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Abstract

Support Vector Tracking (SVT) integrates the Support
Vector Machine (SVM) classifierinto an optic-flow based
tradker. Insteadof minimizingan intensitydifferencefunction
betweersuccessivérames SVT maximizeshe SVM classi-
ficationscore. To accountfor large motionsbetweersucces-
siveframeswe build pyramidsfrom the supportvectors and
usea coarse-to-fineapproad in the classificationstage. e
showresultsof usinga homaeneousjuadratic polynomial
kernelSVT for vehicletracking in image sequences.

1 Introduction

Tracking algorithmsfind how doesan image region move
from oneframeto the next. This impliesthe existenceof an
error function to be minimized, suchasthe sum of squared
differencegSSD) betweerthe two imageregions. This error
functionis the resultof makingthe “constantbrightnessas-
sumption”,i.e. pixel valuesdoesnot changefrom frameto
frame. This paradigmmakes no assumptionsboutthe na-
ture of the tracked object. Yet, quite often we areinterested
in trackinga particularclassof objectssuchaspeopleor ve-
hicles.In this casewe cantrain a classifierin advanceto dis-
tinguishbetweeranobjectandthe backgroundThequestion
thenis how to integratethetracker andthe classifier Oneap-
proachis to usethetrackerandtheclassifiersequentially The
trackerwill find wheredid the objectmove to andthe classi-
fier will give it a score. This schemewill repeatitself until
the classificationscorefalls belov somepredefinedthresh-
old. Thedisadwantageof suchanapproachs thatthetracker
is not guaranteedo move to the bestlocation (the location
with the highestclassificationscore)but ratherfind the best
matchingmageregion. Furthermoresuchanapproachelies
heavily onthefirst frame. Evenif abetterimagefor classifi-
cationpurposeswill appeaitaterin the sequencehe tracker
will notlock onit asit triesto minimize the SSD error with
respecto the first imagewhich might have a low classifica-

tion score. Our solutionis to replacethe error function of
thetracker. Insteadof minimizing the SSD error, the tracker
will try to maximizethe classificationscore. This way, all
the prior knowledge,capturedby the classifier is integrated
directly into thetrackingprocess.

Black and Jepson[6] integrated eigen-imagesinto an
optic-flow tracker calling it Eigentracking. Eigentracking
works by minimizing the distancebetweenthe image re-
gion and a predefinedset of eigervectors(insteadof mini-
mizing the SSD error betweensuccessie frames). To ac-
countfor larger motionsthe entire schemeis implemented
in a coarse-to-finananney using EigenPyamids However,
eigen-imagesire not a generalclassificationschemeand so
farthey have beenapplicablemainly for faces.SupportVec-
tor MachinesSVM, ontheotherhand,wasprovenusefulin a
wide variety of applicationsjncluding characterecognition
[12], facedetection[11], text classification13] andmedical
applicationd14] to namea few.

Our systemdetectsand tracks the rearend of vehicles
from a video sequencdaken by a forward looking camera
mountedon amoving vehicle(seeFigurel). Vehiclescannot
be well spanneddy eigen-imagesndthereforthe detection
moduleof the application(which is not describedn this pa-
per)relieson akernelSVM thatwastrainedon thousand®f
imagesof vehiclesandnon-wehicles.Oncedetectedthe sys-
temtracksthe vehicleover time. Naturally, we would like to
leveragethe power of the classifierfor tracking.

Optic-flow [5] is the particulartracker we will usehere.lIt
assumethatpixel valuesdo not changefrom frameto frame
(“constantbrightnessconstraint”), and that transformations
suchasa 2D affine transformatiorare sufficient for tracking
purposes. To accountfor large motion betweensuccessie
framesit usesa coarse-to-findramework in which a rough
alignmentis achievedin thecoarsetevelsof thepyramidand
arefinedsolutionis obtainedn thefine levels.

For classificatiorwe usetheSVM techniqudl]. SVM isa
generaklassificatiorschemehathasbeensuccessfullyused
in the past[10, 11, 12]. Givena setof positive andnegative
examplesSVM findsthebestseparatindyperplandetween



Figure 1. lllustration of SVT operation. SVT takes as input
the initial guess of the position of the vehic le (dashed rect-

angle) and finds the position with the highest SVM score
(solid rectangle).

thetwo classesThesupportvectos arethe examplesclosest
to theseparatindiyperplane Testimagesareclassifiecbased

ontheir signeddistanceo the separatindiyperplane.
In machindearningthe problemtackledby the SVT is of-

tenreferredto astransformationnvariance(i.e., how to make
theclassificatiorprocessnsensitve to transformationgn the
imageplane). Simardet al. [7] usedthe nearest-neighbor

classifierwith a “tangentdistance”metric. The key ideabe-
ing that the setof all imagesof a transformedmageforms
a non-linearmanifold in somehigh-dimensionakpacethat
canbe locally approximateddy a “tangentplane”. The dis-
tancebetweenan exampleimageandtestimageis thende-
finedasthedistancebetweertheir tangentiplanesandnotas
thedistanceébetweerthetwo images.Thisapproactwassuc-
cessfullyappliedfor characterecognitionpurposes.Later,
NunoandLippman[8] workedonfaceimagegthataremuch
largerthancharacteimages)hy extending‘tangentdistance”
to work in a multi-resolutionframework. Finally, Schollopf
etal. [9] introduced‘tangentdistance™o SVM by derving
akernelthatenforcesa local transformatiorinvariance.This
hasthe advantageof keepingthe classificatiorspeechigh, at
the costof complicatingthe learningstage. Moreover, it is
not clearhow multi-resolutiontreatmenicanbeincorporated
into their scheme.

Our approachs similar to that of [6] in thatwe find the
transformatiorparametergaspart of the classificationstage.
We extend their work by using SVM insteadof eigervec-
tors. This doesnot complicatethelearningphaseto achieve

transformationinvarianceandfalls naturally within a multi-
resolutionframework.

2 Support Vector Machine

For the paperto be self containedwve give a brief description
of SVM. Theinterestedeadelis referredto [1, 3] for amore
detaileddescription.Considetthe simplecaseof two linearly

separablelassesGivenadataset{x;,y; }._, of I examples
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Figure 2. (a) A separating hyperplane with small margin.
(b) A separating hyperplane with a large margin. A better

generalization capability is expected from (b). The filled
squares and circles are termed “suppor t vector s”.

x; with labelsy; € {—1,+1}, we wish to find a separating
hyperplanebetweenthe two classes.Formally, we consider
thefamily of decisionfunctions

f(x) = sgn(wx +1) @)
andwish to find w, b suchthatsgn(w”x; + b) = sgn(y;).
This problemis in generalill-posed becausdgheremight be
aninfinite numberof separatindiyperplanesThequestions
which onehasalow generalizatiorerror (i.e. which onewill
do a goodjob in classifyingnen examples). It was shovn
by Vapnik[1] thatchoosinghe hyperplanewvith the minimal
normof w minimizesthe“StructuralRisk” whichis anupper
boundon the generalizatiorerror. Intuitively, this w is the
oneto maximizethe mamin betweenthe two classeqSee
Figure2). Practically this amountsto solvingthe following
quadraticoptimizationproblem(QP)

%WTW

subject to yi(wiw +b)>1,
i=1..1

thatcanbesolvedquiteefficiently. Theexamplevectorsclos-
estto the separatindiyperplanerecalled“supportvectors”.
Theclassificationitself is performedoy measuringhesigned
distanceof the testimagefrom the separatindiyperplane.
But how canthe SVM be extendedto handledecision
functionsthat are not linear in the data? The answeris to
usea nonlinearmapping® of the input dataand mapit to
somehigh-dimensionalpossibly even with infinite dimen-
sions)feature spaceF’. Thelinear SYM is thenperformed

in F andwill thereforbenonlinearin the original input data.
Formally, let

Mming

)
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beanonlineamappingfrom input spaceo featurespaceand
thedecisionfunctionswe dealwith becomes

l
f60) = sgn(}_yie; ()T @(x) +b).  (4)



whereq; is a setof parametersomputedby solvingthe QP
problem. However, working in feature spacecan be pro-
hibitively expansve to compute. Thereforwe use Mercer
kernelson the input datato avoid computingthe dot prod-
uctsin featurespace. Mercer kernelsk(x, x;) satisfy that
k(x,x;) = ®(x)T®(z;). Thus,in kernelSVM we usethe
following decisionfunctions

09 = sgn(Siniw0s2()TR00) +0) o
= sgn(Yj, yjoik(x,%;) +b)
andthe quadraticprogrammingproblembecomes:
maximize
W(a) = Ticy 05 — § X4 o @iy k(xi, X5)
subject to (6)
>0, i=1..1,
and 2221 a;y; = 0.

It turnsout that o; is equalto 1 for exampleson the border
betweenthe two classesand zero otherwise. In typical ap-
plicationsabout10% of theexampleshave o; equalto 1 and
theseexamplesarecalledsupportvectos. Therestof the ex-
amplesare not importantbecausehey do not help separate
betweenthe two classes.The only differencebetweenker-
nelandlinear SVM is thatthe dot productof linear SVM is
replacedwith akernelfunction.

Typical kernels used in the SVM literature include
k(x,x;) = exp(— x — xj||)? which leadsto a Gaussian
RBF, k(x,x;) = (xTx; + 1)¢ which represenpolynomial
of degreed andk(x,x;) = tanh(xTx; — ©) which leadsto
multi-layer perceptron.Extensionto non-separablelassifi-
cationproblemexist [2], wheretheideais thata penaltyterm
is usedto governthe pricewe arewilling to payfor misclas-
sifiedexamples.

3 Support Vector Tracking

Trackingalgorithmsassumesomedivine interventionto sup-
ply themwith aninitial guessasto the positionof the object
to be tracked. But a working systemmusttake careof the
detectionstepaswell. This is usuallydoneby exhaustiely
searchinghe imagefor candidatesand classifyingthem as
objectsor non objects. Our systemusesa forward looking
cameramountedon a moving vehicleto detectandtrackthe
rearendof moving vehicles. Oncethe vehicleis detectedt
is tracked over time. Sincemucheffort wasalreadyput into
building the detectiormoduleit is only naturalto try anduse
it for othertasksaswell, taskssuchastracking.
Theframavorkin which SVT will work is asfollows. The
detectionmodulewill detectpossiblecandidatesn the cur-
rent frame and handthem over to the SVT. The SVT will
refinetheir positionsothata local maximumof SVM score
is achieved. If the scoreis positive the candidatewill be de-
claredavehicleandatrackingprocesswill start. Therefined
positionin the currentframewill sene astheinitial guessn

thenext frameandsoon. In thiswork we will concentrat@n
thetrackingmodulealoneandwill notdescribethe detection
module.

We introducethe notationsanddevelop SV T for the sim-
ple caseof 2D translationmodel. Thenwe extend SVT to
work on pyramidsby introducingthe SupportVector Pyra-
mid. Extensionsto a more generaltransformationmodel
(suchas 2D affine transformation)are straightforvard and
will notbe presentedhere.

As for notations,we denotevectorsusingbold facefonts
x to distinguishthemfrom scalarsc. Whenusingthe SVT
equationsve assumeheimagedatato bevectorized.

3.1 Support Vector Tracking
KernelSVM is givenby

l
> yjok(Lx;) +b @)
j=1

wherex; arethel supportvectors,y; aretheir signandc;
aretheir distancefrom the hyperplane k(I, x;) is thekernel
we choosedo use,and! is theimageregion we wishto test.

Now, let Iinit represensomeinitial guessof the position
of theobjectin agivenimage.Furthermoreletusassumehat
the initial guessis not too distantfrom the correctposition
of the object, definedasIgna; (Figurel). Usingfirst-order
Taylor expansionwe have that

Ifinal = Linit + ulx + vl (8)

wherely, I, arethe z andy derivatives of (sub-)image
Linit andu, v arethe motion parametersBy assumptiorwe
have thatthe SVM scoreof Ianar is higherthanthatof Iint.
In factwe assuméhe SVM scoreof Igna1 to bealocal max-
imum. Putformally

l l
> yiaik(Ianas, x;) = maz{l] Y y;a;k(Lx;)}  (9)
Jj=1 7j=1

wherel areall possible(sub-)imagegin vectorform) in the
neighborhoodf (sub-)imagelanal (We drop the constant
asit doesnot affectthe solution).

Pluggingequation8 in equation? we get

l
> yiok(I+ uly + vy, x;) (10)

=1

which we wantto maximize. For readabilitywe will denote
Linit asI from now on. Takingthe derivativeswith respecto
u andv andsettingthemto zerowill give usasetof (possibly
non-linear)equationgo solve. This equationswill dependn
theparticularkernelwe use.



3.1.1 Homogeneous Quadr atic Polynomials
In thiswork we usehomogeneouguadratigolynomialgiven
by thekernelk(x, x;) = (xTx;)?, i.e. take the squareof the
dotproductof thetestvectorx andthesupportvectorx;. The
functionto be maximizedis
E(u,v) = 23:1 yja;k(I+ vl + vl x;)
= Ym0y (T + ule + vIy) x;)?

andtakingthewu andv derivativesgives:

(11)

l

OF
6_1), = Z yj(lexTXj (I + qu + ’I)Iy)TXj (12)
j=1
=0
OF !
5 = >yl T (1 + ule +0ly) x5 (13)
J=1
=0
and after rearrangingterms we arrive at the following
equation:
Ain Ajgg u _ b1
(i az)()-(n) oo
Where
!
An = Zajyj (XjTIx)2
j=1
l
A = An =) ay(x"L)(x" L)
j=1
!
A = Y ayyi(xTL)?
j=1
l
b= =) ajy( L) (%)
J=1
l
by = = (L) (x7T)
j=1

This equationsresembleghe standardoptic-flow equa-
tionswith thesupportvectorsreplacingtherole of thesecond
imagein the equation. This meanghatall computationsare
doneon asingleframeeachtime andnoton a pair of succes-
sive frames.

Using SVT is very similar to using optic-flow, with one
majordifferenceln SVT theimageregionto betrackedmust
be rescaledo the size of the supportvectors. Oncethe im-
ageregion is rescaledo the propersizewe performa num-
ber of SVT iterations,using equation14, to maximizethe
SVM score.Theiterationsstopwhenno improvementin the
scoreis achievedor aftera predefinechumberof iterationsis
reached.This approactcanhandlesmall motionsin theim-
ageplane.Largermotionsmustbehandledn acoarse-to-fine
manneyasdescribedn the next subsection.

3.2 Pyramid SVT

Eachtestimagethatneedgo beclassifieds first sub-sampled
to the size of the supportvectorsandthenits SVM scoreis
computed.The goalof SVT is to ensurethatthe testimage
is alignedsuchthat the maximumSVM scoreis achieved.
Thus,SVT works on the sub-sampledersionof the testim-
age. The misalignmentsnustbe small sothatthefirst-order
Taylor approximationusedby SV T, will suffice to lock on
the bestposition. However, if the motionsarelarge, we can
no longerhopefor the approximationto work and pyramids
mustbeused.

Sofarwehavetreatedhesupportvectorsasvectorsnotas
images.But recallthatthe supportvectorsarea sub-sampled
imageof the mostproblematiadmagesn thelearningsetand
thereforwe cansmoothandsubsampléhemto createa sup-
portvectorpyramidfor eachsupportvector In theclassifica-
tion stagewe createa pyramidof the samesizeasthe support
vector pyramidsfrom the testimage. Now we run SVT on
successie levels of the pyramids. Firstwe run SVT onthe
top level of the supportvector pyramid andthe top level of
thetestimagepyramid. Therecoreredmotionparameterare
atthe positionwith thebestSVM score.This positionsenes
astheinitial guessfor the SVT onthenext level of the pyra-
mid andsoon until themotionparameterarerecosered.The
SVM scoreis the scoreof the bottomlevel of the pyramid.
Ideally the position with the highestSVYM scoreshouldbe
the samefor all levelsbut this is not sobecausef sampling
errorsandnoise.Neverthelessthebestpositionin thecoarser
level senesasa goodstartingpointfor thenext level.

It is importantto emphasizehat the pyramid SVT does
not guaranteehatthe SVM is transformatiorinvariant. All
it doesis to performa searchfor the local maximumin pa-
rameterspace.This cancausehetrackerto getstuckin local
maxima,just like any otheralgorithmthat usesNewton’s it-
erations.The experimentgevealhow robustis SVT to trans-
formationsin theimagespace.

4 Experiments

The classificationenginewas trained on a set of approxi-
mately 10000imagesof vehiclesandnon-\wehicles.Vehicles
include cars,SUVs andtrucksin differentcolorsandsizes.
Theimagesweredigitizedfrom a progressie scanvideoata
resolutionof 320 x 240 pixelsandat 30 framesper second.
Typical vehicle sizeis about50 x 50 pixels. The vehicles
andnon-\wehicleswere manuallyselectedandreducedo the
sizeof 20 x 20 pixels. Theirmeanintensityvaluewasshifted
to the value 0.5 (in the range[0..1]) to help reducethe ef-
fect of variationsin vehiclecolor. We usedanhomogeneous
quadraticpolynomialkernelgivenby k(x,x;) = (xT'x;)? to
performthelearningphase The classificatiorratewasabout
92% for thelearningset,with about2000 supportvectors.A
similar classificatiorratewasobtainedfor thetestingsetthat
containedapproximatelyl 0000 imagesaswell.

To speedup the classificatiorphasewe usedthe Reduced
SetMethod[4] to reducethe numberof supportvectorsfrom



(c) Init: —0.5 Final: 1.0 Mation: (-1.13,-1.2)

(d) Init: —3.7 Final: 0.2 Motion: (4.4,-8.6)

Figure 3. Examples of the initial guess (dashed line) and the final position (solid line). The image size in all cases is 320 x 240.
Typical object size is 40 x 40 pixels. The SVM score of the initial guess and the final position as well as the amount of motion
between the initial and final position are shown for every example. In example (c) a small change in the position (about one

pixel) chang ed the SVM score from negative to positive .

2000 to 400. The ReducedSetMethodshaws thatfor homo-
geneousyuadraticpolynomialkernelthe numberof support
vectorsdoesnot have to exceedthe dimensionalityof thein-
put space. The numberof supportvectorscan be reduced,
throughPrincipalComponenAnalysisonthesupportvectors
in featurespaceto a numberboundedoy the dimensionality
of the input spacewhich is 400 in our case.In practicewe
foundthatthe 50 supportvectorswith thelargesteigervalues
are sufficient for classification. For eachof the 50 support
vectorswe created 2 level Gaussiarpyramidby performing
a 2D smoothingfollowed by sub-sampling Eachtestimage
wassub-sampletb a Gaussiampyramidwith thebottomlevel
of thepyramidbeing20 x 20 pixels. We usedSV T with a2D
translatiormodelonthepyramidto refinetheimageposition.
The scoreof the testimagewastakento be the SYM score
of the bottomlevel. SVT takesasinput aninitial position
of the objectin thefirst frame. It thenappliespyramid SVT
andoutputsthe position,in theimage,with the highestSVM
score. This positionthensenesasthe initial guessfor the
next frame.

We conductedfour testson a wide variety of vehicles
of differenttype, size, color and shape. No parametemwas
changedrom testto test. In all caseghe initial guessn the
firstimagewassuppliedmanually In therealsystemtheini-
tial guesswill be suppliedby thedetectionrmodule.

In thefirst testwe suppliedthe algorithmwith a roughini-
tial guessandtestedhow well it maximizedthe SVM score
(Figure3). For eachimagein the figure we shov how much
did the SVYM scoreimprovedandwhatwasthe motionfrom
theinitial guesgo the final position. We found that transla-
tionsupto about10% of thevehiclesizewerehandledby the
algorithm.Moreimportantly in somecasesamotionof about
onepixel changedhe SVYM scorefrom negative to positive
(seeimage(c) in Figure3).

Thesecondcaseesthow the2D translationmotionmodel
we usehandlesan approachingrehicle. In this sequencef
101 framesour caris approaching slower moving white car
(Figure4). Notealsothattheview pointchangegwe cansee
the side of the caraswe approacht) but still SVT manages
to keeptrackof therearof the carwith high SYM scores.



(a) Frame#1

(c) Frame#91

(b) Frame#51
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Figure 4. SVT tracking. (a),(b),(c) are three frames from a 101 frames sequence . (d) show the SVM score of the tracked region
using the SVT tracker. The x-axis of the graph is the frame number, the y-axis is the SVM score .

In thethird test(Figure5) we comparehe SVT againsta
simpleSSD tracker. The SSD tracker works by minimizing
the SSD errorbetweersuccessie frames.It usegpyramidsto
accounfor largemotionsandit useshefollowing optic flow
equationto estimatehe motionparameters:

R ONE:-)

E IxTIy Z IyTIy - E ItTIy (15

wherely, I, arethez, y derivativesof thefirstimageandI
is the time derivative betweerthe two frames.The sequence
shaws a truck changinglanes. As we cansee,up to frame
10 both trackersperformcomparably However at frame 10,
probablydueto somebackgroundpixelsthetwo trackersdi-
verge by five pixels. This is enoughto drasticallylower the
SVM scoreobtainedby the SSD tracker. As canbe seenit
neverrecoversfrom this missandit keepsdrifting away. The
SVT trackerontheotherhandkeepgettinghigh SVM scores
throughouthe sequence.

Thelasttestshavs a challengingcaseof changingllumi-
nation(Figure6). The sequencés takenon a bridgecovered
with steelpoles.Thesunilluminatesthevehiclein front of us

throughthe poles,causingstrongillumination artifacts. The
SSD tracker fails to track the vehicle and drifts away after
50frameswithout gettingpositive SVM scorealongtheway.

The SVT on the otherhandremainsattachedo the vehicle
while maintaininga positive SVM score. It is interestingto

seethatthe SVM is somavhat sensitve to the illumination
changessis evidentfrom thejigsaw shapeof theSVM score
of theSVT.

5 Conclusions

We integratedthe SVYM classifierandthe optic-flow tracker
to give a SupportVector Tracking (SVT) mechanism.SVT

works by maximizingthe SVM classificationscore,instead
of minimizing an intensity differencefunction betweensuc-
cessve frames. In additionwe createda Gaussiarpyramid
from every supportvector, termingit “SupportVector Pyra-
mid”, thatallows SVT to handlelarge motionsin theimage
plane. The algorithmwastestedon real video sequencefor

the purposeof vehicletracking.

The SVT paradigmcanwork with variousmotionmodels



(a) Frame#l

(c) Frame#37

(b) Frame#10
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Figure 5. (a),(b),(c) are three frames from a 40 frames sequence . The solid rectangle denotes the SVT tracking result, the dashed
rectangle denotes a simple SSD tracker. (d) show the SVM score of the tracked region using the SVT tracker (solid line) and SSD
tracker (dashed line). As can be seen, SVT is far superior to the SSD tracker. The x-axis of the graph is the frame number, the

y-axis is the SVM score .

up to a 2D affine transformatiorandvariouskernelssuchas
polynomialor RBFE. Herewe usedSVT with a homogenous
guadratigpolynomialkernelsothatthe equationswill belin-
ear However, otherkernelscanbe usedaswell atthe costof
having to solve a non-linearsetof equationgor the motion
parameters.While this might slow down the computations
for realtime trackingit offersa principledmannerto align a
testimagewith the SYM supportvectors,thusSVT canbe
viewed asextendingSVM to have someinherentinvariance
to imagetransformations.
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