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Abstract

We present a new function that operates on Fundamen-
tal matrices across a sequence of views. The operation,
we call “threading”, connects two consecutive Fundamen-
tal matrices using the Trilinear tensor as the connecting
thread. The threading operation guarantees that consec-
utive camera matrices are consistent with a unique 3D
model, without ever recovering a 3D model. Applications
wnclude recovery of camera ego-motion from a sequence
of views, image stabilization (plane stabilization) across
a sequence, and multi-view 1mage-based rendering.

1 Introduction

Consider the problem of recovering the (uncalibrated)
camera trajectory from an extended sequence of images.
Since the introduction of multi-linear forms across three
or more views (see Appendix) there have been several
attempts to put together a coherent algebraic frame-
work that would produce a sequence of camera matrices
that are consistent with the same 3D (projective) world
[25, 4, 23]. The consistency requirement arises from the
simple fact that from an algebraic standpoint a camera
trajectory must be concatenated from pairs or triplet of
images. Therefore, a sequence of independently computed
Fundamental matrices or Trilinear tensors, maybe opti-
mally consistent with the image data, but not necessarily
consistent with a unique camera trajectory (see Figure 1).
There are two basic approaches to the problem:

1. Recover (incrementally or batch-wise) the most (sta-
tistically) optimal 3D structure from the image mea-
surements across the extended sequence. Then, given
the 3D and 2D correspondences recover the corre-
sponding camera matrix.

2. Recover a sequence of camera matrices whose homog-
raphy matrices all correspond to the same reference
plane.

The first approach is intuitive and fairly amenable to re-
cursive estimation. Example of recent implementations
of this approach for uncalibrated camera include the in-
cremental method of [4] who recover Fundamental matri-
ces or Trilinear tensors to ensure the quality of match-
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Figure 1: One can compute two tensors T2, Tzs4 from the
four images of the 3D scene. However, each tensor can give rise
to a different reconstruction of the 3D structure due to noise or
errors in measurments, and therefor the camera trajectory be-
tween images 2 and 3, as captured by the fundamental matrix
F53, is inconsistent between the two tensors. The “threading”
operator described in the text guarantees a consistent recovery
of the camera trajectory.

ing points, and then estimate the camera matrices from
the 3D structure which is built-up incrementally. Like-
wise, [23] recovers independently the Fundamental ma-
trices of every consecutive pair of images, and relies on
a 3D-structure to put them all in a single measurement
matrix that is used to recover the camera parameters.
The second approach is more challenging since it re-
quires a deeper investigation into the connections between
camera matrices. If a simple connection exists then there
is the advantage of avoiding 3D structure, as an inter-
mediate variable in the process. The only attempt we
know of is of [25] who seeks a sequence of camera matri-
ces in which the homography matrices all correspond to
the plane at infinity. However, the method resorts to a
large non-linear optimization problem, where one alter-
natively recovers 3D structure from motion and motion
from structure (thus not avoiding the 3D structure as an



intermediate variable).

In this paper we introduce a new result on the connec-
tion between Fundamental matrices and Trilinear tensors.
As a byproduct, this result provide a principaled method
for concatenating camera matrices along an extended se-
quence without resorting to 3D structure. The connection
is based on a representation of the tensor as a function
of the elements of two consecutive Fundamental matri-
ces and a homography matrix of some arbitrary reference
plane (Eqn. 1). An interesting byproduct of this repre-
sentation is that we are guaranteed to recover (linearly)
two consistent camera matrices. By repeated application
of the basic result, we call a threading operation, on a slid-
ing window of triplets of views, we obtain a consistent se-
quence of camera matrices (and the Fundamental matrix
and Trilinear tensors as well). The immediate byproducts
(applications) of the threading operation include:

e Ego-Motion
The algorithm recovers a consistent camera trajec-
tory along the image sequence without recovering 3D
structure.

¢ Image stabilization
The algorithm recovers a sequence of camera matri-
ces that are due to the same plane. By selecting a
reference plane in the first pair of images, we ensure
that the same plane is stabilized throughout the se-
quence.

e Multi-view Image-Based Rendering
The algorithm puts all the images in a single projec-
tive coordinate framework and therefor all the images
can contribute to the synthesis of a novel image, us-
ing a technique such as [3].

The paper is organized as follows. Section 2 provides
the general notations and conventions used in the paper.
The main results are stated and proven in Section 3. The
outline of the algorithm is given in Section 4 and results
are shown in Section 5. The Appendix contains a brief
overview of the necessary elements assumed including the
Fundamental matrix, Plane 4+ Parallax representation,
the Trilinear tensor, and the tensorial form of the Funda-
mental matrix.

2 Notations

A point z in the 3D projective space P? is projected
onto the point p in the 2D projective space P? by a
3 x 4 camera projection matrix A = [A4,v'] that satisfies
p = Ax, where = represents equality up to scale. The left
3 x 3 minor of A, denoted by A, stands for a 2D projec-
tive transformation of some arbitrary plane (the reference
plane) and the fourth column of A, denoted by ¢', stands
for the epipole (the projection of the center of camera 1
on the image plane of camera 2). In a calibrated setting
the 2D projective transformation is the rotational compo-
nent of camera motion (the reference plane is at infinity)
and the epipole is the translational component of camera
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Figure 2: The threading step is plugged into the trilinearities
to obtain the threading equation.

motion. Since only relative camera positioning can be re-
covered from image measurements, the camera matrix of
the first camera position in a sequence of positions can be
represented by [I;0].

We will occasionally use tensorial notations as de-
scribed next. We use the covariant-contravariant sum-
mation convention: a point is an object whose coordi-
nates are specified with superscripts, i.e., p' = (p',p?, ...).
These are called contravariant vectors. An element in
the dual space (representing hyper-planes — lines in P?),
i1s called a covariant vector and is represented by sub-
scripts, i.e., s; = (s1,82,....). Indices repeated in co-
variant and contravariant forms are summed over, 1.e.,
p's; = plsi+p®sa+...4p"s,. Thisis known as a contrac-
tion. An outer-product of two 1-valence tensors (vectors),
a;b’, is a 2-valence tensor (matrix) ¢! whose i,j entries
are a;0) — note that in matrix form C' = ba'. Further
details on the necessary background can be found in the
Appendix.

3 Threading Fundamental Matrices Us-
ing Trilinear Tensors
Given an extended sequence of images we wish to re-
cover a unique camera trajectory which is the most con-
sistent with the image measurements. We also wish to
do so in a principaled manner, i.e., see first what can be
done at the algebraic level, then figure out what is the
best statistical model for incorporating image noise. On
the algebraic level, a necessary condition for trajectory
consistency is that the recovered camera matrices all re-
fer to the same common reference plane (which could be
virtual), see Appendix. The two theorems below are the
essence of this paper and include:

e Providing an equation for representing the Trilinear
tensor as a function of the Fundamental matrix (rep-



resented in its trivalent tensorial form), the reference
plane homography between views 1 and 2, and the
camera motion between images 2 and 3.

e Given the equation discussed above, the Fundamen-
tal matrix between views 1 and 2, and at least 6
matching points across images 1,2,3, one can linearly
recover the camera motion between views 2 and 3.

e The recovered camera motion between views 2 and 3,
is guaranteed to be consistent (i.e., the correspond-
ing homography matrix is associated with the same
reference plane).

By repeatedly applying these results on a sliding win-
dow of triplets of views we obtain a camera trajectory
which is consistent with a single 3D reconstruction of the
world — because all the homography matrices correspond
to a single reference plane (see Figure 2).

Theorem 1 The following equation holds:
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whose elements are a;

1s the tensor of views 1,2,3, the matriz A,
1 s a homogmphy from image 1

FIl s the 2-view tensor

to 2 via some arbztmry plane w, F;

of views 1,2, and C = [C;v""] is the camera motion from
tmage 2 to 3 where cf 1s a homography matriz from image

2 to 3 via the (same) plane =.

Proof: We know that
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where the parameters [4,v] = [af,v7] and [B,v"] =

[b%,v'"*] are the camera matrices from 3D to views 2,3
respectively:

Ap' = Ap+pd

p// E Bp+pv//

where p,p’, p’’ are the matching points in views 1,2,3 re-
spectively, and A, B are homography matrices due to the
same (arbitrary) reference plane m (uniqueness issue dis-
cussed in [14]). Clearly,
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Therefore, the camera motion from view 2 to 3 is repre-
sented by,

[C;U”l] — [BA—l "o_ BA_lv/]
and,
bf = ckai»
v//k — k /l l_|_ v///k (2)

By substituting the expressions above instead of b¥ and
v in T7* | we obtain:
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where }";;ﬂ is the trivalent tensor form of the Fundamen-
tal matrix, i.e., fgl = %3 F,; where Fj; is the Fundamen-
tal matrix and €% is the cross-product tensor (see Ap-
pendix). Finally, because of the group property of projec-
tive transformations, since A, B are transformations due
to some plane 7, then so is C' = BA™!. [

Theorem 2 Gwen the Pundamental matriz of views 1,2
and the tensor T] then the Fundamental matrixz between
views 2,3 can be recovered linearly from 6 matching points
across the three views.

Proof: The basic tensorial contraction, a trilinearity,

, .
p'sir T =
where s and r are lines coincident with p’ and p”’, respec-
tively (see Appendix). Thus, the tensor and two views
uniquely determine the third view (the reprojection equa-
tion) as follows:
s T =
where the choice of the line s is immaterial as long as it
is coincident with p’. By substitution we obtain,

p'si(cf P (4)
k

which provides two linear equations for the unknowns ¢j
and v"/. We next show that different choices of the line s
do not produce new (linearly independent) equations, and
thus 6 matching points are required for a linear system
for the unknowns. '

Just as the Trilinear tensor T]

1
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satisfies the reprojec-
tion equation, so does the 2-view tensor ]-"‘7
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where the choice of the orientation of the line s; is imma-
terial (see Appendix). Thus, Eqn. 4 reduces to (in matrix
form):

// ~ Cp + p( ) ///

where p(s) is a scalar (depends also on s) that determines
the ratio between p’ and Cp’ and v'”, thus is unique
(invariant to the choice of s). []

It i1s worthwhile to note that the homography matrix A
that appears in Eqn. 3 can be generated using the follow-
ing two observations. First, the space of all homography
matrices between two fixed views lives in a 4-dimensional
space [17], thus we can span A from 4 primitive homog-
raphy matrices. Second, three of the primitive homog-
raphy matrices can be generated from the “homography



contraction” property of the tensors (see Appendix), i.e.,
Og fgk is a homography matrix indexed by J, thus by set-
ting dx to be (1,0,0),(0,1,0) and (0,0, 1) we obtain three

primitive homography matrices, that in matrix form are:

00 0 0 0 1
00 —1|F | 0 00]|F
01 0 | -1 0 0

] _ (5)
0 -1 0

1 0 0|F

0 0 0]

where F'1s the Fundamental matrix. These homography
matrices correspond to planes coincident with the cen-
ter of projection of the second camera (thus are rank 2
matrices). The fourth primitive homography matrix is:

vp 0 0
vh 00 (6)
vy 0 0

where v/ is the epipole satisfying ' T+v" = 0. This homog-
raphy corresponds to a plane coincident with the center
of projection of the first camera (thus is rank 1), there-
fore is not linearly spanned by the three homography con-
tractions of the 2-view tensor. Taken together, any lin-
ear combination of the above four matrices will provide
an admissible homography matrix A that can be used in
Eqn. 3.

4 The Online algorithm

The online algorithm threads together the Funda-
mental matrices of consecutive images, by applying the
threading operation on a sliding window of triplets of im-
ages. The algorithm starts with computing the Funda-
mental matrix of the first pair of images and recovering an
initial homography matrix. The initial homography ma-
trix can be recovered either from the primitive homogra-
phy matrices constructed from the Fundamental matrix,
or by using any method for the recovery of a homography
matrix by plane stabilization [11]. The rest of the images
are added one by one by applying the threading operation
on a sliding window of triplets of images. Figure 3 gives
a block diagram of the proposed algorithm.

In detail, the algorithm is as follows:

1. Recover the Fundamental matrix F} of the first pair
of images in the sequence.

2. Recover the epipole v/ from the null-space of F;7 .

3. Construct the initial homography A; as a linear com-
bination of the four homography matrices in Eqns. 5
and 6. For the sake of numerical stability we wish to
find a linear combination that will approximate the
form of a rotation matrix. In particular we use the
method described in [13] which is suitable for small-
angle rotations.

Outline of the Algorithm

image 1,2

image n+2

Fpi1=v"lxC

Apt+1=C

Figure 3: The algorithm starts with recovering the Funda-
mental matrix Fi of the first pair of images in the sequence.
The Fundamental matrix is then used to construct the initial
homography matrix A;. For image n + 2, the current Fun-
damental matrix F, and homography A, are used to recover
the camera parameters of the new image - [C,v"’], using the

threading operation. This parameters are then used to con-
struct Fry1 = [v""']xC and Anq1 = C.

For image n + 2:

1. Apply the threading operation for recovering the
camera matrix C = [C,v"’]. The input to the op-
eration 1s 6 point matches across three images, the
Fundamental matrix F}, and homography matrix A,
using Equation 4.

2. The new Fundamental matrix Fpy; = [v"/]xC and
homography A,41 = C' are the parameters for the
recovery of the camera matrix of the next image.

5 Experiments

Experiments were conducted on synthetic data and
several different real images with different cameras and
different motion parameters. No information about cam-
era internal parameters or motion is known or used. The
point correspondence, for the real images, were extracted
automatically by our system. In a nutshell, the system
computes a bi-directional optical flow and searches for
points with high gradient that have a matching optical
flow in both direction. Typically we obtain around 200
matching points.
5.1 Test on Synthetic Data

We measured the error of the threading operation
along an 1mage sequence. The 3D world consisted of a
set of 50 points that were projected on a sequence of 21
images, using randomly generated camera matrices. All
image measurements were normalized to the range [0..1]
and white noise (of up to 2 pixels in a 512 x 512 pixels im-
age) was added. We recovered the Fundamental matrix
of the first pair of images, using the 8-point algorithm,
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Figure 4: The quality of the recovered camera matrices on a
sequence of 21 synthetic images of size 512 x 512 with added
white noise of 2 pixels. The graph shows the ratio between the
error of the threading operation and the error of the Funda-
mental matrix of every consecutive pair of images. The error
term is defined as the distance, in parameter space, between
the recovered epipole and the ground truth epipole. A value
smaller than 1 means the threading operation performed bet-
Note that the threading
operation does not accumulate errors and remains close to the
error rate obtained when using the Fundamental matrix.

ter than the Fundamental matrix.

and used the fourth homography matrix in Equation 5 as
the initial homography matrix. The rest of the camera
matrices were recovered according to the algorithm de-
scribed in Section 4 and we denote the recovered epipoles
by er. For comparison, we computed the Fundamental
matrix from every consecutive pair of images and recov-

ered the epipole from it and denote it by ep. Figure 4
d(er)
d(ep) ’

in parameter space, between the recovered epipole and
correct epipole. The test was repeated for 30 times and
the median of the errors, for white noise of 2 pixels, is
shown. As can be seen, the error rate of the threading
operation is almost identical to that achieved by the Fun-
damental matrix, and does not degrade with the number
of images.

5.2 Real Data

Tests on three real sequences were conducted. The
first test measured the quality of the recovered parameters
on real data. The second test presents a possible use of
our method for the purpose of multi-camera image-based
rendering mechanism and the third test demonstrates the
ability to stabilize a plane.

shows the ratio where d(-) measures the distance,

5.2.1 Test 1

A sequence of 6 images of size 320 x 240 pixels was used
with the camera moving mainly forward. The Fundamen-
tal matrix of the first two images was computed after [8]
and we used the method described in [13, 2] to recover

o

-

Figure 5: Accumulating the camera matrices along a sequence
of 6 images to construct the tensor of images < 1,2,6 >. This
tensor is then used to reproject image number 6 from images
1 and 2. (a),(b) shows images 1 and 2, respectively. (c) shows
the reprojected image 6. (d) is the original image 6, shown
here for comparison.

the initial homography matrix. The rest of the images
were added one by one, as described in Section 4. To
measure the quality of the recovered parameters we have
constructed the Trilinear tensor < 1,2,6 >, from the re-
covered camera matrices, and used it to reproject image
6 from images 1 and 2, using the technique described in
[3]. The result is shown in Figure 5

5.2.2 Test 2

A sequence of 28 images of size 320 x 240 pixels was used
with the camera moving in a semi-circle motion forward
and to the right. As before, the initial homography matrix
was recovered with the method described in [13, 2]. The
camera matrices of images 2 through 28 were recovered
with the threading operation and used to construct two
tensors - < 1,2,28 >, < 26,27,28 >. The image pairs
(1,2) and (26, 27), together with their respective tensors,
were used to reproject image 28. The results are shown
in Figure 6.

5.2.3 Test 3

A sequence of 7 images of size 384 x 288 pixels was used,
with the camera moving mainly to the left. The images
contain a collection of toy animals placed on a table cov-
ered with a picture of a fruit salad. We manually selected
the plane of the table as our initial homography matrix
and applied the threading operation to recover the cam-
era matrices. From Theorem 1, the homography matrix
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Figure 6: Accumulating the camera matrices along a sequence of 28 images to construct the tensors < 1,2,28 >, < 26, 27,28 >.
The two tensors are then used to reproject image 28. (a),(b) show images 1 and 2, respectively and (d),(e) show images 26 and
27, respectively. (c),(f) show how image 28 was reprojected from the two pairs, respectively, using the reconstructed tensors. (g)

is the original image 28, shown here for comparison.



between images 6 and 7 should be due to the same plane
defined in images 1 and 2. To verify this, we marked the
plane in image 6 by comparing the optical flow between
images 6 and 7 with the recovered homography matrix.
All the pixels with optical flow not equal to the homog-
raphy matrix are considered as coming from outside the
reference plane and are marked with black. Note that the
threading operation does not need the plane to be present
in the sequence and that the plane is used here only for
the purpose of verifying the consistency of the recovered
camera matrices. Figure 7 shows the results of this test.

6 Conclusion

We have presented a new result on the connection be-
tween Fundamental matrices and Trilinear tensors. This
result is used to thread Fundamental matrices of consec-
utive images into a consistent camera trajectory. The
threading operation is applied on a sliding window of
triplets of images to construct a consistent camera trajec-
tory along an extended sequence of (uncalibrated) images,
without recovering 3D structure. Immediate application
of the threading operation are:

¢ Ego-Motion
The algorithm recovers a consistent camera trajec-
tory along the image sequence without recovering 3D
structure.

¢ Image stabilization
The algorithm recovers a sequence of camera matri-
ces that are due to the same plane. By selecting a
reference plane in the first pair of images, we ensure
that the same plane is stabilized throughout the se-
quence.

e Multi-view Image-Based Rendering
The algorithm puts all the images in a single projec-
tive coordinate framework and therefor all the images
can contribute to the synthesis of a novel image, us-
ing a technique such as [3].
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A Background

The background material of this paper includes (i) the Fun-
damental matrix, (ii) the “plane + parallax” representation,
(iii) the Trilinear tensor and its contraction properties, and

(iv) the reduction of the Trilinear tensor into the 2-view tensor
whose components include the elements of the Fundamental
matrix.

A.1 The Fundamental Matrix of Two Views

Two views p = [I;0]x and p’ = Ax are known to produce
a bilinear matching constraint whose coefficients are arranged
in a 3 x 3 matrix F' known as the “Essential matrix” of [12]
described originally in an Euclidean setting, or the “Funda-
mental matrix” of [5] described in the setting of Projective
Geometry (uncalibrated cameras):

F=[v]xA (7

where A = [A;v] (a} are the elements of A - the left 3 x
3 minor of A, and v’ is the fourth column, the epipole, of
A). [v']x denotes the skew-symmetric matrix of v’. i.e., the
product with some vector u, [v'] xu, produces the cross product
between v’ and u, v’ x u. The minor A is a 2D projective
transformation from the first view onto the second via some
arbitrary plane. In an affine setting the plane is at infinity,
and in an Euclidean setting it is the rotational component of
camera motion. The epipole v’ is the projection of the camera
center of the first camera onto the second view, and in an
Fuclidean setting it is the translational component of camera
motion.

The Fundamental matrix satisfies the constraint p'* Fp = 0
for all pairs of matching points p,p’ in views 1 and 2, re-
spectively. This bilinear form in image coordinates arises
from the fact that the points v’, Ap and p’ are collinear, thus
p’T(v' x Ap) = 0. The matrix F' can be recovered lincarly
from 8 matching points, and F o' = 0.



Image 1 Image 2

Figure 8: The Relative Affine Structure p (the bold line) mea-
sures how much does the point p deviates from the plane =.
p 1s invariant to the position of the second camera. Stabi-
lizing the same plane along a sequence of images is therefore
analogous to recovering the same 3D structure from all the
images.

A.2 Plane + Parallax Representation

The claim that recovering a consistent camera trajectory is
equivalent to recovering camera matrices that are all due to
the same reference plane relies on the Relative Affine Structure
representation.

The collinearity of v’, Ap and p’, where A is the homog-
raphy matrix due to some reference plane =, can be used to
describe p’ as follows:

p =2 Ap+ pv’ (8)

The coefficient p depends on the point p and the position of
the plane w, is invariant to the choice of the second camera
position (see Figure 8). Thus, by fixing the same plane along
an image sequence we obtain the same relative affine structure
- p for all the images. This is analogous to recovering the same
3D structure from all the images. Further details can be found
n [18].

A.3 The Trilinear Tensor of Three Views

Matching image points across three views will be denoted
by p,p’,p"; the homogeneous coordinates will be referred to
as pi7p/] 7p//k
ordinates (z,y), (z',y"), (", y") — hence, pl = (z,y,1), ete.

Three views, p = [[;0]@, p’ = Ax and p"” = B, are known
to produce four trilinear forms whose coefficients are arranged

, or alternatively as non-homogeneous image co-

in a tensor representing a bilinear function of the camera ma-
trices A, B:
9k 151k nk 3
T2 =076 —v""al (9)

2

where A = [al,v"”] (al is the 3 x 3 left minor and v’ is the
fourth column of A) and B = [b¥,v”*]. The tensor acts on a

triplet of matching points in the following way:

pis";rlfﬂjk =0 (10)

Image 2 \( Image 3

Image 1

Figure 9: Each of the four trilinear equations describes a
matching between a point p in the first view, some line 55
passing through the matching point p’ in the second view and
some line r{ passing through the matching point p’ in the
third view. In space, this constraint is a meeting between a

ray and two planes.

m

where s}’ are any two lines (s1 and s?) intersecting at p’, and

J
r are any two lines intersecting p".
are u, p each in the range 1,2, we have 4 trilinear equations
(unique up to linear combinations). If we choose the standard

form where s* (and r*) represent vertical and horizontal scan

lines, i.e.,
o= -1 0 x:
J 0 -1 y

then the four trilinear forms, referred to as érilinearities[14],
have the following explicit form:

Since the free indices

//7;13 7 _ // /7;3 + 7;31 7 ﬁllpl — 07
YT =y T 2 T - T =0,
" 123 7 _ l‘” /7;33 7 4 y 7;31 7 7;21pl _ 0
// /7;33 7 4 y 7-32 7 7;22 ¢ —0.

T
423 1
vy T 5p

These constraints were first derived in [14]; the tensorial
derivation leading to Eqns. 9 and 10 was first derived in [16].
The Trilinear tensor has been well known in disguise in the
context of Fuclidean line correspondences and was not iden-
tified at the time as a tensor but as a collection of three
matrices (a particular contraction of the tensor known as
correlation contractions) [20, 21, 26]. The link between the
two and the generalization to projective space was identified
later in [7, 9]. Additional work in this area can be found in
[19, 6, 24, 10, 17, 1, 3, 22].
A.4 Contraction Properties of the Tensor
The lines s* coincident with p’ and the lines r? coincident
with p” for a basis for all lines coincident with p’ and p”, thus
we readily have the “point+line+line” property:

T =0 (11)

where s, is some line through p’ and ry is some line through
p”. Similarly, since s; rk'ﬁjk is a line (coincident with p), then
a triplet of matching lines provides two constraints:

s]rk'ﬁjk >~ (12)



for all lines g, s,r coincident with the points p, p’, p” (in par-
ticular, matching lines). The third point-line property is the
“reprojection” constraint:

7 9k 1k
ps; T =p

(13)
which provides a direct means for “transfer” of image mea-
surements from views 1,2 onto view 3 (prediction of p” from
views 1,2).

The tensor has certain contraction properties and can be
sliced in three principled ways into matrices with distinct geo-
metric properties divided into two families: Homography Con-
tractions and Correlation Contractions. We will briefly intro-
duce the Homography contractions described originally in [19]
— further details on that and on Correlation contractions can
be found in [15].

Consider the matrix arising from the contraction,

2
5k T? (14)
which 1s a 3 x 3 matrix, we denote by F, obtained by the
linear combination F = §; 7?1 + 62 7?2 + 43 7?3 (which is what
is meant by a contraction), and 4y is an arbitrary covariant

vector. The matrix F has a general meaning introduced in
[19]:

Proposition 1 (Homography Contractions)

The contraction 5k7?k for some arbitrary 0 s a homogra-
phy matriz from image one onto tmage two determined by the
plane containing the third camera center C"' and the line &; in
the third tmage plane. Generally, the rank of E is 3. Likewise,
the contraction 5]7?k 18 a homography matrixz from image one
onto image three.

For proof see [19]. Clearly, since § is spanned by three vectors,
we can generate up to at most three distinct homography ma-
trices by contractions of the tensor. We define the Standard
Homography Slicing as the homography contractions associ-
ated by selecting § be (1,0,0) or (0,1,0) or (0,0, 1), thus the
three standard homography slices between image one and two
are 771, T?? and T7?, and we denote them by Ei, Fs, Es re-
spectively, and likewise the three standard homography slices
between image one and three are 7:**, 72* and 72, and we
denote them by Wi, Wy, W3 respectively.

A.5 The 2-view Tensor

We return to Equation 9 and consider the case where the
third image coincide with the second. The camera matrices
for both images are A = [A;v’] and this special tensor can be
written as:
val —v'*a’ (15)

which is composed of the elements of the Fundamental matrix,

Fik =
as the following lemma shows.

Lemma 1 The two-view-tensor Tfk 18 composed of the ele-
ments of the Pundamental matriz:

k_ ljk
FI¥" =€ Fy,

where Fi; is the Fundamental matriz and €Y% is the cross-
product tensor.
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Proof: We consider Equation 9 with Tfk = Y% F); to derive
the following equalities:

7 gk _
p'sjreF; =

i 15k
p'sjre(e?7 ) =

pi (s;rue?”) g (16)
N————

|
o

p/l

The two-view-tensor is an admissible tensor that embodies
the Fundamental matrix in a three-image-framework. Algo-
rithm that works with the Trilinear tensor of three views can
work with this tensor as well. In particular, the point-line con-
tractions and the Homography contractions hold, for example:

7 gk 1k
ps; FT=p

which takes p and a line s coincident with p’ and produces
p'. The contraction 5k]-"fk is a homography contraction, i.e.,
produces a homography matrix from view 1 onto view 2 given
by the plane coincident with the center of projection of camera
2 and the line 6 in view 2. Similarly to the 3-view tensor,
the Standard Homography Slices correspond to setting & to
(1,0,0) or (0,1,0) or (0,0,1). Further details can be found in

[2].



