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ABSTRACT

Histogram Matching (HM) is a common technique for find-
ing a monotonic map between two histograms. However, HM
cannot deal with cases where a single mapping is sought be-
tween two sets of histograms. This paper presents a novel
technique that finds such a mapping in an optimal manner un-
der various histograms distance measures.

1. INTRODUCTION

In many scientific disciplines there is a need to determining
a monotonic mapping between two discrete sequences (i.e. a
mapping that maintains the internal order of the sequence el-
ements). A classic example is color calibration between two
images. In this case, one wishes to remap the tones (inten-
sities) of one image to another image, while maintaining the
shadow regions darker than the highlights.

When two images are captured from the same view-point
but at different times or using different camera parameters,
color calibration between the images can be found directly
from their color pixels [1]. In this case, one wishes to find a
monotonic color map that optimally fits the pixel colors in the
source image to their corresponding pixel colors in the target
image. As pixel correspondences between the two images
are used for calculating the color map, spatial information is
exploited. We consider such solutions as spatial approaches.

In more challenging cases, the images were acquired
under different view-points, thus, pixel correspondence is
not directly available and difficult to extract. In such cases,
color mapping is commonly calculated from the images’
histograms where only statistical information is considered
while spatial information is ignored. We consider solutions
of this type as statistical approaches. Clearly, such a solu-
tion is inferior to the spatial approaches and may suffer from
inaccuracies.

In this paper we propose to exploit spatial as well as sta-
tistical information for color calibration. The main idea is to
divide the images into a set of local regions and construct a
local histogram for each region. Such local histograms are
insensitive to small geometric deformations. We construct a
histogram correspondence such that for each local histogram
in one image a corresponding histogram in the other image
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is determined. Histogram correspondence can be obtained ei-
ther by calculating a rough geometric transformation between
the images or by corresponding image regions using local fea-
tures such as SIFT or SURF [2, 3]. Given two sets of local his-
tograms, one set for each image, along with a correspondence
between the histograms, an optimal monotonic color mapping
is calculated to simultaneously satisfy the entire set of his-
togram pairs. This approach enables, on one hand to handle
inaccurate geometric transformation by considering statistical
information (histograms), while on the other hand to exploit
spatial information as the histograms describes local statistics.

Histogram Matching (HM) [4, 5] is a common approach
for finding a monotonic mapping between a pair of his-
tograms. Given two histograms (PDFs) the algorithm finds
a color mapping that optimally transforms one histogram to-
wards the other. HM is a simple yet very effective algorithm,
however it suffers from a number of shortcomings: First, it is
limited to only two histograms and cannot deal with multiple
histograms simultaneously. Second, HM approximates the
optimal solution with respect to the L1 norm over the cu-
mulative histogram pair [6, 7, 8], but is unable to provide an
optimal solution for other metrics. Finally, the HM solution is
designed for continuous PDFs and may produce non optimal
solutions in the discrete histogram case.

In this paper, we propose a new algorithm that generalizes
HM in a number of ways. First, the algorithm can find a sin-
gle monotonic mapping between multiple pairs of histograms
such that the mapping will satisfy all pairs simultaneously.
Second, the algorithm can work with any distance metric as
long as it is additive (such as L1, Lo, KL, XQ, histogram inter-
section, etc.). Finally, the algorithm can work with distance
metrics defined over histograms as well as cumulative his-
tograms providing the optimal solution. Since the algorithm
generalizes the traditional Histogram Matching we term it
Generalized Histogram Matching (GHM). Formally, we con-
sider the following scenario:

1. Given two images I, and I, we divide the two images
into k distinct sub-images. For each sub-image we calcu-
late a local histogram resulting in two sets of histograms
A = {a;}}_, for image I, and B = {b;}%_, for image I,
such that a; corresponds to b;, ¢ = 1..k. We do not constrain
corresponding histograms to have the same number of bins,



thus the two sets can discretize the continues range of gray-
values with different quantizations bins.

2. A distance measure d(-, -) between two histograms (with
the same number of bins) is given. We assume d is ad-
ditive, i.e. for any two histograms, a and b, d(a,b) =
>, d(a(i),b(z)) , where d(a(i),b(i)) is a bin-to-bin dis-
tance! Accordingly, for two sets of histograms .4 and B, the
distance is defined as a sum of distances over all histogram
pairs:

d(AB) = Y

a, €A b, eB

d(ai7 bz)

3. W.Lo.g. we seek the optimal color monotonic mapping M
applied to image I, so that its resulting sub-image histograms
M(A) will be as close as possible to 5. Formally speaking,
we are looking for M minimizing the following distance:

E(M) = d(M(A),B))

In the following we present an efficient method for finding
the optimal monotonic mapping M™* under a given distance
measure d. The algorithm minimizes the (possibly weighted)
sum of distances over all histogram pairs at once using dy-
namic programming. We do not restrict the distance measure
to be [; or I3 norms and we can deal with any additive dis-
tance. Additionally, the approach is easily extended to deal
with distances defined between two sets of cumulative his-
tograms (CDFs). Such distances are especially interesting as
they were shown to be analogous to the Earth Mover Distance
(EMD) in the 1D case [9, 8, 7].

2. MAPPING AS ROW TRANSFORMATION

Let the two sets of histograms {a; }¥_, and {b;}%_, be repre-
sented by two matrices as follows: A = [aj, as,--- ,a;] and
B = [by, b, -+ ,bg]. We do not constrain the two sets to
have the same number of bins, thus, A is a n x k matrix and
B is m x k. We define an auxiliary matrix A to be of same
size as B. We will apply the mapping operator from A to A,
while aiming to minimize the distance d(A, B). Mapping the
tone-value of bin ¢ in image I, to the tone-value of bin j in
image I, implies that the entire row ¢ from A is mapped to
row j in A. Thus, color transformation applied to I, can be
regarded as row transformations applied to A and resulting
in A. Observe that multiple source rows are allowed to ag-
gregate into a single destination row (many-to-one mapping),
however, splitting a source row into several target rows is not
allowed. If the mapping does not map any of the source rows
to any particular target row, this target row remains zero.

The above definition of row mapping allows us to intro-
duce the mapping operator M as a matrix multiplication:

A=MA

ITo simplify notations we denote bin distance and histogram distance
with the same symbol d.

\ 1
-

Fig. 1. Left: A monotonic mapping matrix along with the
mapping results drawn with arrows. Right: A non monotonic
mapping matrix and its arrows. In this example m = n = 4,
and k = 1.

where M is an m X n matrix, whose entries are all zeros, ex-
cept for a single element in every column, whose value is 1.
We will call this element the column’s indicator. An indicator
existing at M (4, ) will accumulate the entire row j in A into
row i in A. We denote by () the entry number in which
the indicator appears in column j, namely, M (i, ) = 1 gives
that 7ps(j) = ¢. Since mappings are restricted to be mono-
tonic we require that

v (j) > e (j') for j >4 )]

i.e. if any row j in A is mapped to some row i in A, then all
rows j' < j must be mapped to rows i’ < i (see Figure 1).
Thus, matrix M can be seen as a matrix of zeros, except for
a ’seam” of indicators, crossing it from left to right in a non-
increasing manner. Denote by S the set of all monotonic ma-
trices as defined above. Our goal is to find an optimal map-
ping matrix M € S that minimizes the objective function:

M* = arg ]{Ijlé% d(MA, B) (2)

3. THE GENERALIZED HISTOGRAM MATCHING

As defined above, each column of the mapping matrix M
must have exactly one indicator. Due to the monotonicity
of M, each row must satisfy the following two conditions:
First, given an indicator existing at M (4, j), no indicator can
appear neither at the lower-left sub-matrix of M (4, j), nor at
its upper-right sub-matrix (see Figure 2-c). The second con-
dition is that if there are several indicators in a certain row,
they must be consecutive, otherwise the previous condition is
violated.

The above two conditions of the mapping matrix M
allows for an efficient calculation of the optimal path of indi-
cators. The outline of the algorithm goes as follows:

1. During the process two auxiliary matrices, 7" and C,
are maintained. The matrices are of the same size as M. We
use 7' as the trace-back matrix, helping to keep track of the
optimal path of indicators, while C' is used as the cost matrix
such that each cell, C(4, j), represents the best cost achiev-
able by a partial path of indicators starting at the first row and
ending at the i row, given that the right-most indicator in



this path is at column j.

2. A row-by-row scan of matrix C is performed, starting
at row ¢ = 1, and calculating the cost values for every entry
C(i, 7). In the first row, C(1, j) is evaluated as follows:

C(1,j) = RowCost(1,1---7) and T(1,5) =0

where RowCost is defined as:
k
RowCost(i,j---k) =d Z A(p,-), B(i,-)
p=j

That is, RowCost(i,j---k) calculates the additional cost
of mapping rows j - -k in A into row ¢ in B. In matrix M
this is represented as a sequence of consecutive indicators in
M(i,j...k) (see Figure 2-b).

3. For the following rows, each entry C(4,j), i =2...n,j =
1...m, is calculated by seeking the optimal indicator path
admissible by C(i, j). At this point we exploit the additivity
of the distance measure and calculate the optimal path using
the values in C(¢ — 1,-). For each C(i, j), the optimal con-
necting indicator path starting at row ¢ — 1 and ending at row ¢
is sought (Figure 2-b). This search is performed by scanning
all values of C'(i — 1,5"), 1 < j' < j, and adding the cost
for completing the path with consecutive indicators in row i:

C(i,j) = ?/151{6’(2 —1,5") + RowCost(i, (5" +1)...5)}

In order to keep track of the optimal path, the optimal index
of j' is stored in the trace-back matrix, at 7'(7, j). Since eval-
uating a row in 7" and C only requires data from the previous
row, C' and T can be evaluated using a linear top-down and
left-to-right scan. Figure 2-b shows a situation where for
C(i, ), the optimal connecting indicator path was chosen to
initiate from (¢ — 1, j'). Thus, T'(7, j) was associated with j'.
As aresult, if location (i, j) will be included in the final path,
a sequence of j — 5’ indicators will be inserted in the ¢’th row
of M.

4. The process terminates when all costs are filled in C.
The optimal cost over all possible paths can be determined
from C(m,n), and the optimal path of indicators is con-
structed by tracing back from T'(m, n) up to the first row of
T'. The transformation matrix M is then populated by filling
in indicators according to the constructed path.

Since the distance is assumed to be additive, partially op-
timizing the distance function (over only some of the rows
of M) still leads to a global minimum of the total cost at the
end of the procedure, as performed in standard Dynamic Pro-
gramming schemes. Therefore, this algorithm can work with
any additive distance and outputs the optimal transformation
matrix.
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Fig. 2. (a) Information propagation in the C matrix. The
cell (3,4) considers the 4 cells above it as optional sources.
(b) Computing the optimal indicator path for entry (3,4)
given the choice of (2, 1) as the source of the path, requiring
4 — 1 = 3 consecutive indicators in row 3. (c) In a mono-
tonic permutation matrix, every indicator has no indicators in
its upper-right and lower-left submatrices (shadowed). Addi-
tionally, the indicators in every row are consecutive. (d) An
example of mapping matrix M and its corresponding map-
ping matrix applying to CDF.

3.1. Runtime and Memory Complexities

As the auxiliary elements in the algorithm include 7" and
C, the memory consumption is linear in the mapping matrix
size, i.e. O(mn). As for running time, in the most general
case, running time is O(n?m), as the rows are scanned once
(1...m), and for every row, a double loop (1...n) of j and
j' is performed.

In the next section, we show that when adopting the al-
gorithm to work on cumulated density functions, the runtime
can be further reduced to be as low as O(mn).

3.2. Using the Algorithm on Cumulative Histograms

To extend the algorithm to cumulative histograms (CDFs), let
us first define the integration matrix H to be a lower trian-
gular matrix of ones, namely: H(i,j) = 1,if ¢ > j, and 0
otherwise. To convert a set of normalized histograms (PDF
set) into cumulative histograms (CDF), one may multiply it
by H. Thus, we now change the objective function, and seek
for the optimal M™* to satisfy:

M* = arg min d(HM A, HB) 3)
Since H is a full rank matrix we may write:
d(HMA,HB) = d(HMH 'HA,HB) = d(MHA, HB)

It is easy to verify that M = HMH ™" is a matrix of zeros
except for a single indicator in each row with value 1. In the
i" row the indicator appears at column ¢ (i) where:

¢(i) = argmax{m (i') < i}



Meaning ¢(7) returns the largest column index of the indi-
cators in the first ¢ rows in M (see example in Figure 2-d).
Therefore, we can use an algorithm similar to the one used
for histograms, but instead of working with histogram ma-
trices A and B, we work with cumulative matrices H A and
H B, respectively. Instead of searching for a sequence of in-
dicators in M, we are looking for a single indicator in each
row of M, still in a non-decreasing column index. Due to the
monotonic non-decreasing property of the CDFs themselves,
and due to the fact that we only choose a single indicator, we
can run the algorithm even faster.

The cost calculation for finding C'(4, j) involves two parts:
The cost caused by setting an indicator in column j, and the
cost originated from the previous row, i.e. min;<; C(i —
1,"). The latter can now be calculated efficiently for each j
by a single comparison. This reduces the runtime to be linear
in the of number of elements in C, i.e O(mn).

4. RESULTS

In order to demonstrate the advantage of GHM we evaluate
the behavior of GHM at different number of histogram pairs
and compare it to a couple of common alternatives. The first
alternative is to average all histograms together and apply
the standard HM to the histogram mean. This approach is
commonly used for finding inter camera Brightness Transfer
Function (BTF) [10]. The BTF is eventually a color map used
to match images taken by two cameras. The second alterna-
tive is to compute the mapping for each pair of histograms
independently, then average the mappings. This termed Mean
Brightness Transfer Function (MBTF) [10]. The last alterna-
tive is the mapping method suggested by Porikli [11].

A source image of a static scene was taken using some
“wrong” white balancing settings. The target image had the
“correct” white balance, but the scene is slightly different. A
ground-truth image is supplied for comparison. The setup is
shown in the top row of Figure 3. We used the color his-
tograms (each color band independently) to correct the colors
of the source image, despite the changes in the scene. For
comparison, the RMSE between the mapped and the refer-
ence images were calculated. All images of the scene are
fairly aligned, so in order to get multiple histograms, the im-
age was arbitrarily divided into square patches. This provides
multiple histogram sources, and avoids the need for exact im-
age registration. Patches or regions where the images are dif-
ferent are considered outliers, and we expect our method to
properly calibrate the colors, despite those outliers.

The number of patches produced by the image division
is a parameter that can be tuned. Setting it to 1, results in a
single histogram pair, making GHM, MBTF and HM behave
almost identically. As the number of patches is increased, the
differences between the algorithms begin to emerge. Figure
3 shows a visual comparison between GHM, MBTF [10] and
Porikli’s method [11]. Note that MBTF deteriorates drasti-
cally when the number of patches increases, as small patches

usually have sparse histograms, providing less information
about the mapping outside their regions. Porikli’s method
demonstrates less sensitivity to the number of patches but,
unfortunately, it produces poor looking results. The GHM
results shows the advantage of dividing the image into mul-
tiple patches. It shows a perceptually better results when in-
creasing the number of patches. Figure 4 shows RMSE be-
tween the reference and the mapped source vs. the number
of patches. The graph is averaged over 6 sets of images, after
dividing RMSE by the HM’s result. It is demonstrated that
GHM outperforms the other tested approaches.
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Fig. 3. Top: source, target and reference images. The goal is
to map the colors of the source image, using the target image.
Below it are the results of MBTF, Porikli, and GHM for 6 and
192 patches (marked with a red grid).
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Fig. 4. RMSE relative to HM as a function of the number of
patches. The error was averaged over 6 different scenes, such
as shown in Figure 3.

5. CONCLUSIONS

We proposed a new algorithm, termed Generalized Histogram
Matching (GHM), to find a monotonic mapping between
two sets of images using their histograms. It extends His-
togram Matching in three ways: (1) it can handle multiple
histograms, (2) it can work with any additive distance metric
(3) it can work either with PDFs or CDFs.
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