows the aspect ratio
to be changed as desired.

5 GEOMETRIC CONSISTENCY

We prove here that our algorithm preserves the geometric
consistency of the input pair. Clearly, the epipolar geometry
is preserved (as well as the rectification) since all pixels in
both images are either left-shifted or remain in their original
location. We next show that our method satisfies the constraints
C1 and C2 (see Section 3).

Constraint C1, maintaining the original input correspon-
dence, is directly satisfied by our method since the disparity
map is used to couple the seams (see Section 3.1). To show
that constraint C2 is satisfied, we prove that the operation
of removing a pair of seams pixels and the following update
of the disparity map guarantee that the original visibility of
3D points is preserved. To this end we formally define the
occluded and occluding pixels.

Definition: Occluded and Occluding Pixels
Let (i, jb) and (i, jf ) be two pixels in the left image. The
pixel (i, jf ) occludes (i, jb) iff jb < jf and the two pixels
are mapped to the same pixel in the right image. That is,

jf +D(i, jf ) = jb +D(i, jb). (13)

It follows that a pixel (i, j) is not an occluding\occluded iff

j +D(i, j) 6= j′ +D(i, j′) ∀j′ 6= j. (14)

Lemma #1:

The operation of removing a seam point, pL = (i, jL),
preserves the ordering between the remaining pixels in the row
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Input Our Results Comparison
Shrinkage Enlargement Shrinkage Enlargement

a b c d e

Fig. 9. Car Dataset. In column (a) (top to bottom), the input left and right images and the input disparity map. In columns
(b) and (c), our results for reducing and increasing the width by 17%. In columns (d),(e), the results of applying single
image SC to the left input image (top); the distortion in depth caused by independent single image retargeting (middle);
the distortion in depth caused by our stereo retargeting method. Depth distortion scores: Shrinkage: single image SC,
B=70%; stereo pair SC, B=1.3%; Expansion: single image SC, B=69.3%; stereo pair SC, B=1.9%.

i. Formally, given two pixels, p1 = (i, j1) and p2 = (i, j2):
j1 < j2 ⇔ fL(i, j1) < fL(i, j2), where f is defined in Eq. 11.

It follows directly from this Lemma that: j1 = j2 ⇔
fL(i, j1) = fL(i, j2).

Proof: If both p1 and p2 are on the same side of the seam,
then by Eq. 11 the order is preserved. Therefore, the only case
to consider is when the seam pixel, (i, jL), is in between the
two pixels: without loss of generality, j1 < jL < j2. In this
case, fL(i, j1) = j1 and fL(i, j2) = j2−1. Since this scenario
is possible only if the gap between j1 and j2 is at least one
pixel, it follows that j1 < j2− 1. In particular, we obtain that
j1 < j2 and fL(i, j1) < fL(i, j2).

Claim: Let pf (i, jf ) and pb = (i, jb) be two pixels in the
reference view. Pixel pf occludes pb in the original image pair
iff (i, fL(i, jf )) occludes (i, fL(i, jb)) after removing the seam
pixels.

Proof: We have to show that: jb < jf and jf +D(i, jf ) =
jb + D(i, jb) iff fL(i, jb) < fL(i, jf ) and fL(i, jb) +
D̂(i, fL(i, jb)) = fL(i, jf )+D̂(i, fL(jf )). Using the definition
of D̂ (see Eq. 12), it follows that:

fL(i, jb) + D̂(i, fL(i, jb)) =
fL(i, jb) + fR(i, jb +D(i, jb))− fL(i, jb) =
fR(i, jb +D(i, jb))

fL(i, jf ) + D̂(i, fL(i, jf )) =
fL(i, jf ) + fR(i, jf +D(i, jf ))− fL(i, jf ) =
fR(i, jf +D(i, jf )).

(15)

Now, using Lemma 1 we obtain that

jb < jf ⇔ fL(i, jb) < fL(i, jf ), and, (16)

fR(i, jb +D(i, jb)) = fR(i, jf +D(i, jf ))⇔
jb + d(jb) = jf + d(jf ).

(17)

To complete the proof, the above equations are put together:

fL(i, jb) + D̂(fL(i, jb)) = fL(i, jf ) + D̂(i, fL(i, jf ))⇔
jb +D(i, jb) = jf +D(i, jf ).

6 EXPERIMENTS & RESULTS

We tested our method on challenging indoor and outdoor
scenes. In all experiments, we used the OpenCV implementa-
tion of the SGM stereo algorithm [5] to compute the input
disparity; hole filling was performed on regions for which
the disparity was not computed. This is done by a simple
interpolation along scanlines – the holes in each scanline are
filled with the minimal disparity value on the hole boundary.
The algorithm was implemented in MATLAB and the code as
well as the datasets are publicly available.

6.1 Datasets
The following datasets were considered:

Middlebury: Six of the Middlebury stereo datasets [19]:
Moebius (Figure 6), Aloe (Figure 7), Cloth, Wood, Dolls, and
Laundry. These datasets are challenging because the scenes
are highly textured and contain objects at different depths. In
most of these datasets about 20% of the pixels in the original
reference images cannot be removed, since they are either
occluding or occluded (see Figure 3).
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V1 & V2 V1 & V5 V1 & V6
Cloth 4.14% 18.06% 23.13%
Wood 5.65% 20.90% 26.61%
Dolls 3.14% 17.70% 23.34%

Laundry 4.44% 20.27% 24.59%

TABLE 1
Initial Occlusions. For each dataset and each baseline,

the initial percentage of occluding and occluded pixel out
of the total image pixels.

Portrait: A pair of images (Figure 8), provided by [20]. The
main challenge in this pair is that the salient object, which
covers most of the image, should not be distorted. Moreover,
a significant part of the left image is out of the field of view
of the right camera, and hence cannot be removed by our
algorithm.

Flickr: A set of stereo images, with large depth range,
downloaded from Flickr (Figure 12-11). The images were
manually rectified using [21].

6.2 Geometric Evaluation
A main contribution of our method is the production of a
geometrically consistent retargeted image pair that preserves
the original depth values of the remaining points. We evaluate
depth distortion by measuring the deviation of the updated dis-
parity values from their original values. Our evaluation scheme
is described in Figure 1: a disparity map, D̂SGM, is computed
on the retargeted pair of stereo images. The computed map,
D̂SGM, reflects the geometry that can be recovered from the
pair of retargeted images, regardless of the method used to
produce them.

The depth distortion is measured by comparing the disparity
value of each pixel in D̂SGM with its original value. In partic-
ular, we compute D̂o, which consists of the original disparity
values, D, after removing the relevant seams with respect to
the reference view. The absolute difference, |D̂o − D̂SGM|, is
shown for all our experiments. For comparison, we evaluate
the depth distortion caused by independent single image retar-
geting (see Figure 1a). For quantitative evaluation, we define
the depth distortion score to be the percentage of pixels whose
depth, D̂SGM, has been changed by more than one pixel. That
is,

B =
1

N

∑
(i,j)

(
|D̂o(i, j)− D̂SGM(i, j)| > 1

)
. (18)

Note that the true depth distortion should have been mea-
sured directly in 3D rather in 2D (see [22]). However, evalu-
ating the distortion in 3D is not applicable in our case since
the cameras are not calibrated and the units of the inverse
disparity are unknown. Hence, we choose to compute the
disparity distortion, which is correlated with the 3D distortion.
Hence, we choose to compute the disparity distortion, which
is correlated with the 3D distortion.

6.3 Main Test
We tested our algorithm on the abovementioned datasets using
a fixed set of parameters for the 3D weight: β = 0.08 and

Input Our Results Comparison

Fig. 10. Snowman Dataset from Flickr. See caption of
Fig. 6. Depth distortion scores: single image SC, B=70%;
stereo pair SC, B=1.3%.

γ = 0.5 (see Eq. 9). The parameter α (see Eq. 9) was
empirically set in the range of 1-5, for each of the datasets.
The image width was reduced by 20% for the Middlebury
datasets Aloe and Moebius, and by 17% for the rest. The results
are presented in Figures 6-9. In addition, Figures 9-12 show
our results, and the results of single image seam-carving, for
enlarging the width by 17%.

Our experiments show that the output pair is geometrically
consistent and the original depth values are preserved. It is
evident that significant depth distortion is caused when naive
independent retargeting of each image is considered. (See right
columns in each of the figures.)

To evaluate the appearance distortion, we show the single
image seam carving result of the left image [4]. The large
number of geometric constraints that our method must satisfy
limits the number of candidate seams; the constraints are thus
expected to yield results that are not as good as those obtained
for single image retargeting. Still, the 3D information and the
use of generalized seams compensate for this problem. Our
results are similar (e.g., Figure 6 and Figure 7) to those of
single image seam carving and in some cases much better.
For example, our method successfully preserves the face
appearance (Figure 8) as well as the face depth (Figure 8c),
without prior knowledge, such as face location, used by [7].
Figure 12 shows another example in which the perspective
of the running track is nicely preserved and the man is not
deformed, in contrast to the single image seam carving.

6.4 A Naive Use of The Disparity
A naive approach to using the disparity map is to retarget the
reference image (by applying single image seam carving), and
map the selected seams to the other image using the disparity
map. Figure 2 presents the retargeted images (d-e). The ground
truth disparity map of the original pair, c, is compared to the
disparity map computed using the SGM on the naive retargeted
pair, f, and to our results, g. This comparison clearly shows
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Input Low β High β Comparison

Fig. 11. People Dataset. The first column shows the input pair and the computed disparity map. The second and
third columns show our results using low and high weights, respectively; the bottom figures show the depth distortion,
respectively. The third column shows the results of applying single image SC to the left (top) and right (middle) input
images; the bottom figure shows the depth distortion caused by single image SC. Depth distortion scores: single
image SC, B=79%; stereo pair SC, low β, B=2.1%; stereo pair SC, high β, B=2.6%.

that the a naive use of the disparity map is insufficient for
obtaining geometric consistency. (The retargeted images using
our results are presented in Figure 7.)

6.5 3D Weight

So far we have used fixed parameters for the 3D weight.
However, as can be seen in the second column of Figure 11,
the man on the left almost “lost” his leg. Allowing user
interaction for setting the weight of objects according to their
depth (the parameter β in Eq. 9) improves the results (third
column in Figure 11). The head of the person on the right was
not distorted regardless of this parameter, in contrast to the
single image seam carving which distorts it dramatically. We
note that the geometric consistency of the retargeted images
is obtained regardless of the choice of parameters, and depth
distortion remains negligible.

Finally, we compare the disparity computed by our method,
D̂, with that computed by the SGM algorithm on the retargeted
images, D̂SGM. For all the tests described above, the difference
is less than 2%.

6.6 Effect of Baseline & Retargeting Rate

Next we tested the effect of the baseline between the cameras
on the visual appearance and geometric consistency of our
results. To this end, we used four of the Middlebury datasets:
Cloth, Wood, Dolls, and Laundry. We tested our method on
each dataset, while considering three baselines w.r.t. same
view (view1). The initial percentage of occluding and occluded
pixels out of the total image pixels is summarized in Table 1.
Note that after retargeting, the percentage of occluding and
occluded pixels is defined by the new image image size

(since occluding/occluded pixels are not removed). Figure 13
shows the computed depth distortion scores (see Eq. 18) for
shrinking the image width by 17%, 25%, and 35%. As can
be seen, the distortion scores increase to some extent as the
baseline is extended, and the image width is reduced. The main
reason for this result is that the quality of the disparity map
degrades as the baseline is extended. The depth distortion score
ranges from 0.039%-3.8%, and the average over all scores (all
datasets, baseline, and image widths) is only 0.78%. That is,
the depth values of more than 99% of all pixels on average,
have been perserved.

In terms of geometric consistency, there is no real restriction
regarding the capacity to shrink. An exception is the extreme
case where all pixels in a certain row in the left image
are occluding/occluded pixels. In such a case (which did
not happen in any of our experiments) there is no valid
seam to remove. In terms of appearance, the limitation of
the capacity to shrink depends also on the occluding and
occluded pixels, which are not removed by our method. The
number of possible candidate seams is reduced as more seams
are removed (the percentage of occluding/occluded pixels is
increased); therefore, the visual artifacts are expected to be
more significant (see next section).

6.7 Visual Effect of The Input Disparity
As explained above, our method depends on the quality of the
disparity map. Errors in the disparity map affect the depth
distortion scores as well as the visual appearance of the
images. The effect of these errors become more significant
as more seams are removed. Figure 14 shows our results on
the Cloth and Wood datasets when shrinking them by 17%,
25%, and 35%. The baseline here is fixed (V1 & V5). In the



10

Input Our Results Comparison
Shrinkage Enlargement Shrinkage Enlargement

a b c d e

Fig. 12. Man Dataset. In column (a) (top to bottom), the input left and right images and the input disparity map.
In columns (b),(c), our results for reducing and increasing the width in 17%, respectively. In columns (d),(e), the
results of applying single image SC to the left input image (top); the distortion in depth caused by independent single
image retargeting (middle); the distortion in depth caused by our stereo retargeting method. Depth distortion scores:
Shrinkage: single image SC, B=49%; stereo pair SC, B=0.43%; Expansion: single image SC B=62.4%; stereo pair
SC, B=1.02%.

left column, the input disparity maps were obtained by the
SGM stereo algorithm (followed by hole filling). In the right
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Fig. 13. (a)-(d): Depth distortion scores for the Middlebury
datasets: Cloth, Wood, Dolls, and Laundry. In each graph,
the depth distortion scores (y-axis) computed for three
baselines: view1 and view2 (V1 & V2), view1 and view5
(V1 & V5), view1 and view6 (V1 & V6), and for shrinkage
of: , , and .

column, the ground truth disparity maps were used as input.
The results on the Cloth dataset show only a small difference
in the appearance when the ground truth disparity was used.
Overall, the visual appearance of the images in both cases is
preserved. The results on the Wood dataset using SGM shows
several visual artifacts that becomes more significant as more
seams are removed. These distortions do not appear when the
ground truth disparity is used.

6.8 Comparison with Stereo Retargeting Methods
We compared our method with existing warping-based meth-
ods for stereoscopic image retargeting [12], [13]. The compar-
ison of the visual appearance for the same datasets is found
in [13]. For all methods, the visual appearance of the left and
right images is overall pretty good. In each of the methods,
including ours, small visual artifacts can be found. However,
we focus here on evaluating the geometric consistency of the
results, which is the primary goal and contribution of our
method.

Each retargeted stereo image pair gives rise to a new retar-
geted scene, which is represented by a disparity map between
the retargeted images. Figure 17 presents the disparity maps
computed by SGM on the input images, and the retargeted
pairs obtained by our method, Chang et al. [12], and Lee
et al. [13]. As can be seen, the disparity maps computed
on Chang et al.’s images (Figure 17c) are noisy and contain
significant artifacts of both background and foreground objects
(e.g., the man on the right in the People dataset result).
Lee et al.’s disparity maps (Figure 17d) are less noisy, but the
depth values and the 3D structure of the 3D scene are often
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Results using SGM Results using GT
Input 17% 25% 35% Input 17% 25% 35%

Fig. 14. The results on the Cloth and Wood datasets for shrinking the image width by: 17%, 25% and 35%. On the
left column, the input disparity maps were computed by SGM stereo algoithm. On the right column, the results w.r.t.
left column using the ground truth disparity maps as input.

considerably distorted compared to input disparity map. For
instance, the change of depth values of the foreground men in
the People dataset (first row), and the depth change of the face
in Diana dataset (last row). Another visual artifact can be seen
in the results on the Man dataset (second row), the 3D structure
of running track background (see Figure 12), is significantly
bended in Lee’s result. None of these artifacts, 3D distortions
or noise exist in our results. This comparison demonstrates that
neither methods [12], [13] obtained geometrically consistent
disparity maps that preserve the original depth values. The
depth distortion score for their results cannot be computed
since the mapping between the retargeted and input images is
not available.

A comparison to Utsugi et al. [14] is presented in Figure 7.
As can be clearly seen, the appearance of their retargeted
images is considerably distorted compared to our results.

6.9 Depth Perception

As demonstrated so far, our method obtains geometrically
consistent results, while preserving the original depth values
of the 3D structure of the scene. This implies that the depth
of the new, retargeted scene should be perceived as similar to
the depth of the original scene. To confirm this property, we
use anaglyph (red-green) images to perceive the depth of the
retargeted 3D scene (see Figure 16).

The perceived depth is often affected by single image 3D
cues such as perspective or prior knowledge of the objects’
3D shape. In order to reduce the influence of such cues, we
generated a synthetic scene which consists of a background
plane and a foreground frame. Both the foreground and
the background scene are rendered with the same texture.
Figure 15 shows, from left to right, the anaglyph input
image, our results for 30% and 50% reduction in the width,
and the comparison to the independent single image seam
carving. Viewing these images in 3D using red-green glasses
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Fig. 15. Stones Dataset. Anaglyph images of the input stereo pair, our results for 30% and 50% reduction, and the

results of independent single image seam-carving; the images should be viewed with a red-green glasses .

demonstrates that the perceived depth of the retargeted images
is similar to the original one (see also Figure 15). Furthermore,
when considering the result of independent image retargeting,
it is clear that the perceived depth is significantly distorted. The
distortion becomes progressively more severe as more seams
are removed, until it is impossible to perceive depth. However,
it is important to note that our brain can often compensate
for the resulting distortions, depending on the 3D structure of
scene, the type of objects and other 3D cues.

7 CONCLUSIONS & FUTURE WORK

We extended seam carving to work on a stereo image pair.
Retargeting each image independently will distort the geo-
metric structure. We have shown how to extend single image
seam carving to work on a pair of images, and proved that
the proposed algorithm is guaranteed to give a geometrically
consistent result. The retargeted images can thus be viewed
on a stereoscopic display or processed by any computer vision
algorithm. We demonstrated the advantages of our method on
several challenging stereo images, and compared it to current
state-of-the-are stereo retargeting methods.

In addition to single image seam carving limitations, our
method also affected by the quality of the input disparity map
and the amount of occluding and occluded pixels. Both are
affected by the texture, the camera locations, and the 3D scene.
Another limitation of stereo seam carving is that it can be
applied only on rectified stereo pair, and can remove only
vertical seams (see Section 4). To reduce the image height, it

is necessary to extend the image width and then apply uniform
resizing of the image.

On the positive side, in addition to the guaranteed geometric
consistency, our method takes advantage of both appearance
and depth cues and obtain small appearance distortion in image
of scenes that are difficult to deal with using a single image
seam carving.

Possible future extensions of our method include exten-
sion to stereoscopic video, implementation on smartphones
equipped with a stereo camera and 3D display, incorporating
depth based saliency map. Another interesting direction is
establishing a benchmark for stereoscopic retaregting and
editing as well as conducting an in-depth user study for
evaluating the depth perception.
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