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Abstract—Support Vector Tracking (SVT) integrates the Support Vector Machine (SVM) classifier into an optic-flow-based tracker.

Instead of minimizing an intensity difference function between successive frames, SVT maximizes the SVM classification score. To

account for large motions between successive frames, we build pyramids from the support vectors and use a coarse-to-fine approach

in the classification stage. We show results of using SVT for vehicle tracking in image sequences.

Index Terms—Support vector machines, optic-flow, visual tracking.

�

1 INTRODUCTION

TRACKING algorithms find how an image region moves
from one frame to the next. This implies the existence of

an error function to beminimized, such as the sumof squared
differences (SSD) between the two image regions. The SSD
error function makes the “constant brightness assumption,”
i.e., the brightness of the object does not change from frame to
frame. This paradigmmakes no assumptions about the class
of the tracked object. Yet, quite often, we are interested in
tracking a particular class of objects such as people or
vehicles. In this case, we can train a classifier in advance to
distinguish between an object and the background. The
question then is how to integrate the tracker and the classifier.
One approach is to use the tracker and the classifier
sequentially. The tracker will find where the object moved
to and the classifierwill give it a score.This schemewill repeat
until the classification score will fall below some predefined
threshold. The disadvantage of such an approach is that the
tracker is not guaranteed to move to the best location (the
location with the highest classification score) but rather find
the best matching image region. Furthermore, such an
approach relies heavily on the first frame. Even if a better
image for classification purposes will appear later in the
sequence, the tracker will not lock on it as it tries to minimize
the SSD error with respect to the first image which might
have a low classification score. Our solution is to replace the
error function of the tracker. Instead of minimizing the SSD
error, the tracker will try tomaximize the classification score.
This way, all the prior knowledge, captured by the classifier,
is integrated directly into the tracking process.

Our system detects and tracks the rear-end of vehicles
from a video sequence taken by a forward looking camera
mounted on a moving vehicle (see Fig. 1). Vehicles cannot be
well-spanned by eigenimages and, therefore, the detection
module of the application (which is not described in this
paper) relies on an SVM that was trained on thousands of
images of vehicles and nonvehicles. Once detected, the
system tracks the vehicle over time. Naturally, we would
like to leverage the power of the classifier for tracking.

In this paper, we fuse together an optic-flow-based tracker
andanSVM classifier. Recall that anoptic-flow-based tracker
[1] is a gradient-descent method to search for transformation
parameters that minimize the intensity difference between a
pair of successive frames. SVM [21] is a general classification
scheme that has been successfully used in the past [3], [12],
[17]. Independently, both the tracker and the classifier are
sensitive to viewpoint changes. As an object moves in the
image plane, some parts of it might appear, disappear, or
merge with the background, making it hard for the tracker to
keep tracking it. The classifier, on the other hand, might be
sensitive to small transformations in the image plane so that
even a small misalignment of the tracker might cause the
classifier to reject the tracked vehicle.

SVT combines the computational efficiency of optic-flow-
based tracking with the power of a general classifier SVM,
extending the power of both the tracker and the classifier. The
new tracker now relies on the power of the classifier to
determine the position of the object in the next frame, even if
someparts of the vehicle appear or disappear. This is because
now the new frame is not matched against the previous
frame, but against all the patterns that the classifier was
trained on. The classifier, on the other hand becomes much
more robust to small transformations in the image plane, as
these parameters are estimated efficiently in runtime as part
of the testing process. The result is a real-time tracking
algorithm that we show is capable of tracking vehicles over
long periods of time.

2 RELATED WORK

The problem of fusing detection and tracking has been
investigated in the past, with approaches ranging from pure
tracking, without any aid from a classifier, to pure detection
methods that avoid tracking all together.

Smith and Brady [18] developed a system for vehicle
tracking, among other things, that works by segmenting the
optic-flow field into independently moving regions and
tracking each region separately. The system runs in real
time, but does not use any classifier to validate that the
tracked object is indeed a vehicle.

Gong et al. [7] extend the eigenfaces approach to
recognize a person from a video sequence. However,
tracking and detection are separated. The detection involves
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spatio-temporal image filters, followed by ellipse fitting,

while tracking consists of Kalman filtering. The detected face
in each frame is projected on eigenface subspace and this

“temporal signature” is fed to a neural-network that

determines the identity of the person. Note that the tracking

process is not guaranteed to find the best head position for
the purpose of person recognition.

Black and Jepson [2] integrated eigenimages into an optic-

flow-based tracker calling it Eigentracking. Eigentracking

works by minimizing the distance between the image region

and a predefined set of eigenvectors (instead of minimizing

the SSD error between successive frames). To account for

largermotions, the entire scheme is implemented in a coarse-

to-fine manner, using EigenPyramids. However, eigenimages

are not a general classification scheme and so far they have

been applicable mainly for faces. Support Vector Machines

(SVM), on the other hand, was proven useful in a wide

variety of applications, including character recognition [17],

face detection [12], text classification [8], and medical

applications [10] to name a few.

In machine learning, the problem tackled by SVT is often

referred to as transformation invariance (i.e., how to make

the classification process insensitive to transformations in

the image plane). Simard et al. [19] used the nearest-

neighbor classifier with a “tangent distance” metric, the key

idea being that the set of all images of a transformed image

forms a nonlinear manifold in some high-dimensional space

that can be locally approximated by a “tangent plane.” The

distance between an example image and test image is then

defined as the distance between their tangent planes and not

as the distance between the two images. This approach was

successfully applied for character recognition purposes.

Later, Vasconcelos and Lippman [11] worked on face

images (that are much larger than character images) by

extending “tangent distance” to work in a multiresolution

framework. Scholkopf et al. [16] introduced “tangent

distance” to SVM by deriving a kernel that enforces a local

transformation invariance. This has the advantage of

keeping the classification speed high at the cost of

complicating the learning stage. Moreover, it is not clear

how multiresolution treatment can be incorporated into

their scheme.
Finally, several researchers [22], [9], [13], [14], [15], [20]

perform object detection on every frame, ignoring object
tracking all together. These methods are extremely efficient
in rejecting nonfaces but are computationally expansive in
regions that contain faces.

Our approach is similar to that of [2] in that we find the
transformation parameters as part of the classification stage.
We extend their work by using SVM instead of eigenvec-
tors. This does not complicate the learning phase to achieve
transformation invariance and falls naturally within a
multiresolution framework.

3 SUPPORT VECTOR MACHINES

We denote vectors using bold face fonts x to distinguish
them from scalars x. In the equations, we assume the image
data to be vectorized.

SVM classifiers find a separating hyperplane that max-
imizes the margin between two classes (see Fig. 2), where the
margin is defined as the distance of the closest point, in each
class, to the separating hyperplane. This is equivalent to
performing structural risk minimization to achieve good
generalization. See [21], [4] for a detailed description.

Given a data set fxi; yigli¼1 of l examples xi with labels
yi 2 f�1;þ1g, finding the optimal hyperplane implies
solving a constrained optimization problem using quadratic
programming, where the optimization criterion is the width
of the margin between the classes. The separating hyper-
plane can be represented as a linear combination of the
training examples and classifying a new test pattern x is
done using the following expression:

fðxÞ ¼
Xl

i¼1

�iyikðx;xiÞ þ b;

where kðx;xiÞ is a kernel function and the sign of fðxÞ
determines the class membership of x. Constructing the

optimal hyperplane is equivalent to finding the nonzero

�i. Any data point xi corresponding to nonzero �i is
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Fig. 1. Illustration of SVT operation. SVT takes as input the initial guess
of the position of the vehicle (dashed rectangle) and finds the position
with the highest SVM score (solid rectangle).

Fig. 2. (a) A separating hyperplane with small margin. (b) A separating
hyperplane with a large margin. A better generalization capability is
expected from (b). The filled circles and rectangles are termed “support
vectors.”



termed “support vector.” Support vectors are the training

patterns closest to the separating hyperplane and the

kernel function extends SVM to handle nonlinear separat-

ing hyperplanes. Popular kernel functions include

kðx;xjÞ ¼ expð� kx�xjk2
2�2 Þ which leads to a Gaussian RBF

and kðx;xjÞ ¼ ðxTxj þ 1Þd which represent polynomial of

degree d.

4 SUPPORT VECTOR TRACKING

Tracking algorithms assume some divine intervention to

supplythemwithaninitialguessas tothepositionof theobject

to be tracked. But, a working system must take care of the

detection step as well. We take advantage of the fact that

vehicles are manmade objects that contain strong horizontal

andvertical edges.Weconvert the input image toanedgemap

and search for regions that have strong edges. This search

produces a list of candidate image patches that are further

analyzed. The edge information is not enough to distinguish

between vehicles and nonvehicles, so we use an SVM

classifier, on the input image, to determine if the candidate

image patch is indeed a vehicle. The combination of the fast

edge-based attention mechanism followed by the SVM

validation step gives a fast and accurate detection module.
Our system uses a forward looking camera, mounted on a

moving vehicle to detect and track the rear end of moving
vehicles. Once the vehicle is detected and approved by the
SVM classifier, it is tracked over time. Since much effort was
already put into training the classifier, it is only natural to try
to use it for other tasks as well, tasks such as tracking.

The framework in which SVT will work is as follows:
The detection module will detect possible candidates in the
current frame and hand them over to the SVT. The SVT
will refine their position so that a local maximum of SVM
score is achieved. If the score is positive, the candidate will
be declared a vehicle and a tracking process will start. The
refined position in the current frame will serve as the initial
guess in the next frame, etc.

We develop SVT for the simple case of 2D translation
model. Then, we extend SVT to work on pyramids by
introducing the Support Vector Pyramid. Extensions to a
more general transformation model (such as 2D affine
transformation) are straightforward and will not be pre-
sented here.

4.1 Support Vector Tracking

SVM classification is given by

Xl

j¼1

yj�jkðI;xjÞ þ b; ð1Þ

where xj are the support vectors, yj are their sign, and �j

are their Lagrange multipliers. kðI;xjÞ is the kernel we

choose to use and I is the image region we wish to test. If

the above expression is positive, then the image region I is

considered as a vehicle and, if the expression is negative,

then I is considered as a nonvehicle.

Now, let Iinit represent some initial guess of the position

of the object in a given image. Furthermore, let us assume

that the initial guess is not too distant from the correct

position of the object, defined as Ifinal (Fig. 1). Using first-

order Taylor expansion, we have that

Ifinal ¼ Iinit þ uIx þ vIy; ð2Þ

where Ix; Iy are thex and yderivatives of (sub)image Iinit and

u; v are the motion parameters. By assumption, we have that

the SVM score of Ifinal is higher than that of Iinit. In fact, we

assume the SVM score of Ifinal to be a local maximum. Put

formally,

Xl

j¼1

yj�jkðIfinal;xjÞ ¼ max Ij
Xl

j¼1

yj�jkðI;xjÞ
( )

; ð3Þ

where I are all possible (sub)images (in vector form) in the
neighborhood of (sub)image Ifinal (we drop the constant b as

it does not affect the solution).

4.1.1 Problem Definition

Plugging (2) into (1), we obtain the formal problem we are
trying to solve: Find the motion parameters u; v to maximize the
following expression

max
u;v

Xl

j¼1

yj�jkðIþ uIx þ vIy;xjÞ; ð4Þ

Solving this problem, in the context of tracking, means
that, in each frame, we will look for the image region with
the highest SVM score and not the image region most
similar to the previous frame.

For readability, we will denote Iinit as I from now on.

Taking the derivatives with respect to u and v and setting

them to zero will give us a set of (possibly nonlinear)

equations to solve. These equations will depend on the
particular kernel we use.

4.1.2 Homogeneous Quadratic Polynomials

In this work, we use homogeneous quadratic polynomial

given by the kernel kðx;xjÞ ¼ ðxTxjÞ2, i.e., take the square of
the dot product of the test vector x and the support vector xj.

The function to be maximized is

Eðu; vÞ ¼
Xl

j¼1

yj�jkðIþ uIx þ vIy;xjÞ

¼
Xl

j¼1

yj�jððIþ uIx þ vIyÞTxjÞ2
ð5Þ

and taking the u and v derivatives gives:

@E

@u
¼

Xl

j¼1

yj�jIx
TxjðIþ uIx þ vIyÞTxj ¼ 0

@E

@v
¼

Xl

j¼1

yj�jIy
TxjðIþ uIx þ vIyÞTxj ¼ 0

and, after rearranging terms, we arrive at the following
equation:

A11 A12

A21 A22

� �
u
v

� �
¼ b1

b2

� �
; ð6Þ
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where

A11 ¼
Xl

j¼1

�jyjðxj
T IxÞ2

A12 ¼ A21 ¼
Xl

j¼1

�jyjðxj
T IxÞðxj

T IyÞ

A22 ¼
Xl

j¼1

�jyjðxj
T IyÞ2

b1 ¼ �
Xl

j¼1

�jyjðxj
T IxÞðxj

T IÞ

b2 ¼ �
Xl

j¼1

�jyjðxj
T IyÞðxj

T IÞ:

These equations resemble the standard optic-flow equa-
tions with the support vectors replacing the role of the
second image. This means that all computations are done on
a single frame each time and not on a pair of successive
frames. It is important to emphasize that the particular choice
of the homogeneous quadratic polynomial kernel led to these

optic-flow look-alike equations. Choosing another kernel,
even another polynomial kernel, will lead to a different set of
motion equations that might not be linear in the motion
parameters.

Using SVT is very similar to using optic-flow, with one
major difference. InSVT, the image region to be trackedmust
be rescaled to the size of the support vectors. Once the image
region is rescaled to the proper size we perform a number of
SVT iterations, using (6), to maximize the SVM score. The
iterations stopwhen no improvement in the score is achieved
or after a predefined number of iterations is reached. This
approach can handle small motions in the image plane.
Larger motions must be handled in a coarse-to-fine manner,
as described in Section 4.2 and as described in Section 4.3.

4.2 Pyramid SVT

Each test image that needs to be classified is first subsampled
to the size of the support vectors and then its SVM score is
computed. The goal of SVT is to ensure that the test image is
aligned such that the maximum SVM score is achieved.
Thus, SVT works on the subsampled version of the test
image. The misalignments must be small so that the first-
order Taylor approximation, used bySVT, will suffice to lock
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Fig. 3. Examples of the initial guess (dashed line) and the final position (solid line). The image size in all cases is 320� 240. Typical object size is
40� 40 pixels. TheSVMscore of the initial guess and the final position aswell as the amount ofmotion between the initial and final position are shown for
every example. In example (c), a small change in the position (about one pixel) changed the SVM score from negative to positive. (a) Init: �8:3 Final:
2:9 Motion: (8.8,2.8). (b) Init: �2:1 Final: 2:5 Motion: (-4.5,-2.7). (c) Init: �0:5 Final: 1:0 Motion: (-1.13,1.2). (d) Init: �3:7 Final: 0:2 Motion: (-8.6,4.4).



on the best position. However, if the motions are large, we
can no longer hope for the approximation to work and
pyramids must be used.

So far, we have treated the support vectors as vectors, not
as images. But, recall that the support vectors are a
subsampled image of the most problematic images in the
learning set and, therefore, we can smooth and subsample
them to create a support vector pyramid for each support
vector. In the classification stage, we create a pyramid of the
same size as the support vector pyramids from the test image.
Now,we run SVT on successive levels of the pyramids. First,
we run SVT on the top level of the support vector pyramid
and the top level of the test image pyramid. The recovered
motion parameters are at the position with the best SVM

score. This position serves as the initial guess for the SVT on
the next level of the pyramid and so on until the motion
parameters are recovered. The SVM score is the score of the
bottom level of the pyramid. Ideally, the position with the
highestSVM score shouldbe the same for all levels, but this is
not sobecauseof samplingerrors andnoise.Nevertheless, the
best position in the coarser level serves as a good starting
point for the next level.

It is important to emphasize that the pyramid SVT does
not guarantee that the SVM is transformation invariant. All
it does is to perform a search for the local maximum in
parameter space. This can cause the tracker to get stuck in
local maxima, just like any other gradient descent algo-
rithm. The experiments reveal how robust SVT is to
transformations in the image plane.

4.3 SVT and Optic-Flow-Based Tracking

In case SVT uses the homogenous quadratic polynomial
kernel, it is possible to combine it with standard optic-flow-
based tracking in a straightforward manner. Recall that the
standard optic-flow equations are given by:P

Ix
T Ix

P
Ix

T IyP
Ix

T Iy
P

Iy
T Iy

� �
u
v

� �
¼ �

P
It

T Ix
�
P

It
T Iy

� �
; ð7Þ

where Ix; Iy are the x; y derivatives of the first image and It
is the temporal derivative between the two frames.

If we want the motion parameters u; v to balance
between similarity to the previous frame (as is done with
optic-flow-based tracking) and maximizing the SVM score
(as is done with SVT), we can combine (6) and (7) to form an
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Fig. 4. SVT trajectory in parameter space. (a) and (b) correspond to Figs. 3a and 3d where the dashed rectangle marks the initial guess and the solid
rectangle shows the final position. (c) and (d) show the trajectory of the SVT algorithm in parameter space, (black means lower SVM score, the x and
y axis are measured in pixels). These plots show how the SVT algorithm moves toward the local maxima of the SVM score. The final position of the
SVT algorithm is marked with a diamond. Note how smooth the error surface is, making it suitable for a gradient descent algorithm such as SVT.



overdetermined system of equations and solve it to obtain
motion parameters that are consistent with both constraints.

Furthermore, the relative weights of the two constraints
can vary over time as the tracking proceeds. For example,
when a vehicle is first detected, we might rely on SVT in the
first couple of frames and, over time, increase the weight of
the optic-flow-based tracking, using the information gath-
ered in the first couple of frames. If we were to use a
different kernel with SVT, then the combination with optic-
flow-based tracking was still possible, but not as elegant.

We have not experimented with this extension to the
SVT framework and leave it for further research.

5 EXPERIMENTS

The classification engine was trained on a set of approxi-
mately 10,000 images of vehicles and nonvehicles. Vehicles
include cars, SUVs, and trucks in different colors and sizes.
The images were digitized from a progressive scan video at
a resolution of 320� 240 pixels and at 30 frames per
second. Typical vehicle size is about 50� 50 pixels. The
vehicles and nonvehicles were manually selected and
reduced to the size of 20� 20 pixels. Their mean intensity
value was shifted to the value 0:5 (in the range ½0::1�) to

help reduce the effect of variations in vehicle color. We
used a homogeneous quadratic polynomial kernel given by
kðx;xjÞ ¼ ðxTxjÞ2 to perform the learning phase. The
classification rate was about 92 percent for the learning
set, with about 2; 000 support vectors. A similar classifica-
tion rate was obtained for the testing set that contained
approximately 10; 000 images as well.

To speed up the classification phase, we used the Reduced
Set Method [5] to reduce the number of support vectors from
2; 000 to 400. The Reduced Set Method shows that, for the
homogeneous quadratic polynomial kernel, the number of
support vectors doesnot have to exceed thedimensionality of
the input space. The number of support vectors can be
reduced, through Principal Component Analysis on the
support vectors in feature space, to a number bounded by
thedimensionality of the input space,which is 400 in our case.
In practice, we found that the 50 support vectors with the
largest eigenvalues are sufficient for classification. We
created a two-level Gaussian pyramid for every one of the
50 support vectors by treating every support vector as a
20� 20 image. Each test image was converted to a Gaussian
pyramid with the bottom level of the pyramid being
20� 20 pixels. We used SVT with a 2D translation model
on the pyramid to refine the image position. The score of the
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Fig. 5.SVTtracking. (a), (b), and (c) are three frames from a 101 frame sequence. (d) shows theSVM score of the tracked region using theSVT tracker.
The x-axis of the graph is the frame number, the y-axis is the SVM score. (a) Frame #1. (b) Frame #51. (c) Frame #91. (d) SVM score. SVT tracking.



test imagewas taken to be the SVM score of the bottom level.
SVT takes as input an initial position of the object in the first
frame. It then applies pyramid SVT and outputs the position
in the image with the highest SVM score. This position then
serves as the initial guess for thenext frame. The running time
ofSVTdependsonthekernelusedandthenumberof support
vectors. In the case of a homogenous quadratic kernel, for
example,SVTwas slower thanSSD tracking because, in each
iteration, we had to perform dot-product between the test
pattern and all the support vectors.

We conducted four experiments on a wide variety of
vehicles of different type, size, color, and shape. No
parameter was changed from experiment to experiment.
In all cases, the initial guess in the first image was supplied
manually. In the real system, the initial guess will be
supplied by the detection module.

In the first experiment, we supplied the algorithm with a
rough initial guess and tested how well it maximized the
SVM score (Fig. 3). For each image in the figure, we show
how much the SVM score improved and what the motion
from the initial guess to the final position was. Note that, in

some cases, a motion of only one pixel can change the SVM
score from negative to positive (see Fig. 3c).

We also analyzed the error surface of SVT (Fig. 4). This
was done by exhaustively computing the SVM score in the
vicinity of the initial guess and computing the trajectory of
the SVT algorithm against it. One can see that the error
surface seems to be smooth, making it suitable for gradient-
descent algorithms such as the SVT.

The average image-plane motion that was correctly
recovered by SVT, across the sequences presented here
(about 400 frames), was two pixels. The maximum was
10 pixels.

The second experiment tested how the 2D translation
motion model we use handles an approaching vehicle. In
this sequence of 101 frames, our car is approaching a slower
moving white car (Fig. 5). Note also that the viewpoint
changes (we can see the side of the car as we approach it)
but SVT still manages to keep track of the rear of the car
with high SVM scores.

In the third experiment (Fig. 6), we compare the SVT
against a simpleSSD tracker. In theSSD case,weuseanSSD-
based tracker and score the tracked region using SVM (not
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Fig. 6. (a), (b), and (c) are three frames from a 40 frame sequence. The solid rectangle denotes the SVT tracking result, the dashed rectangle
denotes a simple SSD tracker. (d) shows the SVM score of the tracked region using the SVT tracker (solid line) and SSD tracker (dashed line). The
x-axis of the graph is the frame number, the y-axis is the SVM score. In the SSD case, we tracked using the SSD tracker and then used the SVM
classifier to give the tracked region a score. As can be seen, even though the SSD tracker managed to track the vehicle, its SVM score is negative
and, so, the system will stop tracking this object. (a) Frame #1. (b) Frame #10. (c) Frame #37. (d) SVM score.



SVT). This experiment shows that the error function
minimized by the SSD tracker can result in disastrous SVM
scores that might reduce our confidence that we are still
tracking a vehicle.

The SSD tracker works by minimizing the SSD error
between successive frames. It uses pyramids to account for
large motions and it uses (7) to estimate the motion
parameters. The sequence shows a truck changing lanes. As
wecan see,up to frame10, both trackersperformcomparably.
However, at frame 10, probably due to some background
pixels, the two trackers diverge by five pixels. This is enough
to drastically lower the SVM score obtained by the SSD
tracker. As can be seen, it never recovers from thismiss and it
keepsdrifting away.TheSVT tracker on theotherhandkeeps
getting high SVM scores throughout the sequence.

The last experiment shows a challenging case of changing
illumination (Fig. 7). The sequence is taken on a bridge
covered with steel poles. The sun illuminates the vehicle in
front of us through the poles, causing strong illumination
artifacts. The SSD tracker fails to track the vehicle and drifts
away after 50 frames without getting a positive SVM score
along theway. The SVT, on the other hand, remains attached

to the vehicle while maintaining a positive SVM score. It is
interesting to see that the SVM is somewhat sensitive to the
illumination changes as is evident from the jigsaw shape of
the SVM score of the SVT.

6 LIMITATIONS AND FUTURE RESEARCH

We integrated the SVM classifier and the optic-flow-based
tracker to give a Support Vector Tracking (SVT) mechan-
ism. SVT works by maximizing the SVM classification
score instead of minimizing an intensity difference function
between successive frames. In addition, we created a
Gaussian pyramid from every support vector, terming it
“Support Vector Pyramid,” that allows SVT to handle large
motions in the image plane. We found that SVT gives good
results for tracking vehicles over long periods of time.
Moreover, the SVM score returned by SVT gives useful
confidence measure that can help us determine if we are
still tracking the vehicle or not.

However, SVT suffers from several limitations. First,
the method cannot handle partial occlusions. Second, it is
not designed to handle momentary disappearance and

AVIDAN: SUPPORT VECTOR TRACKING 1071

Fig. 7. (a), (b), and (c) are three frames from a 50 frames sequence. The solid rectangle denotes the SVT tracking result, the dashed rectangle
denotes a simple SSD tracker. (d) shows the SVM score of the tracked region using the SVT tracker (solid line) and SSD tracker (dashed line). The
x-axis of the graph is the frame number, the y-axis is the SVM score. In the SSD case, we tracked using the SSD tracker and then used the SVM
classifier to give the tracked region a score. As can be seen, the SSD tracker is fooled by the changing illumination, while the SVT tacker is much
more stable. (a) Frame #3. (b) Frame #25. (c) Frame #50. (d) SVM score.



reappearance. Third, there is no guarantee that SVT will
not switch from one vehicle to another in case of two
nearby vehicles.

The SVT paradigm canworkwith variousmotionmodels
up to a 2D affine transformation and various kernels such as
polynomial or RBF. Here, we used SVTwith a homogenous
quadraticpolynomial kernel so that themotionequationswill
be linear. However, other kernels can be used as well at the
cost of having to solve a nonlinear set of equations for the
motion parameters. While this might slow down the
computations for real-time tracking, it offers a principled
manner to align a test image with the SVM support vectors;
thus SVT can be viewed as extending SVM to have some
inherent invariance to image transformations.

Finally, SVT, in its current form, does not integrate
temporal information to improve tracking/detection perfor-
mance. However, initial results suggest that it can be
combinedwith optic-flow-based tracking to balance between
different constraints. Moreover, temporal information can be
used to improve the detection/tracking process as additional
information about the tracked object is gathered.
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