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Figure 1: The multi operator algorithm uses dynamic programming to find the optimal combination of retargeting operators. Here we show
a comparison of several methods. The original image (left) is retargeted using: simple cropping, uniform scaling, seam carving [Rubinstein
et al. 2008], non-uniform warping [Wang et al. 2008] and our multi-operator algorithm. In this example, the multi-operator algorithm
combines cropping, scaling and seam carving to optimize our new image-to-image similarity measure, termed Bidirectional Warping (BDW).
The algorithm can use other retargeting operators and similarity measures.

Abstract

Content aware resizing gained popularity lately and users can now
choose from a battery of methods to retarget their media. How-
ever, no single retargeting operator performs well on all images and
all target sizes. In a user study we conducted, we found that users
prefer to combine seam carving with cropping and scaling to pro-
duce results they are satisfied with. This inspires us to propose an
algorithm that combines different operators in an optimal manner.
We define a resizing space as a conceptual multi-dimensional space
combining several resizing operators, and show how a path in this
space defines a sequence of operations to retarget media. We de-
fine a new image similarity measure, which we term Bi-Directional
Warping (BDW), and use it with a dynamic programming algorithm
to find an optimal path in the resizing space. In addition, we show a
simple and intuitive user interface allowing users to explore the re-
sizing space of various image sizes interactively. Using key-frames
and interpolation we also extend our technique to retarget video,
providing the flexibility to use the best combination of operators at
different times in the sequence.

Keywords: media retargeting, multi-operator, resizing space, bi-
directional warping

1 Introduction

Media retargeting has become an important problem due to the di-
versity of display devices and versatility of media sources for both

images and video. Recently, content aware methods such as seam
carving and non-uniform warping were proposed to supplement
content oblivious methods such as scaling or cropping. A content
aware retargeting operator relies on an importance map to preserve
the important parts of the media at the expense of the less-important
ones. Importance measures include image gradients, saliency and
entropy, as well as high level cues such as face detectors, motion
detectors and more.

However, content aware methods do not succeed in all cases and for
all sizes. For example, in case the important object occupies large
portions of the image or video frame, content aware resizing might
distort it. Often, the best resizing method depends on the image
itself: one method might work best on one image, while another
on a different image. In such cases using a combination of several
methods (operators) might achieve better results than any specific
one alone (Figure 1). In this paper we propose to combine several
operators together, instead of searching for the best operator that
will work on all images. Our approach is supported by a user study
we conducted that clearly shows that users prefer to use more than
one operator to achieve better results.

We first define the resizing space as a conceptual multi-dimensional
space combining several retargeting operators. Each axis in this
space corresponds to a particular type of operator, and a point in
this space corresponds to a particular target image size. A path in
this space defines a sequence of operations that retargets an image
to a particular size (Figure 4). Many paths arrive at the same point,
meaning that there are many ways to retarget an image to a par-
ticular size. But not all paths are created equal because resizing
operators are not commutative (e.g. scaling followed by cropping
is different from cropping followed by scaling).

To combine several operators there is a need to compare and evalu-
ate different retargeting results. Hence, we need some global sim-
ilarity measure between the source and target images. And given
the similarity measure, we need an algorithm that maximizes this
measure by finding the best path (i.e. sequence of operators) to the
respective point in resizing space.

In this paper we propose a novel similarity measure between im-
ages that we term Bi-Directional Warping (BDW). This measure



is based on a non-symmetric variant of Dynamic Time Warping
(DTW) [Sakoe 1978]. DTW takes two 1D signals (e.g. rows or
columns of pixels) and finds the best non-uniform alignment be-
tween them, subject to order constraints. To measure the similarity
between two images, BDW measures the similarity between every
row (or column) and then takes the maximum alignment error as the
distance. We also extend the measure to work on a row (or column)
of patches instead of pixels, as patches can better capture spatial
information.

There are infinitely many paths that can be used to retarget an im-
age. Unless mentioned otherwise, we focus on monotonic paths,
i.e. paths where all operators either increase the size of the image,
or decrease it, but not both. Of all the monotonic paths, we consider
two types of paths that we term regular and mixed. A regular path is
composed of consecutive single operator sequences, one per opera-
tor (e.g. first apply seam carving, then cropping and finally scaling).
In this case, the only question left is how many times to apply each
operator in the retargeting process? The search space is polynomial
in the image size and can be enumerated to find the optimal regular
path. However, in a mixed path, the order of the operations, as well
as the number of times each operator is used is not fixed. Hence,
the search space is exponential in the image size. However, using a
simple assumption we show a polynomial algorithm that automat-
ically determines the optimal mixed multi-operator path. In both
cases the search space is exponential in the number of retargeting
operators. Nevertheless, the number of operators is typically very
small (say four operators), making the solutions tractable.

It is worth noting that the multi-operator algorithm can work with
various image similarity measures as well as different retargeting
operators. Regular paths can also be controlled by the user and we
show a simple user interface for image retargeting. Finally, we ex-
tend the regular path approach to video retargeting by interpolating
paths between key-frames. This approach provides the flexibility
to use the best combination of operators at different times in the
video. We demonstrate our approach for high quality reduction and
expansion of images and videos.

Our main contributions are as follows, 1. We show that using sev-
eral operators can potentially give better results for retargeting than
using a single operator, 2. We present a new global measure, Bi-
Directional Warping, to assess the retargeting results, 3. We give
an algorithm for finding an optimal multi-operator retargeting se-
quence under some assumptions, 4. We describe an intuitive user
interface that helps users combine multiple operators interactively,
and 5. We show how our method is extended to support multi-
operator video retargeting.

2 Background

Content-aware retargeting has drawn a lot of attention in recent
years. Most methods proposed use a two-step approach where first
some saliency or importance map is created from the media and
then a resizing operator is applied based on this map. As our work
concentrates on combining multiple operators and not on saliency,
we focus on the different types of operators for resizing media.

Cropping was used by Suh ez al. [2003] for automatic thumbnail
creation, based on either a saliency map or the output of a face
detector. Similarly, Chen et al. [2003] considered the problem
of adapting images to mobile devices, by automatically detecting
the most important connected region in the image and transmitting
it to the mobile device. Liu er al. [2003] also addressed image
retargeting to mobile devices, suggesting to trade time for space.
Given a collection of Regions Of Interest (ROI), they construct an
optimal path through these regions and display them in a consecu-
tive manner. Santella et al. [2006] use eye tracking, in addition to

composition rules to crop images intelligently. Setlur ez al. [2005]
use segmentation and re-composition for non-photorealistic retar-
geting.

Several different methods could be characterized as non-
homogeneous scaling. Liu and Gleicher [2006] find the ROI and
construct a novel Fisheye-View warp that essentially applies a
piecewise linear scaling function in each dimension to the image.
This way the ROI is maintained while the rest of the image is
warped. In their video retargeting work they use a combination of
cropping, virtual pan and shot cuts to retarget the video frames. Gal
et al. [2006] solve the general problem of warping an image into
an arbitrary shape while preserving user-specified features. The
feature-aware warping is achieved by a particular formulation of
the Laplacian editing technique, suited to accommodate similarity
constraints on parts of the domain. Wolf er al. [2007] extend this
approach to video using non-homogenous mapping of the source
video frames to the target resized frames. They use a combination
of motion detectors and face detectors to define the saliency map.
A different approach presented by [Wang et al. 2008] partitions the
image into a grid mesh and deforms it to fit the new desired dimen-
sions. Important image regions are optimized to scale uniformly
while regions with homogeneous content are allowed to distort.

Recently, several works used the seam carving operator originally
proposed by Avidan and Shamir [2007] to resize images in a con-
tent aware fashion. They use dynamic programming to find the
optimal seam in an image according to some image energy map
(usually based on the gradient field of the image). The seams can
be removed for shrinking images, or duplicated for expanding them.
Later, this work was extended by Rubinstein et al. [2008] for video
retargeting. The dynamic programming was replaced by a graph
cut approach and a new image energy was proposed that creates
less artifacts in the resulting media. Graph cuts were also used by
Chen and Sen [2008] for temporally resizing video.

In cases where one of these operators does not perform well, it
might be better to use another or revert to simpler resizing methods
such as cropping and scaling. On the one hand the latter methods
are not content aware, but on the other, they can be considered less
harmful as they do not distort the media. The key question is how to
decide when one operator fails, and which operator to use instead?

Some measures were suggested, for example, by Avidan and
Shamir [2007] to indicate the order of seam carving by their cost.
However, we have not found this cost to be indicative for measur-
ing retargeting quality. Moreover, similar measures are not easy to
find for other operators. We follow more global measures such as
the bi-directional similarity [Simakov et al. 2008] and inverse tex-
ture synthesis [Wei et al. 2008] that define image similarity. Two
images S and T are considered visually similar if all patches of S
(at multiple scales) are contained in 7', and vice versa. Although
this approach is effective on several applications for summarization
and synthesis, it does not preserve the order of elements inside the
image. Trying to match two images while preserving full order is
a difficult problem [Keysers and Unger 2003]. Still, using some
constraints we present a variant of Dynamic Time Warping [Sakoe
1978; Uchida and Sakoe 1998] that can be utilized to measure re-
targeting quality.

3 The User Study

Our basic hypothesis in this work is that using multiple operators
for resizing images is often better than using a single one. To assess
this hypothesis we conducted an experiment where users are given
the option to use a combination of three operators: seam carving,
cropping and scaling, including also the option of using just a sin-
gle one. We present users with an original image in one window,
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(a) The mean of the ratio of operators used for retargeting each
image using multiple operators. Although the ratio depends on the
image, in all cases, when given the option, users combine several
operators to achieve better results. Users were asked to rate the
results between 1 — 10. As can be seen most users were satisfied
with the retargeting results (average 7.7). For image enlargement
(the first three results) only seam carving and scaling were allowed.
Some of the actual images are shown below.
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(b) Comparing the maximum number of adequate seam removals
(or insertions) to the actual number when using multiple operator
retargeting. The mean values of the overlapping participants and
images in both experiments are shown. In most cases, users prefer
switching to other operators for retargeting even though the seam
carving results were rated as adequate. Note that when images are
enlarged, i.e. seams are inserted (first three results), the numbers
are much closer, and in one case the number is even slightly larger.

Figure 2: A user study of 50 participants clearly indicates that combining multiple operators can be beneficial for retargeting.

and in another window, a resized image that is either reduced or
enlarged in one dimension to a fixed size (the change in size was
between 30% to 60% of the original size). We specifically chose
images that contain either structure or content that presents diffi-
culties for existing methods. The resized image is retargeted using
a combination of the above three operators using regular sequences.
For example, to reduce the width of an image by n pixels, first nq
seams are removed, then na columns are cropped from the left and
right sides of the image and lastly the image is scaled by ns pix-
els, where n1 + n2 + n3 = n. Users were asked to change the
ratio between n1, n2, and n3 interactively using a scroll bar while
examining the resulting image, until they reach the best results for
the given fixed size. Note that for image enlargement only seam
carving and scaling were used while the ratio between them could
be changed. The user interface itself is described later in Section 7.

Figure 2(a) summarizes the results of this experiment for 50 partici-
pants. Most participants were computer-science students or graphic
designers. They were asked to rate their graphical background level
from novice to expert: 28 rated themselves as novices, 15 as inter-
mediates, and 7 as graphic experts. 22 images of different nature
were used in the experiment (Figure 2 bottom). As can be seen
from the combined mean results (no significant differences were
found between the groups) we have n; > 0 forall ¢ = 1,2,3.
Moreover, for almost all images and all participants we had n; > 0
for all 7. In general, this suggests that better results are achieved
using a combination of more than one operator.

In a different experiment, users were given the option to change
the size of an image using seam-carving alone and were asked to
minimize (or maximize) the width (or height) of the image as long
as the resulting image appears visually adequate. Figure 2(b) com-
pares the mean of the number of seams removed (or inserted) in this
experiment to the number of seams actually removed (or inserted)

while using multiple operator resizing on the same images in the
first experiment. Results clearly show that although users were sat-
isfied with the quality of removing (or inserting) more seams from
an image, they still preferred using other operators while retargeting
the image to achieve better visual results.

4 The Resizing Space

4.1 Multi-Operator Sequences

We define a retargeting operator O as a procedure that reduces or
enlarges an image either in its width or its height, while preserv-
ing its rectangular shape. We concentrate on retargeting operations
that are discrete and separable (in dimension). This means that the
atomic operation in our setting is adding or removing one pixel to
the width or the height of the image. Two dimensional resizing
can be treated as a sequence of width and height resizing, which
means that different operators can be used for different dimensions
(e.g. use scaling for height change and seam carving for width
change). In this paper we use bi-cubic scaling (SL), cropping (CR)
and seam carving (SC). This particular combination seems promis-
ing, as these operators take somewhat complementary approaches
to resize media. Using other operator combinations is left for future
work.

Not all retargeting operators can actually support enlarging. For
instance, cropping is usually used only for reducing image size.
However, for the sake of completeness we define crop-enlarging
as adding a black frame to an image (letter-boxing). Similarly, to
make cropping separable, we remove rows or columns from the im-
age borders independently. We also choose the sides separately, for
instance, either the left or the right column is removed depending
on which has the lower cost. Scaling can support separable and dis-
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Figure 3: Different multi-operator sequences create a variety of results for retargeting the width of an image: (a) original image, (b-f) results
using the following sequences respectively: (0 - SC,—178 - CR,0 - SL), (0 - SC,0 - CR, —178 - SL), (+48 - SC,—149 - CR, —77 - SL),

(=30-SC,—148 - CR,0 - SL), (—32 - SC,0 - CR, —146 - SL).

Figure 4: An example of a resizing space of an image using only
changes in width by scaling, cropping and seam carving. Different
retargeting results can be achieved using different multi-operator
sequences represented by paths in the space.

crete resizing, but scaling an image by one pixel k-times is inferior
to scaling by-£ at once. Hence, whenever applicable we perform a
scale by-k instead of applying k 1-pixel scalings.

Combining several operators together in an ordered sequence is a
multi-operator sequence. Note that a certain type of operator can
appear multiple times in different places in the sequence; in some it
can be used to enlarge the image and in others to reduce it, and also
in different directions (width and height). Figure 3 shows exam-
ples of different multi-operator sequences that create different valid
variations for retargeting an image.

4.2 The Resizing Space

For a given image I of size (w, h) we define the resizing space ®
as the space spanned by any subset of n types of retargeting op-
erators, each one in two directions - width and height. Hence, the
dimension of this space is at most 2n. A multi-operator sequence
defines a directed path in this space beginning at the origin and fol-
lowing the path’s operator sequence using integer steps. One step
in the operator sequence is equivalent to a step either in the posi-
tive or negative direction of the respective operator axis, which can
change either the width or the height of the image. Since only in-
teger steps are used, we treat the resizing space as a lattice rather
than a continuous space (Figure 4).

For a k-dimensional resizing space, k£ < 2n, a point on this lattice
p € &,p = (p1,...,pk),pi € Z, represents the set of images
{I'} whose dimensions are (w’, h") where w' = w + >, p}’ and
R =h+ > p’, and p}’, p}} are the coordinates in (p1,...,pk)
representing operators that change the width or height respectively.
These coordinates can be positive as well as negative to signify en-
largement or reduction of size. There is an infinite number of such
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Figure 5: Retargeting using seam carving can destroy image con-
tent (a-b). Examining the seam cost function (c) as in [Avidan and
Shamir 2007] one cannot anticipate when foreground objects are
distorted. If we track not only the actual cost, but also the differ-
ence in the cost of removing seams, we can find seams that pass
through the main object (d) but have smaller cost and smaller dif-
ference in cost than seams that pass only through the background
(e). We experienced similar behavior when using the maximal pixel
energy along a seam instead of average. Hence, seam cost cannot
be used as a measure for retargeting quality.

images for each point p in the resizing space since there is an infi-
nite number of paths starting at the origin and ending at p. All such
paths define multi-operator sequences where the change of width
or height by each specific operator ¢ is fixed and amounts to the
coordinate p;. However, the order of applying the operators can be
different. To complicate things further, there is an infinite number
of points g € ® that represent images of dimensions (w’, k'). For r
horizontal operators and ¢ vertical operators (r 4+ t = k), these are
points for which }__ | pi’+w—w’ = 0 and 22:1 pl+h—h =0.
Each of these equations represent ar + ¢ — 1 = k — 1 dimension
hyperplane in the k-dimensional resizing space, the intersection of
which is a hyperplane of dimension k — 2 (for r, ¢ > 0). All points
in this subspace represent images of the required size, where the
difference between them is in the amount of applying specific op-
erators (i.e. the ratio between them). Our main goal therefore, is to
find the best path from the origin to one of these points, subject to
some global image similarity measure.

5 Bi-Directional Warping

5.1 Motivation

As a motivating example, consider the task of combining seam
carving and scaling. One way to combine the two is to start
with seam carving and then switch to scaling when the cost of a



(e) 8 x 8 matching patches (f) 16 x 16 matching patches

(g) 32 x 32 matching patches

(h) Distance map of 8 x 8 patches

Figure 6: Finding the optimal match using Asymmetric-DTW of image (b) to image (a) using different patch sizes (d)-(g). The element-wise
distance function d() was taken as the L;-norm of RGB differences. Note that black pixels represent gaps in the matching. The distance itself
is defined as the average or maximum of the cost of matching each element (h).

seam goes above a certain threshold, as this might indicate that
seam carving starts introducing visual artifacts. In fact, Avidan
and Shamir [2007] used the seam cost to find the optimal “multi-
operator” sequence using just seam-carving to change both the
width and the height of an image. Unfortunately, in our experiments
we found that the seam cost is not very indicative of the quality of
retargeting. It is a monotonically increasing function (with some
local fluctuations), and usually does not contain steps that indicate
when “bad” seams are removed. Figure 5 illustrates this with a
specific example. Hence, to combine seam carving with scaling the
seam cost should not be used. In the case of other operators, such as
cropping and scaling, even the definition of an effective cost for the
operator is not immediately clear. So instead of dealing with each
potential operator independently, we need a global objective func-
tion that will allow us to combine operators in a principled manner.

We define the cost of applying an operator as the difference between
the resulting image and the original image. Although the definition
of distance between pair of images is an ongoing research prob-
lem for many years, in our setting there are several simplifying fac-
tors. First, we know that the target image is a resized version of the
source image and aspires, by definition, to preserve its content as
much as possible. Second, each application of an operator changes
the image size in one direction. We define our objective function as
a bi-directional relation between the images [Simakov et al. 2008]
that conforms to the above constraints. Specifically, we account for
the first factor by enforcing order on this relation.

The resulting similarity measure, which we term Bi-Directional
Warping (BDW), uses a variant of Dynamic Time Warping (DTW)
that is geared specifically to the problem of media retargeting.

5.2 Dynamic Time Warp

Dynamic Time Warping (DTW) [Sakoe 1978], is an algorithm for
measuring similarity between two one-dimensional signals or time-
series. It has been previously applied to various applications in
video and images, and is extensively used with audio signals for

speech recognition. The DTW algorithm finds the optimal match-
ing between two 1D sequences ¢ and s by non-linearly warping
the one to the other, under several constraints: (1) boundary con-
straints: the first and last elements of ¢ must be matched to the
first and last elements of s, respectively, (2) all elements of ¢ and
s must be used in the warp path, and (3) the warp must be mono-
tonic, meaning that matching cannot go backward, thus preserving
the sequence order. It is easy to see that the warp is symmetric, that
is, DTW(s,t)=DTW(t,s), and can contain both one-to-many and
many-to-one matchings. This algorithm can be solved efficiently
using dynamic programming, in O(|s||¢|) time and space.

5.3 Bi-Directional Warping

We relax the first two constraints of DTW. First, we allow the algo-
rithm to insert gaps in the warp, which also removes the boundary
constraints. Second, for each element in the source we want a sin-
gle match that minimizes the warping cost under the ordering con-
straint. Therefore, one-to-many matchings from the source to target
image are disallowed. We do allow many-to-one matchings from
the source to target image as it assists better matches and does not
violate the ordering constraint. This creates an Asymmetric-DTW
measure (A-DTW) detailed in Algorithm 1. The signals s and ¢ can
be either 1D arrays of pixels, or 1D arrays of patches, and the dis-
tance d(s[¢], t[j]) between an element of s and element of ¢ is taken
to be the sum-of-square-differences of pixel values'. Given images
S and T of height h, let S;,7T; denote row ¢ in images S and 7',
respectively. The BDW distance is given by:
1 & 1 &
BDW(S,T) = ~ ;A-DTW(S“T,) + o ;A-DTW(T,, S ()

We found that using the max operator works better than the mean
in equation 1, because in retargeting most elements are usually well

'We have experimented with numerous measures, such as the L1 and Lo
norms of the intensity differences in both grayscale, RGB and CIE L*a*b*
colorspaces.



Figure 7: Comparing Bidirectional Warping (BDW) and Bidirec-
tional Similarity (BDS) of [Simakov et al. 2008]. In image (b)
we switched the left and right parts of image (a), and image (e) is
missing some repetitive structure (a tower) found in image (d). In
both cases the BDS is one order of magnitude smaller than BDW
as measured in equation 1 (it is two order of magnitudes smaller if
we use max instead of mean). This is because every patch in one
image will have, with high probability, a similar patch in the other
image, and vice versa. On the other hand, the BDW measure is
order-preserving, thus recovering the best alignment (as shown in
images (c) and (f)) resulting in larger gap errors.

Algorithm 1 Asymmetric-DTW(s[1..|s|], t[1..]¢]])
. allocate M{|s| + 1][|¢| + 1]
M =0

—_

for i :=1to |s| do
for j := 1to |t| do
MTi, j — 1],
Mli—1, 5] + d(s[i], t[4]))

2: s =

3: fori =1to |s| do
4 MJi, 0] :== o0
5: for j :=1to [t| do
6:  M]J0,j]:=0

T

8:

9:

10: return M]|s], |¢]]

aligned, yet a small number of deformed elements are enough to
cause a visual artifact. To find the maximum distance between el-
ements from S and 7', we need to recover the elements’ alignment
created by the asymmetric-DTW. To do this, we keep track of our
path while filling the table M, and backtrack from M][|s|, |¢|] to
M1, 1] according to the optimal decisions made along the path.
Figure 6 illustrates the results of aligning an image with its retar-
geted version (by seam carving) using A-DTW and several patch
sizes. In practice, to calculate the BDW we combine the scores of
four scales of patch size (Figure 8). For images S of size h X w
and T of size h x w', w' < w, BDW is O(hw?) in time, and
O(w?) in space. For example, the BDW between two 640 x 480
images and using 8 x 8 patches takes about 3 seconds to compute.
Various methods exist to further optimize this computation (see e.g.
[Salvador and Chan 2007]).

Both BDW and bidirectional similarity (BDS) explain patches in
one signal using patches from the other. However, there are two
main differences between these measures. First, BDW searches for

Figure 8: BDW uses two alignments of the source image to the
retargeted image and vice versa. The distance would be the maxi-
mal matching cost of elements in the two. Note how the alignment
reveals that the retargeting used a combination of cropping (gaps
on the sides of the alignment), scaling (uniform spacing between
patches in the middle) and seam carving (large gaps in the middle).

matches along a single direction (column or row) as opposed to the
entire image in BDS. This is sufficient in our settings for assessing
results created by operators which are separable in dimension. It is
also more efficient to compute as we replace the computationally
intensive nearest-neighbor search in BDS with an efficient match-
ing algorithm. Second, BDW achieves optimal alignment that is
order preserving. Order is important when assessing retargeting re-
sults, because we prefer as few as possible structural modifications
of the media. The many-to-one alignment also supports repetitive
content, albeit in an order-preserving manner. Figure 7 highlights
the difference between BDW and BDS in the context of image re-
targeting.

6 The Optimization

Suppose we want to reduce the width w of input image S by m
pixels, using a collection of n operators {O1, ..., O}, and given
some similarity measure D() (e.g. BDW). This means that we seek
a target image T of width w’ = w — m that minimizes D(S,T).
Even if we use monotonic sequences (e.g. do not reduce, then ex-
tend, then reduce back again), there are still O(n™) different multi-
operator sequences that retarget S to width w’. This means the
search space is exponential in the size change m.

To solve this problem we need to limit our search space and we
consider two types of paths: mixed and regular. We will focus on
mixed paths here and defer discussion on regular paths to section 7.
Recall that we define a mixed path to be a path where we don’t
know, ahead of time, the order of the operators, nor the number of
times each operator is to be used.

The basic assumption we use is that the ratio of operators in a se-
quence (i.e. the total amount each one is used) is more important
than their order in the sequence. This leads to a dynamic program-
ming formulation of the problem. In our search we always keep just
one representative for each sequence with a given ratio of operators.
We represent it by the point (p1, ..., pn) in resizing space where
pi, the coordinate for operator ¢, denotes the total number of times
of applying operator i. In a dynamic programming table we store
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Figure 9: An illustration of the dynamic programming table used to optimize the search for the best mixed path using two opera-
tors only - seam carving (SC) and scaling (SL). The colors in table (b) indicate the BDW distance of the best image in each step.
The original image is shown in (a) and the retargeted result is shown in (c) - this is the best result using a mixed path (i.e. the algo-
rithm automatically determines the order of operators and how much each should contribute). The optimal operator sequence found is
(=30SL,—-305C,—10SL,—205C,—10SL,—105C,—10SL,—20SC,—10SL). For comparison, we show the results of using two reg-
ular paths (d) (—70SL, —80SC) and (e) (—80SC, —70SL), and the optimal regular path (f) (—90SC, —60SL). (g) uses scaling and (h)

seam carving.

the optimal cost and optimal sequence o (p1, . .., pn) including the
order of applying all the operators for this representative point.

We begin with an empty sequence denoted by the point (0, ... ,0)
and cost 0. Next, we apply each operator once and create n se-
quences denoted by the points (1,0,...,0),...,(0,...,0,1) with
costs {D(S, (0;)(S))}i=: of applying operators O;, 0 < i < n
respectively on the original image S. Next, we store the cost of se-
quences 0 (2,0,...,0),...,0(0,...,0,2), but for each sequence
containing the application of two distinct operators O;, O;,1 # j
we have 2 possible sequences: o = (O;, O;) or o = (O;, 0;). We
check the two options, and keep only the one whose cost is smaller
in the table at position (...,0,1,0,...,0,1,0,...), where the 1s
appear in positions ¢ and j.

In general, to fill the entry (p1,...,pn) we examine all its prede-
cessor sequences where the application of one of the operators was
less by one. These correspond to points where one of the coordi-
nates is less by one, which were already calculated and stored in
the table. Denote them for abbreviation by o; = o(p1,...,pi —
1,...,pn), 1 < i < n. We append the operator O; to sequence o;
to get the new operator sequence denoted by (o; U O;) , apply this
new sequence to the original image and choose the best one:

i* = arg 1r§rliiélnD(S, (i U 0;)(9))) @

The table structure is an n-dimensional simplex that is constructed
in m stages. For example in Figure 9 the table is an equilateral
triangle, which is a 2-simplex. In practice, we sample the search
space in lower rates than 1 pixel (usually 5 or 10 pixels), meaning
we apply each operator more than once between stages. At the last
stage, all points (p1,...,pn) where " | p; = —m represent tar-
get images of size w' = w — m. We choose the one that stores
the smallest cost. To obtain the optimal sequence of retargeting op-
erators (O;,, ..., O;,,) we backtrack to the first entry and in each
step recover the operator that had been chosen. The time and space
complexities of the algorithm are O(m™) which is polynomial in
the amount of size change, but exponential in the number of oper-
ators to be used. This approach can also be used to combine width
and height operations in two directions.

Subject to the assumptions outlined above, our discrete optimiza-
tion is guaranteed to find the optimum multi-operator sequence.
However, these assumptions mean we only search in a sub-space
of the resizing space and do not reproduce all images of the desired

target size. There might exist a retargeted image that is more simi-
lar to the source image. Furthermore, the definition of best results
may change depending both on the user and on the goal for retar-
geting the image. In our study (Section 3) we found that all users
tend to use a combination of operators (Figure 2). However, the
variance between users choices was very large (o = % ). There-
fore, in addition to the automatic optimization method we present
an interactive technique that allows users to explore a sub-space of
retargeting possibilities in a simple manner.

7 Interactive Multi-Operator Retargeting

Recall that regular paths fix the order of operators ahead of time and
can conveniently be written as: (k1 X Oy, ..., kn X O;,), where
Z?Zl k; = m (see e.g. Figure 9(d)-(f)). So the only question
is how much does each operator contribute to the image retarget-
ing process? This creates a one-to-one mapping between a point
in the resizing space and a regular path. Fixing m is equivalent
to choosing a hyper-plane in the resizing space, and choosing how
much each operator will contribute corresponds to choosing a point
on this hyper-plane. This means that we can find the optimal solu-
tion for this problem using exhaustive search in O(m™ '), which
is polynomial in the size change m but exponential in the number of
operators n. Since n is usually small (say, three or four operators)
and we can sample m in discrete steps, this search is feasible.

Regular paths also lend themselves to a simple interface that assists
users search in this sub-space for desired results. First, the order
of operators in the sequence is chosen ahead of time (e.g. (k1 X
SC,kas x CR, k3 x SL) or (k1 X SL, k2 x SC, k3 x CR)). Next,
there is a slider governing the image size change m, and a slider
for each operator separately. Since the contribution of all operators
must sum to the total size change m, users must choose a coupling
of a pair of sliders to change their value. Moving one in a positive
direction will drive the other to move in the negative direction, and
vice versa.

Note that such interface enables using both positive and nega-
tive amounts of specific operators. For example, we can bound
the contribution of each operator O;; to m > k; > —m such
that Z;‘Zl k;j = m. In our user study of Section 3, we con-
strain sign(k;) = sign(m) and fix the order of operators to be
(k1 x SC, k2 x CR, ks x SL) to define a simpler interface us-
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Figure 10: Using regular paths we are limited to searching on a plane in resizing space (left). We find the optimal multi-operator resizing
sequence having the minimum BDW distance (0.241 in this case). The distance throughout the search space is colored from blue (small
distance) to red (large distance) and was interpolated for visualization purposes. We compare our results to the results and score of the mean
of the user study (where BDW = (0.355). On the right we show a summary of the comparison of the ratios of all results. Blue is the mean of
the user study and Red is our results using optimization with BDW. The average difference is around 20%, well within the standard deviation
of the user study which is 50%. More image results can be found in the supplemental material.
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Figure 11: An example of a video key-frames where multi-operator
retargeting achieves better results than scaling or seam carving.

ing just one slider for all operators (see accompanying video). This
constrains the retargeting to regular-monotonic sequences, and fur-
ther confines the search space to the intersection of the hyperplane
with the axes (Figure 10). Although somewhat limiting, users found
this method to be intuitive and productive.

8 Retargeting Video

We extend multi-operator image retargeting to video using key
frames. For each key-frame, we find the best regular path. This de-
fines a set of multi-operator sequences constraints for £ time-steps.

In-between the key-frames, we interpolate the amount of each oper-
ator in the sequences to obtain the multi-operator sequence for each
intermediate frame. For scaling, this interpolation is trivial since
we just change the scale factor linearly. Seam carving also supports
linear interpolation between different amounts by interpolating the
number of seams to be removed. For cropping, we separate the
amount of cropping in each key-frame to the left and right crop-
ping (or top and bottom) and interpolate linearly between each one
separately.

Such sequence interpolations can sometime insert virtual camera
motion into the resulting video. For example, interpolating between
cropping k columns on the left to cropping k columns on the right
introduces a panning effect, while interpolating between different
scaling levels may introduce a zoom in/out effect. Some example
results can be found in Figure 11 and the supplemental video.

9 Results

To validate our optimization and BDW similarity measure we com-
pared the mean results of the user study to results obtained by our
optimization on regular paths (Figure 10). The average difference
between the automatic and mean user choice is 20%, which is well
within the standard deviation of about 50% in the user choices. Fig-
ure 10 also illustrates that the visual results are comparable (more
image results can be found in the supplemental material). More-
over, the mean user study result usually does not differ much in
terms of the BDW score from the best score (i.e. our result). This
demonstrates the effectiveness of the BDW measure itself.

Our multi-operator framework supports various scenarios for find-
ing the optimal combination for retargeting. We illustrate this by
showing results of a number of cases where we change the set of
operators and also the image similarity measure used. Figure 13
illustrates an example of optimally combining seam carving and
scaling in a regular sequence. We find the best transition point be-
tween applying seam carving and scaling by measuring the BDW of
the results. In Figure 15 we show results of computing the optimal
mixed sequences using two operators (seam carving and scaling)
by dynamic programming using the BDW score. The teaser figure
(Figure 1) shows the result of finding the optimal mixed sequence
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2007] respectively.

for changing the width of an image consisting of three operators
(scaling, cropping and seam carving), subject to the BDW image
similarity measure. In Figure 14 we find the best mixed path us-
ing the bidirectional similarity measure [Simakov et al. 2008] and
four image retargeting operators (horizontal and vertical scaling
and seam carving). As can be seen, the horizontal dimension is
retargeted mainly with seam carving while the vertical dimension
is mainly scaled. Figure 12 shows a comparison between several
retargeting methods and our multi-operator results.

In some cases, the optimal multi-op result might reduce to a single
operator (e.g. scaling). However, we should note that this reduction
is achieved automatically by the algorithm in an informed manner.
This is exactly the purpose of the suggested system. A good result
is not necessarily one that utilizes all available operators, but rather
one that achieves higher similarity of the required size. In partic-
ular, by attempting to use cropping, scaling and seam-carving, the
algorithm chose the scaling approach for more structured media, as
seam carving tends to insert artifacts in such cases, and cropping
might remove too much important information. In fact, we deliber-
ately used images that are difficult cases for non-uniform operators
(such as seam carving) to test if our method can recognize this au-
tomatically.

In Figure 11 we show an example of a key-frame from a video that
demonstrates why multi-operator retargeting provides the flexibility
to achieve better results than a single operator in video. Lastly, our
framework also enables utilizing a simple user interface for com-
bining regular multi-operator sequences in an intuitive manner. In
the accompanying video we also show several interactive sessions
for image retargeting, and more retargeting results for images and
video. Taken together, these results show that our multi-operator
algorithm can combine multiple operators together using various
similarity measures (e.g. BDW or BDS), various paths (either reg-
ular or mixed) and various operators (horizontal and vertical, seam
carving, scaling and cropping).

All results were created either on a 1.8 GHz dual core laptop with
2GB memory or on a 2.2 GHz dual core desktop with 4GB mem-
ory. Several processing time statistics for computing the BDW at
different patch sizes are detailed in Table 1. The average optimiza-
tion times were around 2 minutes for 2-operator regular paths, 10
minutes for 2-operator mixed paths and 3-operator regular paths,
and 20 minutes for 4-operator mixed paths. As for the interactive

Seam-Caning b Scalng

Figure 13: We find the optimal regular path by finding the minimal
BDW score (the red dot in (b)) for a combination of two operators
(seam carving and scaling in this case) to retarget an image (a).
Compare the resulting image (c) to using just seam carving (d) or
just scaling (e).

interfaces, in most cases (as seen in the video) the interaction is per-
formed in real time. There are waiting periods, for instance, when
there is a switch in the direction of size change between height and
width due to recalculation of the seams. For video, once seam carv-
ing has been pre-computed on the video frames, the video playback
is instant. We store just the interpolation values of the operators in
each frame and by keeping the ratio between the operators constant
during resize, we can interactively change video size as well.

[ Pachsize [ Pixels [ 4 x4 [ 8x8 [ 16 x 16 | 32 x 32 |
Max. overlap - 5 32 2.4 0.9
No overlap 7.5 3.1 1.5 1.1 0.4

Table 1: Average calculation times (seconds) of BDW for the exam-
ples used in this paper. Maximum overlap means patches are taken
in 1-pixel steps, and with no overlap means patches are disjoint.
The larger the overlap the better the alignment of images.
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Figure 14: Result of 2D retargeting. In this case we find the optimal mixed path using the bidirectional similarity measure and a combination
of four retargeting operators (horizontal and vertical seam carving and scaling). The multi-operator result finds the best result by mainly
applying seam carving in the horizontal dimension (compare the size of the monitor in the different methods) and scaling in the vertical
dimension (look at the bottom of the desk and the face of Woody on the left). For comparison, we show the result of applying a uniform 2D
scaling, or seam carving (running horizontal seam carving first, followed by vertical seam carving).
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Figure 15: A comparison between seam carving (left), Multi-
operator (center) and scaling (right). The multi-operator algorithm
uses the BDW image similarity measure and finds the best mixed
path using two image retargeting operators (seam carving and scal-
ing).

10 Limitations

Although the number of operators is usually small, the optimization
is still exponential in the number of operators. The overall com-
plexity of the algorithm is measured by the number of entries in the
dynamic programming table that we need to fill. In each iteration
we need to apply one operator and compute the bidirectional warp-
ing, which is the major bottleneck as can be seen in Table 1. Still, in
the context of retargeting it is asymptotically faster than [Simakov
et al. 2008]. Additional optimizations may be considered such as
early termination of the BDW evaluation in case the images are too
different, or sampling of the resizing space in coarser resolution
(which in our experiments still produces good results).

Figure 10 and the supplemental material show that our automatic re-
sults do not always agree with the users’ preference. Still, one must
remember that the users also did not agree on the “correct” result

and our ground truth was just the barycenter of all users choices.
Lastly, it is clear that the suggested algorithm is only as good as
the operators used. Limitations imposed by the specific methods
(cropping, scaling, seam-carving) will also be carried over to our
solution. Towards this end we advocate that using a combination of
several operators could alleviate limitations of specific ones.

11 Conclusions and Future Work

We presented an algorithm for combining multiple retargeting op-
erators. We defined the resizing space as a space combining several
resizing operators. We presented an algorithm to find the optimal
path in resizing space, given a global objective function that mea-
sures the similarity between the source and target images. We fur-
ther proposed the Bi-Directional Warping (BDW) function to mea-
sure this similarity. Remarkably, all levels of our algorithm benefit
from dynamic programming. It is used to compute Seam Carving,
used to compute a-symmetric alignment for BDW image similar-
ity measure and finally, it is the basis of the algorithm to find the
optimal multi-operator path. Our approach was tested on a large
number of images and videos, many of which were difficult cases
for previous single retargeting operators. We also validated our re-
sults by comparing them with ground truth data, collected in the
user study. In addition, we described a simple and intuitive user in-
terface to interactively explore the resizing space and achieve high
quality results.

The BDW measure we presented is best suited to changes applied
to the image in one direction. However, BDW can be extended
to match 2D modifications in some cases by recursively apply-
ing asymmetric-DTW on the rows (or columns) of the image (Ap-
pendix A). In the future we plan to investigate other applications for
BDW, as well as possible extensions to 2D and 3D. We also intend
to combine other types of operators into the multi-operator frame-
work. Finally, there are further ways to utilize the data gathered
from the users and develop other similar experiments.
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A Two-dimensional Asymmetric-DTW

The framework presented in the paper supports operators that re-
size images in one direction (either horizontally or vertically), yet,
operators may distribute changes along two dimensions [Wang
et al. 2008]. To measure such changes there is a need to develop
a two-dimension BDW. The two-dimensional version of DTW is
commonly known as Dynamic Planar Warping (DPW), and its
definition is similar to its one-dimensional counterpart. Unfortu-
nately, this problem was shown to be NP-complete [Keysers and
Unger 2003], and several approximation methods have been pro-
posed [Uchida and Sakoe 1998].

Figure 16: Examples of 2D A-DTW. Alignments of the Scale-and-
Stretch result (top) and non-homogeneous warping result (bottom)
to the original image (upper-left) using 4 x 4 patches. On the right,
the pairwise 1D A-DTW row distances are shown for each result,
colored from blue (small distance) to red (large distance). Notice
that as the Scale-and-Stretch operator deforms the image in both
directions, the optimal alignment inserts gaps in some rows, while
for non-homogeneous warping, which works only along the resized
dimension, every row in the retargeted image is matched to its cor-
responding row in the source.

A possible extension of our one-dimensional solution is to align
the images using recursive evaluations of Asymmetric-DTW. That
is, assume w.l.g we change the width of an image, and using our
previous notation, we apply A-DTW on the signals {S;}/_, and
{T:}"_, representing the rows of S and T respectively, taking
d(Si,T;) = A-DTW(S;,T;). This results in a two-dimensional
order-preserving mapping between the two images that is optimal
under a rigid row-to-row alignment. Although this method will
not estimate correctly all possible transformations, we found it to
produce good approximation for assessing image similarity (Fig-
ure 16). The running time of this algorithm is O(h?w?) using naive
implementation, but can be further optimized using the techniques
mentioned in Section 5.3.

Acknowledgements

We thank the anonymous SIGGRAPH reviewers for their com-
ments. We thank Maya Yaniv for narrating our video. We thank
the flickr members who have kindly made their media available
for research purposes via the creative commons license: Ben
Harris-Roxas (fishing), danorbit (desk), david.bunting (volleyball),
g_magnan (italy), Greg Gladman (church, wheels), i am indisposed
(snow), iboy daniel (mnm), Pandiyan (pond), romainguy (surfers),
thomas23 (glasses), van swearingen (orchid), etrusia_uk (Bodiam
castle). We also thank the users of publicdomainpictures.net and
morguefile.com who have shared their images through public do-
main (tiger, eagle, stairs, islands). The Taj Mahal image is courtesy
of ictopon2009.uwo.ca. The San Francisco heart image and results
were borrowed from [Wang et al. 2008]. The bicycle, Buddha, car,
malibu, foliage, face, mochizuki, venice and waterfall images are
borrowed from [Avidan and Shamir 2007]. The osaka image and
highway video are taken from [Rubinstein et al. 2008]. The birds
video sequence is a snipped from “for the birds”, courtesy of Dis-
ney/Pixar.



