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Abstract desired object. At each position the candidate image patch
is passed to a classifier that determines if the object appears
We update th&VM score of an object through a video se- in that particular image patch. These algorithms use vari-
guence with a small and variable subset of support vectorsous classifiers such as Support Vector Machine [10], neural
In the first frame we use all the support vectors to compute theetworks [12, 16] or maximum likelihood on products of his-
SVM score of the object but in subsequent frames we use onkpgrams [15]. These methods are too slow to run in real-time
a small and variable subset of support vectors to update th@nd one way to accelerate them is to use a rejection-based
SVM score. In each frame we calculate the dot-products ofscheme. In this scheme candidates that are deemed unlikely
the support vectors in the subset with the pattern of the objedp be the object are rejected early on so that the classifier can
being tracked. The difference in the dot-products, betweefocus on the “interesting” regions of the image. Such ap-
past and current frames, is used to update %M score.  proaches include maximal rejection of Eledal [6], sequen-
This is done at a fraction of the computational cost requiredtial SVM of Romdhaniet al [11], the cascade of AdaBoost
to re-evaluate thesVM score from scratch in every frame. classifiers of Viola and Jones [18] or the FloatBoost method
The two methods we develop are “Cyclic subset selection”pf Li et al. [8].
in which we break the set of all support vectors into subsets However, all these methods focus on the problem of de-
of equal size and use them cyclically, and “Maximum vari-tecting an object in a given frame rather than the problem of
ance subset selection”, in which we choose the support vege-classifying the object in subsequent frames. Clearly, we
tors whose dot-product with the test pattern varied the mostan use the detected regions from previous frames to guide
in previous frames. We combine these techniques together fetie object detection algorithm in the current frame. But bear
the problem of maintaining th8VM score of objects through in mind that since these are “interesting” regions in the image
avideo sequence. Results on real video sequences are showiie rejection scheme will not help and the full force of the
classifier will have to be used for every candidate. Our goal is
to accelerate the confirmation stage, given that the object was
correctly detected in a previous frame.

1 Introduction In this work we focus on Support Vector Machines be-

) o ) ) cause they were shown to perform well on face or vehicle de-
Object detection in video sequence consists of object detegaction [10, 11, 2]. Recall th&VM classifies a test pattern by
tion and confirmation. First, the object must be detected i%umming the result of a non-linear function (callesine) on
the image and then it must be tracked, and confirmed, in sulihe dot-product between the test pattern and a set of support
sequent frames. To confirm that we are still tracking it, weyectors. Thus, evaluating a test pattern is linear in the number
need to re-classify the object in each frame. This might beyt support vectors. Face detection applications, for example,
computationally expansive , especially if we maintain severalmght have several hundreds of support vectors [11, 10]. If
hypothesis for each object, or if we have several objects in thehere are several objects in the image then this amounts to
scene (say, several vehicles on the road, or several faces in 88yeral thousands of dot-products, just for re-classification.
office §cene). . . . One approach to reducing the run-time complexity of

Object detection algorithms exhaustively search the curgy, ¢jassification is the reduced set method [4, 13] that
rent frame in various positions, scales and orientations for Romputes a small number of synthetic support vectors that

*The author is currently with the faculty of the Interdisciplinary Center, @PProximate the original set C_)f support vectors. Th.iS pro-
Herzelia, Israel cess takes the form of a non-linear optimization and is done
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off-line. Still, maintaining good classification results requires
several hundreds of support vectors in the reduced set. Romd; | \ !
haniet al. [11] appliedSVM sequentially. After each dot- ‘\‘ T L S
product of the test pattern with a support vector a decision ' \ i 5

is made if to proceed with the evaluation. In most cases a 4 \ 5 3 o
small number of support vectors is enough to reject a pat- \". \ ! - ; 3 o
tern. Unfortunately, this approach will not accelerate object l. o T
re-classification since these regions in the image are the mos| 5@ | : t ¥
probable places for the object to be and hence most, if not all, . \

of the support vectors will be used. =

Instead, we propose a different approach. Given that the
object was detected in a previous frame, we look for a small
and variable number of support vectors that will suffice for a
correct update of th&VM score for the current frame. Our Figure 1. Support Vector Machine: (a) A separating hyper-
goal is to find this small subset of support vectors. This is plane with small margin. (b) A separating hyperplane with
complementary to filtering techniques such as Kalman Filter- @ 'arge margin. A better generalization capability is ex-
ing or Condensation [7, 9] that are concerned with correct in- ?:ucgﬁgrftrszct(gr)g,_The filed squares and circles are termed
tegration of information over time. We, on the other hand, are
concerned with reducing the number of features (i.e., support

vectors) we need to use. To this end we evaluate two differerd-1 Support Vector Machine
techniques.

) =]

Consider the simple case of two linearly separable classes.
The first technique, termed “Cyclic subset selection”Given a data seftx;, y; }!_, of I examplesx; with labelsy; €

(CS9S breaks the summation of the dot-products across sevt—1, +1}, we wish to find a separating hyperplane between

eral, sayk, frames. At each frame we perform only part of the two classes. Formally, we consider the family of decision
the dot-products, keep their results and then use a tracker fanctions

track the object to the next frame, where we continue to per- f(x) = sgn(wTx + b) (1)
form the dot-products. At each frame we sum the interme-
diate scores of the lagt frames, reducing the total number and wish to findw, b such thatsgn(w’'x; + b) = sgn(y;).
of dot-products performed per-frame by a factorkofif the ~ This problem is in general ill-posed because there might be
test pattern does not change much between successive framas,infinite number of separating hyperplanes. The question is
then this method is approximating a low pass filter over thewhich one has a low generalization error (i.e. which one will
SVM score, had all the support vectors been used in eactio @ good job in classifying new examples). It was shown by
frame. Vapnik [17] that choosing the hyperplane with the minimal
The second technique, termed “Maximum Variance Sub0m ofw minimizes the “Structural Risk” which is an upper
set Selection” MVSS), chooses a subset of support vectorsbound on th_e _generalization error. Intuitively, thisis the
based on the variance of their dot-product with the test patterRN€ t0 maximize the margin between the two classes (See
over time (i.e. in previous frames). This way we choose thd-igure 1). Practically, this amounts to solving the following
support vectors that are most likely to affect ®€M score ~ guadratic optimization problem (QP)
in the current frame. The difference between the current dot-

products and the previous dot-products is used to update the miny, 5w’'w

SVM score. Thus, we can update t89¥M score with only ) T 2)
a fraction of the support vectors being used. The subset can subject to %(W w+b)>1,

be selected deterministically to be thesupport vectors with i=1..1

the largest variance in their dot-product, or it can be selected ] o
stochastically by a weighted sampling of the support vectorsthat can be solved quite efficiently. The example vectors clos-
where the weight is based on the variance. est to the separating hyperplane are called “support vectors”.
We combine the above mentioned techniques and show r(;I'__he classification |t§elf is performed by measuring the signed
sults on the problem of updatir§VM score of vehicles in a distance of the test image from the separating hyperplgqe.
video sequence. Bu_t how can theSVM be _extended to handle deC|S|_0n
functions that are not linear in the data? The answer is to
use a nonlinear mapping of the input data and map it to
2 Support Vector Machine some high-dimensional (possibly even with infinite dimen-

sions)feature spacer. The linearSVM is then performed
For the paper to be self contained we give a brief descriptioin F and will therefor be nonlinear in the original input data.
of SVM. The interested reader is referred to [17, 3] for a morgFormally, let

detailed description. O:R" - F 3)



be a nonlinear mapping from input space to feature space aratiginal set. A comprehansive discussion on the topic of re-

the decision functions we deal with becomes duced set methods can be found in [4, 14].
. Both methods approximate the separating hyperplane
_ -~ T (v given by the vectolr € F with a vector¥?’ € F. But
Fx) = Sgn(; y; 05 O ()" @(x5) + ). ) while ¥ is expressed usingy, images of input patternsy’

is expressed using only, images of input patterns, and

whereq; is a set of parameters computed by solving the QPV. < N,. Let

problem. However, working in feature space can be pro- U= Zf\flai\ll(xi)
hibitively expansive to compute. Therefor we use Mercer

kernels on the input data to avoid computing the dot prodWherea; € R andx;
ucts in feature space. Mercer kernél&, x;) satisfy that let N
k(x,x;) = ®(x)T®(x;). This way, instead of performing a V=55 50(z)
non-linear mapping first and then do a dot-product in feature . N .
space, the order is reversed, first we perform the dot—produéyﬁgvﬁg Tné?ffﬁggtim}?nzﬁl EZR - Then this leads to the
and then apply the non-linear mapping. Thus, in ke@¥¢M 9 7y

we use the following decision functions

€ RN are images of input patterns and

-2 = BV aoik(xi,x))
fx) = sgn(z%-zl yja;P(x)T®(x;) + b) ®) + E@i{ﬂ@}@jk(zi’ z;)
= sgn(d_;—; yjouk(x,x5) +b) = 2535 a85k(xi, 75).
and the quadratic programming problem becomes: This minimization is possible even thoughis not given ex-
o plicitly, because we use it implicitly, through the kernel. In
mazximize the selectionreduced set method we take theto be some
W(a) = Zf.:l o — % Zi,j:l o, 05y k (X, X;5) subset of the original support vectotsand only estimate the
©6) B;. Intheconstructiorreduced set method we generasya-
subject to theticset of support vectors and then try to adjust the weights
a; >0, i=1.1, B; to improve the apporimxation. A common approach in
and Zl' Ly =0 both cases is the greedy approach which increases the num-
i= 1J1 .

ber of support vectors one by one, adjusting their weights af-

It turns out thaty; are equal td for examples on the border ter every support vector is added to the reduced set. Thus, the
between the two classes afidbtherwise. In typical appli- support vectors in the reduced set can be sorted in order of
cations about 0% of the examples have; equal tol and  importance from the most important reduced-set vector to the
these examples are callstipport vectors The rest of the least important reduced-set vector.
examples are not relevant because they do not help separate
between the two classes. The only difference between kers ;
nel and linealSVM is that the dot product of line&8VM is 3 Subset Selection
replaced with a kernel function. Assume that an object is detected in the first frame of a video

Typical kernels used in théSVM literature include sequence and is to be re-evaluated in subsequent frames. Fur-
k(x,x;) = exp(— x — x;)* which leads to a Gaussian ther assume that all the support vectors were used in the de-
RBF, k(x,x;) = (x"x; + 1)¢ which represent polynomial tection stage, but we wish to use only a small subset of them
of degreed andk(x, x;) = tanh(x”x; — ©) which leads to  in subsequent frames for confirmation. bgtdenote the test
multi-layer perceptron. Extension to non-separable classifipattern to be evaluated in thie- th frame in the video se-
cation problem exist [5], where the idea is that a penalty termguence. We will also assume that an SSD tracker was used
is used to govern the price we are willing to pay for misclas-to track the test pattern from one frame to the next. In ideal

sified examples. conditions where the object does not deform, the view point
does not change, the illumination remains fixed and the sen-
2.2 Reduced Set Methods sor does not fluctuate we would expect 8¥M score to be

Reduced set methods aim at reducing the run-time complexedentical for every test pattern; 1 < ¢ < n. Clearly this

ity of SVM, during classification, by using a reduced set ofdoes not happen. However, we assume that running the full
support vectors. There are two methods for computing the reSVM classifier on every pattery; will correctly classify it.
duced set. The first involveslectinghe most important sup- Our goal is to approximate tH&VM score obtained using
port vectors from the given set of support vectors. This im-all the support vectors with only a small subset of them. This
plies changing the weights; of the remaining support vec- marks a departure from known reduced set methods in two as-
tors to compenstate for the support vectors we omit. The segects. First, we perform an online reduced set selection that
ond method involvesonstructinga set of newly synthesized is tuned for theparticular pattern that is currently tracked,
support vectors, and their weights, that will approximate thevhereas traditional reduced set methods try to find a reduced



set that will apporximate the fuBVM for everypattern. Sec- and the support vectors. This is why we use an SSD tracker,
ond, finding a good subset must be done considerably fasté@rminimizes the sum-of-squared-differences in gray values.
then evaluating the fulBVM for the proposed method to be And in doing so it minimizes the error introduced 6$S

usefull. Cyclic subset selection can be summarized as follows.

For clarity let us make the following definitions: Givenn support vectors, break them intogroups of equal

size. At each frame compute the dot-product of the current
Definition:  The responseof a support vectors; to a  pattern with the current/k support vectors and add the re-
test patterrx; is sult of the rest of thes — n/k dot-products computed in the
oYk (xi, 85). previousk — 1 frames to give th&VM score for the pattern
in the current frame.

Ideally, CSSwill approximate a moving average of the full
SVM score. This is because it takes every support vector to
be an approximation of its average response value over the
pastk frames. Unfortunately, this may not be good enough

wheren is the number of frames the test pattesnappears in practice. As we show in the experimental section, the rigid

Definition: Theresponse variancef support vectos; is

Var(ajyik(xi,s;) i=1l.n

in. structure ofCSSdoes not allow it to change the subset of
support vectors selected and there might be cases in which
3.1 Cyclic Subset Selection a subset of support vectors that hardly change their response

A straightforward approach to choosing a subset of the supt-o the test pattern is chosen, while support vectors that have

port vectors is to break the set of all support vectors nto very large response variance are not chosen, leading to errors

subsets of equal size and use a different subset in every fram, the updatedsVM score.
fTrglri(;As/ay' every support vector will be used once eviry 3.2 Maximum Variance Subset Selection

To measure the error incurred by this method consider thénstead of using fixed subsets that are cyclically used we look
following toy problem. The video consists of only two frames for support vectors that we suspect might change their re-
with patterns(x;, x,) and there are only two support vectors SPonse to the test pattern and use them.

(s1,s2). We assume that: Let f(x;) be theSVM score of patters; (either using full
SVM computation oICSS). Then theSVM score of pattern
2 Xi+1 can be written as:

Zyjajk(xhsj) >0 Vi=1,2

Jj=1

Nsg Ns
and consider the difference between the MM evaluation  J(Xis1) = f(xi) = Y yjok(xi,85)+ Y | 4505k (Xis1,5)-
and the Cyclic subset selectio$S version for the test pat- j=1 j=1

ternx,. TheSVM score ofxs, using full SVM evaluation is ] ) 8
given by Where N is the number of support vectors in the subset
of framei 4+ 1. Note that agVg approach the total number
(y1a1k(x2,81) + yook(Xa,s2)) of support vectors we obtain a better approximation of the

correctSVM score. Intuitively, we would like to choose the
whereas itSVM score usingCSS(with two subsets) is given support vectors whose response, with respect to this particular
by test pattern, varies the most. This is because there is no need
(y101k(X1,81) + yoaok(x2,82)) to re-compute the dot-product with a support vector with low

. . L . response variance. The difference between the old and new
The difference between the two expressions is given in the :
following derivation Support vector responses is used to updateSttisl score.

9 ' We use deterministic and stochastic approaches to select sup-

(yr01k(Xz2,81) + yooiak(xXz2, S2))— port vectors with maximum variance.

(yra1k(xa, Slg + yaok(xz,82)) = 3.2.1 Top Maximum Variance Subset Selection

yro(k(xz,81) = k(x1,81)) - (7)  Top Maximum Variance Subset Selection (TRRSS) takes
y100(D(x2)®(s1) = D(x1)@(s1)) = then support vectors with the largest response variance. To
(@ (x2 — x1)®(51)) = SuPP ik P -

yia do this we keep track of the variance of the response of each

yionk(xz —x1,81) support vector to the test pattern in the past. In every frame
and the dot-product x» — x1,s; > should be small since  We choose the: support vectors with the largest response
the SSD tracker minimized the difference betwegmndxs. variance, for some fixed number. Alternatively, we can
This suggests that the error incurred by splitting dot-productelect all support vectors with response variance greater than
computations across several frames is bounded by the kernalpredefined threshold, which can allow us to bound the error
of the dot-product of the temporal derivative of the test patterron the update&VM score.
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Figure 2. Evaluation of the Cyclic subset selection ( CSS method. (a-c) show the first, middle and last frames from a sequence

of 100 frames. (d) compares the SVM score of CSSto full SVM evaluation with 50 support vectors. The solid line is the SVM
score using all 50 support vectors. The dashed line shows CSSwith 5 subsets (i.e. 10 support vectors per frame). The dotted
line shows CSSwith 10 subsets (i.e. 5 support vectors per frame).

3.2.2 Stochastic Maximum Variance Subset Selection and therefor might fluctuate with respect to the cor@¢M
Score. To battle this phenomena we have introduced the Max-
imum Variance Subset Selectidd{/SS) that specifically se-
lects support vectors that have large influence on updating the
SVM score. The TopMVSS method is a deterministic al-

Stochastic Maximum Variance Subset Selection (Stochasti
MVSS) performs a weighted sampling of the support vectors
we perform a weighted sampling of support vectors, where

the weight of every support vector is proportional to its re_gorithm and as such it might get stuck with a single subset.

sponse variance, and is some predefined fixed number. In . )
this process there is a higher probability that we will choosesmchasud“/IVSS can prevent that from happening. Taken

support vectors with high response variance, that will aﬁecfogether the three methods cover a wide range of conditions

the updating of th&VM score, than support vectors with low and allow for an accurate update of t8%M score, using
response variance. only a small number of support vectors.

A couple of comments are in order. First, there is no need

It is important to emphasize that subset selection is not0 determine the number of selected support vectors before-
equivalent to computing a reduced set of support vectors a&and. In fact it would be wiser to use tSDtracking error
was done, for example, in [11]. As we will show in the ex- tO det_ermme this number online. Second, the estimated vari-
perimental section, support vectors with relatively low impor-ance is biased, because not all the support vectors are evalu-
tance might have a larger variance with respect to the test padted in every frame.
tern and hence might affect the upda8¢M score more than
the_ leading support vectors (that might have low responsg| Experiments
variance).

Each of the above mentioned techniques serves a differefh the experiments that follow we assume that the detection of
purpose. The&CSStechnique guarantees that all the supportthe object in the first frame was completed successfully and
vectors will be used everlyframes, for some fixed numbgr  proceed from there. Furthermore, we have used a tracker to
However, it does not take the response variance into accouirack the object from one frame to the next, and used our tech-
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Figure 3. The response variance of support vectors to a Figure 5. Cyclic subset selection ( CS9 Vs. Maximum vari-

test pattern tracked over 100 frames. There are 50 support ance subset selection ( MVSS). The graph shows the dif-
vectors that are ordered from left to right, in a decreasing ference between the SVM score calculated by each of the
order of importance, yet the largest variance is recorded methods and the correct SVM score, computed using all
for support vector 12. The test pattern is the one shown in the support vectors. The dashed line is the difference be-
Figure 4. See text for further details. tween CSS (using 18 support vectors per-frame) and the

correct SVM score (using all 50 support vectors), the solid
line is the difference between MVSS (using 9 support vec-
nique to update th8VM score computed in the first frame. :Ofi dueMt\(/)SSSt)OCh?:iSttll’?- MVS? agsl\?l (Sur?port I}Iztgors duet
P ; ; ;. to Top- and the correc using a suppor
The cIaSS|f|gat|0n engine Was trained on a S,et of approm vectors). The CSStechnique does not take into account
mat3|y 10000 images of Veh|C|e_5 ar?d non-vehicles. Veh_|C|es support vectors that exhibit large response variance and
include cars, SUVs and trucks in different colors and sizes. therefor fluctuates much more thanthe ~ MVSS technique.

The images were digitized from a progressive scan video at a

resolution 0f320 x 240 pixels and at 30 frames per second. of MATLAB and C++ programs and hence exact timing in-

Typical vehlc_le size is aboul) x 50 pixels. The vehicles formation is not available. We did observe that decreasing the
and non-vehicles were manually selected and reduced to th

size 0f20 x 20 pixels. Their mean intensity value was shifted S(?Z\e/vgffgheﬂz%gzs;gcr;?ﬁii \t/CSrisebZ(tjt:Fr)(l; rrtér(; tlcr::j.-set vec-
to the value0.5 (in the range/0..1]) to help reduce the ef- u u

fect of variations in vehicle color. In all the experiments we tors than on the full set of support vectors. The reason is that

. . . if we have to select a subset from, s2§00 support vectors,
zfidxé)nfo(zgggQetguse?fg?n(irg;[glgg%?r?m'?]Iaksim.?_lhg“é?;;%en we need to choose a large portion of the support vectors,
sific’ationirate Was ab8|912<7 for the Iearnilg pset With about ©" else the response variance of the support vectors outside

0 ning set, the subset will be large enough to offset the results. Also,
2000 support vectors. A similar chSS|f|cat|on rate was Ob'there is the chance that many support vectors will be corre-
ftamed for the testing set that contamec_i _app_roxmaté(}OO lated with each other and therefor choosing one of them will
images as well. To speed up the classification phase we usgE t suffice
the Reduced Set Method [4] to reduce the number of suppor In the first experiment we compar@BSwith full SVM
vectors from2000 to 400. The Reduced Set Method shows evaluation. Figure 2 show several images from a 100-frame
that for homogeneous quadratic polynomial kernel t_he nu.mTong sequence. We used the reduced homogenous quadratic
ber of support vectors does not have to exceed the dimensio olvnomial witH 50 support vectors and plotted t8&M
ality of the input space. The number of support vectors can b y PP P

reduced, through Principal Component Analysis on the supégcr)r:gav;/:g ?hgfltrgseglut:iﬁgsgpoeolrg\;ict;[gzsm every frame and

port vectors in feature space, to a number bounded by the di- In the second experiment we analyzed which support vec-

mensionality of the input space, which480 in our case. In ) . .

. - tors had the largest variance in their response to a test pattern.
practice we found that th&) support vectors with the largest d1h . £ th ¢ h
eigenvalues are sufficient for classification We measured the variance of the response of each support

In all the experiments we used an o iic-ﬂow [1] base dvectorto a test pattern that was tracked over 100 frames and
P P show the result in Figure 3. The support vectors are ordered

tracker to track the rectangle from fram_e to fr_ame. In eapneft-to-right with the leading support vectors on the left. Yet,
frame we have used the proposed techniques in the followin e support vector with the highest response variance is sup-
order. First, we use@SS th?” we used.stochasIM\_/SS ort vector numbet2. A possible reason for this behvior is
to sample support vectors with large variance and finally We{)

.. hat different support vectors respond to different variations
used TopMVSS to select additional support vectors. The in the test pattern (change in illumination, view-point, etc.)

Sggpgrt veﬁtors Eelecte% by alny oge, ofﬁhe techm?cues WeTEhd therefor different support vectors will vary their response
added to the subset and evaluated in the current frame. Uy roqact changes in the different image formation factors.

addition, the variance response of each support vector, in the

; , -~ Next we tested the maximum variance subset selection
subset, is updated. The experiments were conducted on a mix
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Figure 4. Maximum Variance Subset Selection( MVSS). (a) the first image from a 30 frame sequence. (b) Comparing MVSS with
full SVM evaluation. The SVM score evaluated using all 50 support vectors is shown in solid line, the dashed line shows the
SVM score computed using MVSS using 10 vectors (5 using stochastic- MVSS and 5 using Top- MVSS).

(MVSS). In the first frame we used all 50 support vectors foruse a reduced-set with a larger number of support vectors and
object detection. In subsequent frames we used stochastithien use our technique. The classification results of the RBF
MVSS to sample 5 support vectors and another 5 supporkernel were abou$6% on the test set. Then, we used the
vectors using TopAVSS, giving a total of 10 support vec- method of [4] to create two reduced sets from the original set
tors per-frame. Figure 4 shows the results of this experimenbf 2092 support vectors. One reduced set consisted0of
The maximum difference between tB¥M score computed support vectors with a classification score of roughiys.
using all support vectors and the one computed using maxifhe second reduced set consisted of ¢iil\support vectors
mum variance subset selection wiag at most. Because of with classification score of roughB3%. Then we compared
the stochastiddVSS we repeated the experiment 100 times CSSFMVSS ran on the large reduced set @8 support vec-
and reported the avera@/M scores. tors) to the results of the smaller reduced set%oBupport
In the following experiment we compare@SS with vectors). The results are shown in Figure 7. As can be seen
MVSS. We compared both methods on a 30 frame sequendée combination 0€SSandMVSS gives a better approxima-
and show the results in Figure 5. The graph shows the diftion of the reduced set of 200 support vectors, compared to
ference between th8VM score, as computed by each of the reduced set of 90 support vectors. Again, we repeated the
the techniques and the corre®¥M score. Notice how the experiment 100 times and reported the avel@g®l scores.
CSSfluctuates because it does not account for support vectors
with large variations in their response to the test pattern. Th i
MVSS method, on the other hand gives much better resultsa‘.5 Conclusions
Again, we repeated the experiment 100 times and reported/e have used subset selection to maintain $M score
the averag&VM scores. of a test pattern through a video sequence. In each frame
In the following experiment we compare thdVSS  we select a small subset of the support vectors and compute
method with a combine€SS+ MVSS method. We com- their dot-product with the test pattern in the current frame.
pared the performance MfVSS with 18 support vectors (In  The difference in dot-products between previous and current
each frame we sampled 9 support vectors using stochastiframes is used to update tB&M score of the test pattern at
MVSS and 9 support vectors using ToywSS) and a com-  a fraction of the computational cost required to evaluate the
binedCSS+ MVSS (In each frame we choose 6 support vec- SVM score from scratch in every frame.
tors usingCSS another 6 support vectors were sampled us- In particular we have used “Cyclic subset selection” and
ing stochastidVVSS and the other 6 support vectors were se-“Maximum variance subset selection”. The first breaks the
lected using TopvMVSS). Figure 6 shows the results. It shows set of support vectors into smaller subsets and cyclically goes
that theMVSS captures the high-frequency fluctuations in theover them. The second chooses support vectors whose re-
SVM score but might have a bias. The bias is corrected witlsponse to the test pattern vary the most. The maximum vari-
the CSStechnique. The results shown are averaged over 108nce subset selection can be done either deterministically (i.e.
trials to avoid rear samplings in the stochadfle’'SS part of  choose thek support vectors with maximum variance) or
the algorithm affect the result. stochastically (i.e. use weighted sampling to choose support
In the last experiment we have used an RBF kernel, insteadectors with high variance). Taken together this methods can
of the homogenous quadratic polynomial kernel we have usedffectively reduce the computational cost associated with ob-
so far. Our goal was to show that instead of taking a reducegict re-evaluation.
set with a smaller number of support vectors, it is better to While our work focused on support vector machines, it can
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Figure 6. Cyclic subset selection ( CSS and Maximum vari-
ance subset selection ( MVSS). The graph shows the SVM
score of a 100 frame sequence (not shown here), using
three different methods. The solid line was computed us-

ing all the 50 support vectors and it serves as the ground
truth. The dotted line was computed using 18 support
vectors (9 stochastic- MVSS, 9 deterministic- MVSS). The
dashed line was also computed using 18 support vectors

(6 CSS 6 stochastic- MVSS and 6 Top- MVSS. The combined
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Figure 7. Cyclic subset selection (  CSS+Maximum variance
subset selection ( MVSS) Vs. Reduced Set. The solid line
shows the SVM score for an 80-frame sequence, using 200
reduced set vectors. The dotted line shows the SVM score
of 90 reduced set vectors and the dashed line shows our
method (30 vectors using CSS 30 using stochastic- MVSS
and 30 using Top- MVSS). Our method performs better than
the 90 reduced set vector with the same number of dot-
products.

MVSS and CSSgives a better approximation to the ground

truth.
a Maximal Rejection Classifier”, Pattern Recognition Letters,

23(12) 1459-1471, October 2002.
be extended to other classification techniques. For examplgz] M. Isard and A. Blake. Condensation - conditional density prop-
in the work of Viola and Jones [18] there is no need to recom-  agation for visual trackingnt. J. Computer Vision28, 1, 5-28.
pute all the features from scratch, only those that exhibit largé8] S.Z. Li, L. Zhu, Z.Q. Zhang, A. Blake, H.J. Zhang and H.
variance in response to the test pattern. The same can be saidShum. Statistical Learning of Multi-View Face DetectionPiro-
about the calculation of products of histograms [15]. ceedings of the 7th European Conference on Computer Vision

Future research directions will focus on sparse classifier ]C}?p&?kg?g.ig' Eegmcakr";u'\é'ﬁz zoaonza C. Sehmid. Face detection
(SVM in pariicular), so that once an object is detecteq, Onlyfg in \./ideo selqui/an’ce .- atemporgllapproe{cHEIEE éonference on
a small subset of the support vectors will respond to it, and

A - ’ Computer Vision and Pattern Recognitjdtawaii, 2001.
Only thIS Sma” Subset will be Used fOI‘ |a.ter re-eva|uatI0nS [lo] E. Osuna' R. Freund and F. Girosi. Tra"'"ng Support Vector

Machines: An Application to Face Detection. IEEE Confer-
ence on Computer Vision and Pattern Recogniti®unerto Rico,
pages 130-136, 1997.
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