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Abstract

Many natural images contain reflections and transparency,
i.e., they contain mixtures of reflected and transmitted light.
When viewed from a moving camera, these appear as the su-
perposition of component layer images moving relative to each
other. The problem of multiple motion recovery has been pre-
viously studied by a number of researchers. However, no one
has yet demonstrated how to accurately recover the compo-
nent images themselves. In this paper we develop an opti-
mal approach to recovering layer images and their associated
motions from an arbitrary number of composite images. We
develop two different techniques for estimating the compo-
nent layer images given known motion estimates. The first
approach uses constrained least squares to recover the layer
images. The second approach iteratively refines lower and
upper bounds on the layer images using two novel composit-
ing operations, namely minimum- and maximum-composites
of aligned images. We combine these layer extraction tech-
niques with a dominant motion estimator and a subsequent
motion refinement stage. This results in a completely auto-
mated system that recovers transparent images and motions
from a collection of input images.

1 Introduction
Reflections and transparency are about as ubiquitous as im-
ages themselves. Many natural images will typically contain
one or both, i.e., contain mixtures of reflected and transmitted
light. For example, any shiny or glass-like surface will create
a reflected image of other surfaces in its immediate environ-
ment. Also, surfaces like glass and water are (at least partially)
transparent, and hence will transmit the light from the surfaces
behind it1. Thus, many natural images are composed of re-

1The transmitted light is usually attenuated to some degree by the glass (or
frontal surface). Hence, the notion of partial transparency or “translucency” is
more general. However, following common usage in the field, we will use the
term “transparency” to indicate both complete transparency and translucency.

flected and transmitted images which are super-imposed on
each other. When viewed from a moving camera, these com-
ponentlayer images appear to move relative to each other.

The reflection and transmission of light on surfaces in vi-
sual images has been carefully studied in physics-based vision
[15, 13]. Likewise, a number of techniques for recovering
multiple motions from image sequences have been developed
[16, 6, 12, 5, 8, 18, 11, 10, 14, 19, 3]. These techniques can
recover multiple motions even in the presence of reflections
and transparency. Some of these techniques also extract the
individual component layer image from the input composite
sequence [18, 10, 14, 19, 3], but only in theabsenceof reflec-
tions and transparency – i.e., all the layers must be opaque.2

The detection of transparency in single images has been stud-
ied by [2, 1], but neither of these studies provides a complete
algorithm for layer extraction from general images. Thus,
the extraction of component layers images in the presence of
reflections and transparency remains an open problem.

In this paper, we develop an optimal approach to recover-
ing layer images and their associated motions from an arbi-
trary number of composite images. We develop two different
techniques for estimating the component layer images given
known motion estimates. The first approach uses constrained
least squares estimation to optimally recover the layer im-
ages. The second approach iteratively refines lower and up-
per bounds on the layer images using two novel compositing
operations, namely minimum- and maximum-compositing of
aligned images. We combine these layer extraction techniques
with a dominant motion estimator and a subsequent motion re-
finement stage. This results in a completely automated system
that recovers transparent images and motions from a collection
of input images.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the general problem formulation, including

2Note that for the purpose of locking onto each component motion, [11]
actually creates a “reconstructed” image of each layer through temporal inte-
gration. However, these fall short a being a proper extraction of the component
layers, since the other layers are not fully removed, but rather appear as blurred
streaks.



the image formation equations. Section 3 presents the con-
strained least squares algorithm we use to recover the com-
ponent images. Section 4 presents our novel algorithm for
estimating upper and lower bounds on the solution using min-
and max-composites. Section 5 presents our motion refine-
ment algorithm. Section 6 summarizes the overall layer ex-
traction system. Section 7 presents our experiments with real
image sequences. Finally, we close with a discussion of our
results and ideas for future work in this area.

2 Problem formulation
In [2] Adelson and Anandan proposed the following recursive
process as the generative model for obtaining a composite
image from component layers. At each pixel, assuming a given
spatial ordering of layers relative to the viewpoint, each layer
partially attenuates the total amount of light coming from all
the layers “behind it” and adds its own light to give an output
signal. The final composite image is the result of applying this
process to all layers in a back to front fashion. This process
can be summarized in terms of the following modified form
of theoveroperator used in image compositing [7],

F ∧ B ≡ F + (1 − αF )B, (1)

whereF andB denote the colors of the foreground and the
background images3.

For the purposes of this paper, we assume that each com-
ponent layer (indexed byl = 0, . . . L − 1) is defined by a
signal or 2D imagefl(x), (we will usex to index both 1-D
signals and 2-D images), which is warped to the current image
(indexed byk) coordinate system via a warping operatorWkl,
which resamples the pixels. LetWkl ◦ fl denote the warped
image. Then, the composite image is given by the equation

mk = Wk0 ◦ f0 ∧ · · ·Wk(L−1) ◦ fL−1. (2)

We assume in this paper thatWkl is aninvertibleglobal para-
metric motion, such as translation, rotation, affine, or perspec-
tive warp. For now, we also assume that theWkl are known
(we will remove this assumption in Sections 5 and 6).

In this paper, we restrict our attention to the problem of
pure additive mixing of images

mk(x) =
L−1∑
l=0

Wkl ◦ fl(x). (3)

This corresponds to portions of the scene where pure reflec-
tion/transmission is occurring, e.g., windows or glass in pic-
ture frames. An alternative way of writing the image forma-
tion equations is to look at the discrete image pixels written in
(rasterized) vector form,

mk =
L−1∑
l=0

Wklfl. (4)

3The standard definition of the over operator uses foreground colors that
arepremultipliedby the opacities of the foreground layer; hence, the R, G,
and B values that must be≤ α. In our case, this restriction is removed in
areas of reflection, in order to handle additive composition.

This formula is equivalent to the first (continuous) formula if
the images are sampled without aliasing (below their Nyquist
frequency) and the warping does not unduly compress the
layer images (thereby causing aliasing). TheWkl matrices are
very sparse, with only a few non-zero coefficients in each row
(i.e., the interpolation coefficients for a given pixel sample).

In addition to the image formation equations, we also
know that the original layer images must be non-negative,
i.e., fl(x) ≥ 0. As we will see shortly, this provides very
important (and useful) constraints on the solution space.

Since we are working with real images, there is also a good
chance that the images may besaturated(i.e.,mk(x) = 255
for 8-bit images) in some regions. For a truly accurate model of
the mixing process, we really need to be working with photo-
metrically calibrated camera, i.e., cameras where the radience
to pixel-value transfer curve is known [9]. For this paper, how-
ever, we will assume that the mixing process is truly linear, but
that the observed mixed signal valuesmk are clipped to 255.
The extension to a truly calibrated camera is straightforward,
but may require a level-dependent noise process to be added.

3 Constrained least squares
Given a set of imagesmk, how do we recover the layer im-
agesfl? Since the image formation equations are linear, con-
strained least squares,

min
∑

k

‖
L−1∑
l=0

Wklfl − mk‖2 s.t. fl ≥ 0, (5)

is a good choice. Such a least squares estimator is statistically
optimal if the measured input images are corrupted by uniform
independent (white) Gaussian noise. The least squares prob-
lem is constrained, since we require that all of the elements in
thefl images be non-negative. Also, for any pixel inmk that is
saturated (255), we only penalize the mismatch betweenmk

and the mixed layers if the predicted value isbelow255.
This least squares problem is very large (one term or linear

equation per measured input pixel), and very sparse (only a
few non-zero coefficients per equation). Iterative techniques,
such as variants of gradient descent or conjugate gradient, will
therefore have to be used.

For our current implementation, we have used a two stage
approach for solving the constrained least-squares problem.
We first solve the problem without constraints using a Precon-
ditioned Conjugate Gradient method (using standard MAT-
LAB function). Using this as an initial estimate, we then use
a Quadratic Programming algorithm with the positivity con-
straints enabled (again using a standard MATLAB function)
to obtain the constrained optimal solution.

3.1 Uniqueness of a solution
The positivity constraints on the component signals (images)
restrict the solution to be in aconvexsubspace. Therefore, the
quadratic programming program posed in Equation 5 does not
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Figure 1. 1D example of constrained least squares: (a) background signal, (b) foreground signal, (c) noisy mixed signal, (d) and
(e) the reconstructed background and foreground signals. The solid curves represent the input data, the thin dashed curves
show the results of solving the least-squares problem without the positivity constraints, and the thick dash-dot curves show the
final result after incorporating the constraints.

suffer from multiple local minima. However, is the solution
unique?

It is easy to show that (without the constraints) the solution
is not unique. We can see this even without analyzing the par-
ticular structure of theWkl matrices, based on the following
reasoning. Let{f̂l} be a set of component layer signals (im-
ages) that minimizes the least-squares error defined in Equa-
tion 5. Since each input image is simply a sum of warped
and resampled versions of these components, we can subtract
a constant image from one of the layers and distribute (add)
this amount among the other layers without changing the sum.
The new set of layer thus obtained is also a valid solution to
theunconstrainedminimization problem posed in Equation 5.
This implies that the system of equations is degenerate.

Figure 1 illustrates this degeneracy, using a one-
dimensional example. Figures 1a and 1b show the plots of
the two input component layers. Five mixed signals were cre-
ated by shifting these two relative to each other by different
(known) amounts and adding random Gaussian noise. As an
example, one of these five mixed signals is shown in Figure 1c.
The thin dashed curves in Figures 1d and 1e show the recov-
ered component layers signals obtained by solving the un-
constrained least-squares problem, using a “pseudo-inverse”
(minimum norm) technique. Note that the recovered signal
(in thin dashed curve) is offset from the true signal. (Similar
results are obtained in the noise-free case as well.) For the
two layer case, it is easy to show that the amount of this offset
is equal to half the difference between the mean foreground
and background layers values.

In practice, this degeneracy is not too critical, since it sim-
ply leads to a DC offset of the signals. Moreover, if each
layer has at least one pixel that is black (i.e., signal value of
zero), this degeneracy can be removed using the positivity
constraint. This is easy to see, because subtracting an off-
set from any of the layers will lead to at least one negative
valued pixel, which violates the positivity constraint. The re-
sult of solving the constrained least-square problem is shown
as thick dash-dot curves in Figures 1d and 1e. Observe that
these reconstructed signals differ from the input signals only
by small random noise. In other words, solving the optimiza-
tion problem with constraints appears to fix the degeneracy in
the system. It should be noted, however, if there is some layer

that has no black pixel (i.e.,fl ≥ c, wherec > 0), the solution
can only be determined up to an offset ofc.

In practice, in 2D images, there may also be additional
source of degeneracy or poor conditioning due to the structure
of the warping matrixWkl. Consider the case when the rel-
ative motion between the component layers consists of shifts
purely in the horizontal (or vertical) direction. In this case, the
overall problem decouples into a set of independent problems
corresponding to each row (or column). Each row will be de-
termined only up to an arbitrary but different DC offset. To
impose the positivity constraint and obtain a unique solution,
each row in each layer must have a black pixel, which may be
unrealistic. Hence, even the use of the positivity constraints
may not guarantee the correct recovery of component layers.

This is illustrated using a synthetic example in Figure 2.
Figures 2a and 2b show two input component layer images
that were shifted relative to each other by different (known)
amounts to produce a set of composite images, which were
then used as the input data for our least-squares problem. A
small amount of random noise was added to each composite
image. Figure 2c shows one example of such a composite
image.

We first conducted an experiment in which all the rela-
tive shifts were purely in the horizontal direction. The re-
constructed images obtained by solving the constrained least-
squares problem is shown in Figures 2d and 2e. Note the faint
horizontal streaks in the reconstructed images. To highlight
these streaks, in Figures 2f and 2g, we show the difference
images obtained by subtracting the reconstructed images from
the respective true input component layer images.

This is just an example of a more general class of motion
degeneracies, where the layers break up into differentisolated
regions. For example, if all shifts are by even (horizontal and
vertical) amounts, the image breaks up into four independent
isolated regions (corresponding to the obvious 4-coloring of a
checkerboard).

If the motion is not along one of the coordinate directions
(or in a fixed integral shift pattern), this problem is somewhat
reduced, because the resampling process during warping will
combine pixels from different rows and columns. Figures 2h
and 2i show the results of reconstruction from an input se-
quence in which the relative motions between the layers were
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Figure 2. 2D example of constrained least squares: (a),(b) background and foreground images, (c) noisy mixed image, (d),(e)
reconstructed background and foreground for horizontal motion , (f),(g) corresponding difference images wrt to the input “true”
components, (h),(i),(j),(k) reconstructed images and the corresponding differences for diagonal motion, (l),(m),(n),(o) recon-
structed images and the corresponding differences for general motion.

along a set of lines radially emanating out a single point in the
2D image plane (i.e. as in the case of a “zoom” motion).

If the set of motions is arbitrary and general (and not de-
generate), the reconstruction can also be achieved without de-
generacy. This is illustrated in Figures 2l and 2m, which show
the reconstruction for a case when an arbitrary and general set
of relative motions were used to create the input composites.
The difference images (Figures 2n and and 2o) look like white
noise.

We also tested the algorithm on a synthetic case of three
layers with known motions and obtained similar results to the
two layers case. For lack of space, we do not present the
images for this experiment.

In summary, the constrained least-square problem posed
in Equation 5 has a unique solution unless the set of relative
motions between the component layers in the input composites
is degenerate (or poorly conditioned) in some fashion. Under
the general (non-degenerate) condition, given known motion,
it should be possible to recover the component layers from the
input composites.

Of course, in practice we do not assume that the motions are
known – indeed the estimation of the motion is an important
part of our overall algorithm. This will be discussed further

in Sections 5 and 6.

4 Min/max alternation
In order to run the constrained least-squares algorithm, the
motions for all of the layers must be known. Unfortunately,
in many image sequences, only the dominant motion can be
reliably estimated at first. Unless there is some way to esti-
mate the non-dominant motion(s), we cannot solve the overall
problem. In this section, we propose a novel algorithm that
iteratively re-estimates upper and lower bounds on two com-
ponent layers. This estimation can be interleaved with layer
motion estimation, as explained in the Section 6.

Our algorithm is based on the following observation. Once
the dominant motion has been estimated, an estimate for the
layer corresponding to this motion can be obtain by forming a
mosaicfrom the stabilized image sequence. However, unlike
conventional mosaics, where either an average or median is
used to form the estimate (sometimes with appropriatefeather-
ing near the edges [17]), we propose computing theminimum
pixel value across all images in the stabilized sequence.

Why is thismin-compositethe right estimate to compute?
Observe that the contributions from other layers can only add



to the intensity at a given pixel. Therefore, the min across all
mixed images gives us an upper bound on the possible value
for the dominant layer.

More formally, let

sk = W−1
k0 mk = f0 +

L−1∑
l=1

W−1
k0 Wklfl (6)

be the set of images stabilized with respect to layer 0. Then,

fmax
0 = min

k
sk = f0 +

L−1∑
l=1

min
k

W−1
k0 Wklfl (7)

is an upper bound onf0.
Once we have an estimate for layer 0, we can compute the

difference images

dk = sk − fmax
0 . (8)

These difference images give us the luminance that must some-
how be accounted for by the other layers.

At this point, it is hard to make further progress unless we
know how to distribute this residual error among the remaining
layers. For this reason, we will now restrict our attention to
the two layer (foreground / background) case.

In the two layer case, the difference imagesdk are a partial
estimate (lower bound) on the amount of light in layer 1. We
can stabilize these images using a parametric motion estimator
(assuming that the motion is not knowna priori), and thereby
computeWk1. Let

tk = W−1
k1 Wk0dk = f1 + W−1

k1 Wk0(f0 − fmax
0 ). (9)

be the set stabilized of difference images. We can then com-
pute amax-compositeof the stabilized differences,

fmin
1 = max

k
tk = f1 + max

k
W−1

k1 Wk0(f0 − fmax
0 ). (10)

Sincef0 − fmax
0 ≤ 0, eachtk is an underestimate off1, and

fmin
1 is the tightest lower bound onf1 we can compute.

With our improved lower bound estimate forf1 (remem-
ber that we started withf1 ≥ 0), we can now re-compute a
better estimate (tighter upper bound) forf0. Instead of stabi-
lizing the orignal input imagesmk, we can instead stabilize
thecorrectedimages

ck = mk − Wk1fmin
1 (11)

to obtain

sk = W−1
k0 ck = f0 + W−1

k0 Wk1(fl − fmin
1 ). (12)

The amount of overestimate in each stabilized imagesk is now
proportional to the difference between the lower bound onf1
and its true value.

We can thus obtain an improved estimate forfmax
0 , and use

this to obtain an improved estimate forfmin
1 . The question

then is: does this iteration eventually lead to the correct solu-
tion, and if so, at what rate? The answer is in the following
Theorem.

Theorem 1: Under ideal conditions (to be defined below),
the min/max alternation algorithm described above will com-
pute the correct estimates forf0 and f1. The time required
to do so depends on the diameter of the largest non-zero re-
gion in the foreground layer (f1) divided by the diameter of
the shifting operation seen in all input images (to be defined
below).

Proof: First, we need to assume (as usual) that at least one
pixel in the foreground layer is zero. If not, then min/max
alternation will compute the best lower bound onf1 it can
(which will contain at least one zero value) and stop. Also,
we assume that there is only one isolated region (otherwise,
the Theorem applies to each region independently).

The ideal conditions mentioned above come in two parts:

1. the entries in the theWkl andW−1
kl matrices are non-

negative ;
2. there is no imaging noise .

The first condition is, in general, only attainable if the layers
are shifted by integral amounts. The second condition is, of
course, not attainable in practice. We will discuss how to
compensate for these problems later. For now, let’s finish the
proof.

Let x be the coordinate of some pixel wheref1(x) = 0.
Let x′ ∈ N (x) be theshift-induced neighborhoodof x, i.e.,
the set of pixels in themk images that are formed usingf1(x).
Then, sincemink Wk1f1(x) = 0 for any pixel in N (x),
fmax
0 (x′) = f0(x′), i.e., the upper bound is exact at these pix-

els. Furthermore, the difference signals at these pixels is exact
(the lower bound matches the true value of the shiftedf1 sig-
nal). Therefore, the pixels inf1 wherex′′ ∈ N ′(x′), i.e., the
pixels being re-estimated using at least one correct element in
f0, will have the correct estimated value,fmin

1 (x′′) = f1(x′′).
This process will grow regions of correct estimates out from

pixels in the foreground that are black. How quickly do these
regions grown and do they eventually cover the entire image?
Think of x′ ∈ N (x) as a morphological dilation operator that
spreads good pixels (initially, the black ones) inf1 into good
estimates off0. Similarly,x′′ ∈ N ′(x′) is the morphological
dilation operator that spreads good pixels inf0 into good pixels
in f1. Each dilation operation eats away at the borders of the
regions that have potentially erroneous estimates off0 andf1.
The number of operations required is the (outside) diameter
of the largest such region divided by the (inside) diameter of
the dilation operator.

Figure 3c and 3d show the results of running our min/max
algorithm on a simple 1-D signal with±1 shifts in x. The
thin dashed curve shows the background (and foreground)
signals after 1 iteration and the thick dash-dot curves show
the background (and foreground) after 3 iterations. Note that
convergence has already been achieved after 3 iterations.

Note that we have described the algorithm as computing
upper bounds for one layer, and lower bounds for another.
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Figure 3. 1D example of min/max alternation: (a) background signal, (b) foreground signal, (c)–(d) convergence in ideal case
(noise-free, integer shifts) thin dashed curve is the signal obtained after 1 iteration, the thick dash-dot curve is the signal
obtained after the 3rd iteration, (e)–(f) non-convergence for noisy signals, same symbology conventions as before, (g)–(h) non-
convergence for non-integer shifts.

The process could also be run the other way around (once
motion estimates are known for both layers) to simultaneously
compute upper and lower bounds.

4.1 Problems due to noise and resampling

The min-max algorithm is powerful in that it guarantees global
convergence. Unfortunately, in order for the theorem to hold,
the ideal conditions mentioned above must be strictly satisfied.
When noise is present, the upper and lower bounds computed
by min/max will be erroneous at each iteration, leading to a
divergence away from the correct solution. This behavior can
be seen in Figures 3e and 3f.

Similarly, the subpixel interpolation involved in the resam-
pling process can also lead to a bad solution. There are two
potential problems when resampling the images. The first is
that some entries in the theWkl andW−1

kl matrices may be
negative. (For a positive interpolantsWkl such as bilinear
or B-splines, the inverse warp will have negative sidelobes.)
In these cases, the upper/lower bound estimatesfmax

0 and/or
fmin
1 computed in Equations 7 and 10 may be invalid (too

tight). These errors propagate from iteration to iteration, and
eventually come up with global solutions that are invalid (do
not satisfy the constraints).

The second potential problem is that we are using an ap-
proximation toW−1

kl . This happens quite often, for example
when bi-linear or bi-cubic filtering is used in conjunction with
a hardware or software perspective warping algorithm (in both
directions). If in this case, while the entries inWkl andW∗

kl
(the approximate inverse) may be non-negative, Equation 7 is

no longer valid. Instead, the equation should read

fmax
0 = W∗

k0Wk0f0 +
L−1∑
l=1

min
k

W∗
k0Wklfl. (13)

There is no longer any guarantee that the first term is not less
than f0. In practice, we observe that the algorithm starts to
diverge rather quickly (Figures 3g and 3h).

5 Re-estimating the layer motions
Once we have layer estimates (starting with one iteration of
the min/max algorithm to compute the initial dominant and
non-dominant motions, and optionally followed by an initial
solution of the constrained least squares), we can refine our
motion estimates.

The algorithm to do this is almost identical to the usual
[4, 17] parametric motion estimator. Expanding (5) using a
Taylor series in the motion parameterspkl, we obtain

∑
k

∑
x

[
L−1∑
l=0

fl(xkl(x;pkl)) − mk(x)

]2

≈
∑

k

∑
x

[
ek(x) +

L−1∑
l=0

∇fl(xkl(x;pkl))
∂xkl

∂pkl
∆pkl

]2

The errorsek(x) are computed as usual (difference between
predicted and observed signals). The gradients∇fl are com-
puted for each layer separately, and used to compute that
layer’s motion.
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Figure 4. Experimental results for the Michael and Lee sequence [6]: (a) first input image, (b) dominant (picture) layer min-
composite , (c) reflection layer max-composite , (d)-(e) final estimated picture and reflection layers.

6 Complete algorithm
The complete algorithm to estimate the component layer im-
ages and their associated motions is as follows:

1. Compute a dominant motion for the sequence using im-
age alignment against the current min-compositefmax

0 .
2. Compute the difference imagesdk between the stabilized

images and the min-compositefmax
0 .

3. Compute the non-dominant motion by aligning the differ-
ence imagesdk with a max-composite of these images.

4. Using the intial layer guesses, improve the motion esti-
mates using the motion re-estimation algorithm.

5. Compute the unconstrained least-squares solution.
6. Using this result as the initial value, solve the quadratic-

programming problem with the positivity constraints.
7. Optionally alternate the least-squares optimization of

layer values with motion re-estimation.

In the experiments presented in the next section, we did not
observe any improvement from performining step 7.

7 Experimental results
We show the results of applying our technique to some real
image examples. Both the examples involve only two layers,
although the technique described in this paper applies to an
arbitrary number of layers. Note that in both of these cases
(unlike the previous synthetic examples), neither the motion
nor the component layers are known.

The first example consists of the reflection of a face in a
photograph. This is the same sequence that was used in [6].
Figure 4a shows one image from the input sequence. The
algorithm described in Section 6 was used, with all the steps,
including the motion estimation and the layer extraction, being

done automatically. Figures 4b shows themin-composite of
the dominant layer (the picture) while Figure 4c shows the
max- composite of the reflection layer. Figures 4d and 4e
show the results obtained using the constrained least-squares
algorithm.

The second real image example is shown in Figure 5. These
images are in color (here we can only display the gray value
version), so we had to extend our estimation framework to
handle this case. Because the color channels do not interact in
Equation 5, we can solve three independent constrained least
squares problems. The motion estimation is performed using
all three channels simultaneously.

The first input composite image is shown in Figure 5a. As in
the previous example, the entire analysis was automatic. Fig-
ure 5b and 5c show the results of themin- andmax-composites
of the dominant layer and the reflection, while Figures 5d
and 5e show the final reconstructions obtained by solving the
constrained least-squares problem. While it is hard to interpret
the reflected light in the original image sequence, it is clear to
see that it is a bookshelf with labelled boxes of paper.

8 Conclusion
We have investigated the problem of extracting a set of com-
ponent layers from a collection of composite images. While
the problem of recovering the multiple motions from such
sequences has been extensively studied (at least when the mo-
tions are parametric), the problem of extracting the layer im-
ages in the presence of reflections and transparency has not
been adequately treated until now. Here, we have described
an algorithm for recovering the layer images and their motions
from the input sequence. When the input composite images
can be modeled as an additive mixture of the component lay-
ers (such a model applies when the light from one surface is
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Figure 5. Experimental results for the Anne sequence: (a) first input image, (b) dominant (picture) layer min-composite , (c)
reflection layer max-composite , (d)-(e) final estimated picture and reflection layers. Note that the reflected layers in (c) and (e)
have been doubled in intensity to better show their structure.

reflected by another), we have described a constrained least-
square technique to recover the layers from known motions.
We have further described a complete algorithm that combines
the layer extraction step together with an automatic multiple
motion technique to recover the layers and their motions from
the input images.

There are several logical next steps for our work. Previ-
ous work in layer extraction has addressed the case of opaque
layers, whereas this paper has focused on dealing with reflec-
tions and transparency. In a real image, both phenomena will
be simultaneously present. Therefore, one logical extension
is to handle cases where both opaque and transparent layers
are present. Once the opacity (α) values are thrown in as un-
knowns, the formulation becomes a non-linear least squares
problem (the opacities and colors form bi-linear measurement
equations). A more complete description of such a formula-
tion can be found in [3].

We have also restricted our attention to parametric motion
models such as homographies. While these are adequate when
the scene can be approximated as a collection of planar layers,
to deal with more general scenes, we must also handle parallax.
(It is worth noting, however, with a few exceptions [3, 10],
previous work on layer extraction has also focused only on
parametric motions.) Therefore another logical extension of
our work is to handle scenes containing planar parallax.

We began this paper by noting that reflections and trans-
parency are ubiquitous in images. While the literature on the
recovery of camera and scene geometry from multiple images
is well-developed, almost none of the current work can deal
with images containing mixtures of transmitted and reflected
light. The work described in this paper is our first step towards
enabling vision-based scene modeling to deal with such com-
plex scenes and images.
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