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The classical funnel experiment was used by Deming to promote the idea of statistical
process control (SPC). The popular example illustrates that the implementation of
simple feedback rules to stationary processes violates the independence assumption
and prevents the implementation of conventional SPC. However, Deming did
not indicate how to implement SPC in the presence of such feedback rules.
This pedagogical gap is addressed here by introducing a simple feedback rule to
the funnel example that results in a nonlinear process to which the traditional SPC
methods cannot be applied. The proposed method of Markov-based SPC, which is a
simplified version of the context-based SPC method, is shown to monitor the modified
process well. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

The funnel experiment1 is one of the most popular examples explaining the main principles in statistical
process control (SPC). The example emphasizes that one should not interfere with a stable ‘in-control’
process while it fluctuates around its mean, but rather wait until a statistically significant ‘out-of-control’

signal is obtained. In the example, a ‘no intervention’ (‘no compensation’) rule is compared against simple
feedback rules that are shown to increase the variance of the process.

The use of feedback rules to continuously regulate a running process is quite common in practice. In many
industrial environments, selected process parameters are adjusted by feedback control policies that are based on
past observations. As an example, the recipe settings of some wafers in semiconductor processes are adjusted
by using the measurements of previously produced wafers. Such a feedback control scheme is called ‘run to
run’ control. Gerold et al.2 describe some implementations of run to run control at a Motorola microprocessor
manufacturing facility. Studies of the run to run control were performed for chemical-mechanical polishing3 and
for silicon epitaxy4. Examples for other feedback control policies that are based on past observations include
color adjustments between fabric batches5 and management tampering of non-manufacturing environments6.

It is well known that feedback policies, as well as more complicated control theory techniques that are not
considered in this paper, often create nonlinear dynamics of the controlled observations6–11. Sometimes the
structure of these dynamics may be established by the observed trajectories of the output. However, in general,
such identification is not simple in noisy environments12. In any case, one cannot assume that the observations
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are independent once feedback control rules are used. As a result, it is improper to implement conventional SPC
charts, which rely on the independence assumption, to monitor autocorrelated processes.

In recent years, considerable effort has been spent on developing SPC methods for autocorrelated data, such
as variants of the ARIMA and residual charts13–16 EWMA charts17–21, and CUSUM charts22–25. These control
charts have been developed based on the assumption that either the controlled observations follow a time-series
model or that certain characteristics of the underlying process, such as the autocorrelation structure, are known.
Using such a priori information, the control charts can be constructed from observations or residuals using
traditional hypothesis tests. For other control charts, such as the ARMA chart20, the model or the correlation
structure is needed for determining the control limits and the chart parameters.

Within the above-mentioned framework of methods, Ben-Gal et al.26 proposed a context-based SPC (CSPC)
method to monitor a state-dependent process of varying dependence order. The suggested method is based
on information theory principles, and uses a variable-order Markov (VOM) model to represent the monitored
process, without requiring prior knowledge of the model parameters. Moreover, CSPC does not assume a closed-
form time-series model, which is often required by conventional SPC approaches for autocorrelated processes.
One disadvantage of the CSPC method is the involvement of a handful technical aspects in the construction
and the monitoring of the VOM models. These aspects are partially based on information theory principles and
require relatively complex computations with respect to simple SPC schemes.

In this paper, we propose a simplified version of the CSPC method. We call it Markov-based SPC (MSPC),
because it is based on conventional (fixed-order) Markov models rather than the VOM models. Moreover, MSPC
relies on well-known statistical concepts, such as Pearson’s Chi-squared statistics and contingency tables, rather
than the information theory concepts, such as relative entropy (Kullback Leibler distance), that are used by the
CSPC method26.

Similarly to previous publications6,11,27,28, we use the funnel experiment as a convenient pedagogical
framework to analyze the proposed MSPC. For this purpose, we extend the funnel experiment by considering a
simple feedback rule, which is based on averaged discretized compensations of the funnel. The implementation
of the MSPC to the known funnel experiment provides us with two advantages. First, it allows us to analyze
the effects of feedback rules (even simple ones) on the dynamics of the monitored process. Second, it enables
a nice framework to compare the proposed MSPC method with conventional SPC methods for autocorrelated
processes. We find that the MSPC clearly outperforms the considered conventional methods when monitoring
the manipulated process.

The rest of this paper is organized as follows. In Section 2, we briefly describe the funnel experiment and
review some related literature. In Section 3, we introduce a simple feedback rule and analyze the resulting
controlled process, which is found to be nonlinear and state-dependent. In Section 4, we illustrate that some
conventional SPC methods fail to monitor the process generated by the introduced feedback rule. In Section 5,
we use the proposed MSPC method to successfully monitor this process. Section 6 concludes the paper.

2. THE FUNNEL EXPERIMENT AND DEPENDENT PROCESSES

One of the earliest and most popular examples in the quality control literature is the funnel experiment. Deming1

introduced this example to promote the idea of SPC. The experiment considers a funnel pointed downward
and centered above the target, as shown in Figure 1. Marbles that are smaller than the diameter of the funnel’s
opening are dropped into it in succession. As they fall, they hit near the target, whereas the exact hit locations are
random. Henceforth, the consequential falls of marbles around the target is called the ‘hit process’. Following
Shewhart29, one can say that the hit process is considered stable or in statistical control with respect to the
distances from the hits to the target.

Deming’s example showed that the manipulation of a stable hit process by feedback (compensation) rules
often results in a less stable process. For the purpose of illustration, Deming considered the following four
compensation rules.
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Figure 1. The funnel experiment

1. No compensation, leaving the funnel without an adjustment even if consecutive drops failed to hit the
target.

2. Exact compensation, moving the funnel by a vector negative to the error in the last drop.
3. Over-compensation, setting the funnel equal and opposite to the accumulated deviation from the target.
4. Consistency, centering the funnel over the last observation or drop.

Following Deming1, the funnel experiment has become a popular subject of several papers that deal with
SPC strategies6,11,27,28,30,31. Boardman and Boardman6 analyzed the variance of the hit processes subject to
Deming’s compensation rules. They showed that the hit process of rule 2 is twice as variable as the hit process
of rule 1, that rule 4 results in a random walk of the hit process and that the hit process of rule 3 is about three
times more spread than the random walk of rule 4. Based on these results, the authors re-emphasized Deming’s
conclusion that frequent adjustments of a stable process results in an increased variance in comparison to the
variance of the unadjusted process. However, these works did not indicate how to implement a SPC scheme for
the hit process that is governed by compensation feedback rules.

A complementary recommendation was proposed by MacGregor32, indicating that the no compensation rule
holds only when the process is stationary. MacGregor pointed out that for non-stationary processes, one could
profitably use control theory techniques. A subsequent development of the idea of integrating SPC and control
theory was proposed by Box and Kramer7. Their basic idea was that the process should be adjusted only when
an out-of-control signal is observed. Although this idea was studied more than three decades before33, the work
of Box and Kramer inspired many new papers in this area8–11,34.

It is well known that the integration of SPC with control rules, even simpler feedback rules, often creates
statistical dependencies within the process observations. In order to address such cases, many publications
assumed that the controlled process follows a known time-series model. This model could then be used to filter
the data and obtain state-independent dynamics of the process residuals. MacGregor32 and Montgomery et al.11

showed that under this assumption one can use conventional SPC charts to identify changes in the process. Note,
however, that this method cannot be used if the process does not follow a known time-series model. Moreover,
many of the implemented feedback rules generate nonlinear and state-dependent dynamics of the manipulated
process. Under these dynamics, it is much harder to identify change points in the process, because both types
of statistical errors increase26,35. In the next section, an example of such a scenario is considered when using
a simple feedback rule to manipulate the funnel experiment. The resulting hit process, which is nonlinear and
state dependent, is used as a benchmark process in later sections to compare the MSPC with conventional SPC
approaches for autocorrelated processes.

3. A MARKOVIAN HIT PROCESS

Consider an non-intervened stochastic hit process whose hit locations can be modeled by a probability
distribution which is centered around the target. Appendix A presents such a discrete probability distribution
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Figure 2. The Markov chain representing a discretized hit process for q = 0.5

with a single parameter q . Thus, by selecting different values for q , one can generate different hit processes on
which various SPC procedures can be tested.

To this process let us apply a simple feedback rule that can be regarded as a simple extension of rule 2 that
was proposed by Deming and uses two observations for compensation instead of a single one. The rule is called
the average feedback (AF) rule, because it is based on the average compensation of the last two hits (instead of a
single hit). In particular, assume that the errors on both axes are independent, and let us analyze only the x-axis
process. Denote by zt the distance from the target (the errors) on the x-axis at time t for the non-intervened
process. Accordingly, the AF rule is implemented by compensating for each observation by the average of the
last two hits, resulting in the following controlled hit process:

z′
t =




zt t = 1, 2

zt − (zt−1 + zt−2)

2
t = 3, . . . , n

(1)

Note that although the AF rule introduces nonlinear dynamics, the mean of the controlled hit process remains
centered on the target, i.e. E(z′

t ) = 0.
As the proposed MSPC monitors discrete processes over a finite alphabet, we discretize the z′

t values to obtain
a final symbol set xt ∈ {P, A, N}, t = 1, . . . , n, denoting, respectively, a Positive deviation from the target
(z′

t > 0.5), an Accurate hit on the target (−0.5 ≤ z′
t ≤ 0.5) or a Negative deviation from the target (z′

t < −0.5).
Appendix A shows that the probabilities for the discretized controlled xt values depend only on q , and can be
easily obtained analytically. Moreover, because the AF rule introduces dependencies between consecutive hits,
the resulting discretized hit process can be modeled by a simple Markov chain.

Figure 2 presents the obtained Markov model for the discretized hit process with q = 0.5. The model
parameters are the transition probabilities P(xt+1|xt ) between consecutive hits xt, xt+1 ∈ {N, A, P} that are
obtained by maximum likelihood estimation methods.

For the purpose of illustration the obtained Markov models in Figure 2 resulted from a somewhat artificial
example based on the funnel experiment. Nonetheless, there are many real-world processes that can be
represented by Markov models, such as the growth of a population, queuing systems, genetic text, traffic
systems, service of machines, chemical reactions, radio-active transformation and manufacturing processes12,36.
Thus, although we focus here on the funnel experiment for pedagogical reasons, it is noted that the proposed
MSPC method can be implemented for many of these Markovian processes.

In the following sections, we use the procedure in Appendix A to generate both ‘in-control’ and ‘out-of-
control’ sequences. The ‘in-control’ string, x in

t , t = 1, . . . , 5000 is based on the initial generating process
with q = 0.5, while the ‘out-of-control’ string xout

t , t = 1, . . . , 5000, is generated by a modified process
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Table I. Analysis of different ARIMA-based SPC methods for ‘in-control’ data

UCL Beyond
ARIMA model n MSE α = 5% UCL α̂ ÂRL Estimated model parameters

ARIMA(1,0,0) 5 0.03 0.151 40 0.4 2.037 ẑt = 2.77 − 0.397zt−1
ARIMA(0,0,2) 5 0.03 0.152 43 0.43 1.869 ẑt = 1.987 + 0.4εt−1 − 0.077εt−2
ARIMA(1,0,4) 5 0.029 0.149 41 0.41 2.037 ẑt = 1.199 + 0.397zt−1 + 0.851εt−1

− 0.314εt−2 + 0.096εt−3 − 0.259εt−4
ARIMA(1,0,0) 10 0.012 0.067 68 0.68 1.441 ẑt = 2.159 − 0.085zt−1
ARIMA(2,0,0) 10 0.012 0.068 68 0.68 1.441 ẑt = 2.345 − 0.091zt−1 − 0.087zt−2
ARIMA(1,0,4) 10 0.012 0.068 65 0.65 1.534 ẑt = 2.063 − 0.037zt−1 + 0.046εt−1

+ 0.081εt−2 − 0.055εt−3 + 0.082εt−4
ARIMA(1,0,0) 20 0.006 0.033 64 0.64 1.544 ẑt = 2.485 − 0.248zt−1
ARIMA(1,0,1) 20 0.006 0.033 59 0.59 1.67 ẑt = 2.072 − 0.041zt−1 + 0.242εt−1

with q = 0.8. These two sequences are used to analyze and compare a battery of conventional SPC methods
(Section 4) with the proposed MSPC method (Section 5). Once again, our goal is to identify the exact change
point between the ‘in-control’ and the ‘out-of-control’ processes.

4. USING CONVENTIONAL SPC METHODS

In this section we apply known SPC methods for both ‘in-control’ and ‘out-of-control’ hit processes that resulted
from the applied AF rule. We follow previous studies12,26 and show that the conventional ARIMA, CUSUM
and the EWMA methods are inadequate for monitoring the nonlinear Markovian hit process.

4.1. ARIMA-based SPC charts

The ARIMA family of models is widely applied for the representation and filterization of autocorrelated
processes. If an autocorrelated process is well described by an ARIMA model, then a model-based filtering
yields independent and approximate Gaussian residuals, to which traditional SPC can be applied. Apley and
Shi15 proposed the generalized likelihood ratio test (GLRT) method that takes advantage of the residual transient
dynamics in the ARIMA model when a mean shift is introduced. Friedlander and Porat37 proposed an algorithm
for estimating the moving average and ARMA parameters of non-Gaussian processes from sample high-order
moments. Cox38, Lawrance and Lewis39 and Benjamin et al.40 extended the Gaussian ARMA time-series
models to a non-Gaussian framework. In our case study, the resulting time-series from the AF rule can only
attain a finite number of outcomes, therefore all of the control charts that are based on normal distributed data
are not expected to perform well. On the other hand, it has been shown13,15, that simple ARIMA models, such
as AR(1) or IMA(1,1), can effectively filter a wide range of autocorrelated processes even if they do not fit the
model exactly. Next, we check the applicability of various ARIMA models to the monitoring of the Markovian
hit process.

We start by simulating the ‘in-control’ process. Table I presents the best-found ARIMA models, in-terms of
their Type I statistical errors and their ‘in-control’ average run length (ARL), as analyzed by the Statgraphics
software package. The columns of the table are, respectively: the ARIMA model; the subgroup size n (i.e. fitting
a model and then applying an X̄ chart to a subgroup of n residuals); the mean squared error (MSE); the upper
control limit (UCL), which is determined as Z0.975

√
MSE/n, where Z0.975 = 1.96 is the 0.975 quantile of the

standard normal distribution, appropriate for a type I error of α = 5%; the actual number of runs that fell beyond
the UCL; the estimated Type I statistical error, calculated by dividing the number of runs that fell beyond the
UCL by 100, the number of analyzed subgroups; the estimated ARL which was computed directly from the
control charts; and the estimated ARIMA model. In general, we obtained high values of Type I statistical errors
and low ARL values in all the ARIMA charts, including those that are not presented here.

Figure 3 presents, as an example, one control chart for the AR(1) residuals with n = 5, i.e. applying the
Shewhart X̄ chart to a subgroup of n =5 residuals of the AR(1) model. Note that AR(1) is the best found model

Copyright c© 2007 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. (in press)
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In-control process  Out-of-control process  

Figure 3. The AR(1) residual control chart (with a sample size of n = 5) applied to 250 ‘in-control’ data points and 250
‘out-of-control’ data points. The limits are based on the 0.975 quantile of the standard normal distribution. The asterisks ‘*’
indicate an ‘out-of-control’ data point, the square ‘�’ indicate an ‘in-control’ data point and the dashed line indicates the

99.74 percentile (three standard deviations) control limits

in terms of the estimated ARL and Type I statistical error. The first 50 points in the chart are based on 250
data points generated by the ‘in-control’ process x in

t , t = 1, . . . , 250, while the last 50 points are based on
250 data points generated by the ‘out-of-control’ process xout

t , t = 251, . . . , 500. A data point is indicated as
‘out-of-control’ by an asterisk ‘*’ when it falls beyond the control limits or if it exhibits some non-random
pattern of behavior. As can be seen, not only are more than 40% of the first 50 points marked erroneously as
‘out-of-control’, but also it is impossible to indicate a change point to distinguish between the two processes.
The lack of a clear change point is apparent even if we rely on the dashed control limits that are based on three
standard deviations (0.9973 quantile). For these limits we obtain a Type I error of 23% and an estimated ARL
of 4.32.

High values of statistical errors are also obtained when applying different ARIMA models with various values
for the subgroup size and the model parameters. A justified question is whether the performance of the ARIMA
models can be improved by increasing the subgroup size. Note from Table II that regardless of the model, an
increase of the subgroup size results in a poorer ARL (this was indicated also for much larger sample sizes that
are not presented here). The explanation is that a ‘better’ estimation of the model parameters by a larger sample
cannot improve, and in fact often worsens, the ARL performance if the model is ‘wrong’.

4.2. CUSUM- and EWMA-based SPC charts

The EWMA and CUSUM control charts are widely applied for the detection of small shifts in the process mean.
In general, these charts are often much faster than the Shewhart charts at detecting shifts that are equal to or
less than two standard deviations with the same sample size41,42. Several papers do not recommend the use of
the CUSUM and the EWMA charts for general autocorrelated data43,44. In contrast, other papers recommend
the use of these charts to autocorrelated series, if the data can be properly filtered based on known generating
model21,45. The latter approach is infeasible when the correlation structure is unknown a priori, as in our case
study.

Figures 4 and 5 present, as an example, the CUSUM(H–K) and EWMA(λ = 0.2) control charts with a sample
size of n = 5. Again, the first 50 points in the chart are generated by the ‘in-control’ process x in

t , t = 1, . . . , 250,
while the last 50 points are generated by the ‘out-of-control’ process xout

t , t = 251, . . . , 500. Not only are all
500 points marked as ‘in-control’ (with an ARL → ∞), but it is also impossible to distinguish between the
two processes and indicate a change point. The same phenomena are also obtained when applying different
EWMA, CUSUM(V-mask) and CUSUM(H–K) models with various values for the subgroup size and the model
parameters. The poor results are not surprising because the process mean remains fixed for both the ‘in-control’
and ‘out-of control’ stages of the process.
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Table II. The estimated transition probabilities
base on a training dataset xin

t , t = 1, . . . , 5000

xt+1
Marginal

xt N A P distribution

N 113 644 273 1030
(0.110) (0.625) (0.265) (0.206)

A 656 1634 644 2934
(0.223) (0.557) (0.220) (0.587)

P 261 656 119 1036
(0.252) (0.633) (0.115) (0.207)

 

 

In-control process  Out-of-control process  

Figure 4. The CUSUM(H–K) control chart (with a sample size of n = 5) applied to 250 ‘in-control’ data points and 250
‘out-of-control’ data points. The limits (H values) are based on the 0.975 quantile of the standard normal distribution.

As seen, all points fall within the control limits

 

 

 

In-control process  Out-of-control process  

Figure 5. The EWMA control chart with λ = 0.2 and sample size n = 5 applied to 250 ‘in-control’ data points and 250
‘out-of-control’ data points. The limits are based on 0.975 quantile of the standard normal distribution. As can be seen, all

points fall within the control limits
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5. THE MSPC APPROACH

In this section we present the MSPC approach through a running example based on the funnel experiment.
In particular, we consider the hit process of the funnel experiment that results from the AF rule. The proposed
approach assumes a Markovian property of the process; however, it does not require prior knowledge of the
order of the Markov model or the values of its transition parameters, which can be estimated numerically
by maximum-likelihood estimation methods. In Section 5.1, we assume that the generating hit process is
unknown a priori and numerically estimate the transition probabilities of the reference Markov model.
This numerical procedure is practically important because the analytical generating model is often unknown in
reality. In Section 5.2, the MSPC control limits are obtained by simplifying the approach proposed by Ben-Gal
et al.26 and Ben-Gal and Singer12. Finally, in Section 5.3 we analyze the performance of the MSPC method.
In particular, we check that the monitored statistics remain within the control limits as long as the data are
generated by the ‘in-control’ process zin

t (q = 0.5) and, alternatively, that it deviates from these limits once the
data are generated by an ‘out-of-control’ process zout

t (q = 0.8). The procedure for obtaining the dependency
structures and the corresponding transition probabilities of these processes is given in Appendix A.

5.1. Estimation of the reference Markov model

In the first stage of the MSPC approach, we construct the reference Markov model that represents the hit process
based on a string of 5000 ‘in-control’ data points x in

t , t = 1, . . . , 5000. Apart from assuming a Markovian
property of the process, which can be validate by using proper χ2 tables, the method does not require any prior
knowledge such as the type of the AF rule, the transition parameters or the specific order of the model (see
Appendix A). A Markov model of order 1 is estimated as the best-found model for the ‘in-control’ process.

The reference Markov model is constructed numerically using a straightforward maximum-likelihood
estimation method. In particular, we count the observed frequencies of symbols in the sequence, denoted by
n̂(xt+1|xt ), and use these counts to estimate the relative transition probabilities. For example, the estimated
conditional probability of a symbol, say A given N (i.e. the transition probability ϕNA), is calculated by the
ratio of the number of negative hits (1030 in this case) that are immediately followed by accurate hits in
the sequence (644 in this case). Accordingly, the maximum-likelihood estimate P̂ (A|N) = 644/1030 = 0.625.
In a similar manner, we estimate the rest of the parameters of the transition probability matrix, which is
given in Table II. Columns 2–4 in the table show the counts and the values in the parentheses are the
estimated transition probabilities P̂ (xt+1|xt ). The last column shows the counts and the estimated steady-state
probabilities (marginal distributions) denoted by P̂ (x).

The estimated reference model in Table II can now be compared with the unknown analytic Markov
model in Figure 2. Note the small dissimilarities in the transition probabilities between the analytical and the
numerical models, e.g. P(A|N) = 0.635 versus P̂ (A|N) = 0.625. However, the estimated model reveals well the
symmetric process. For example, the probability of obtaining the sequence P → N → A (positive error, negative
error and an accurate hit) is approximately equal to the probability of obtaining the sequence N → P → A, which
is the symmetric sequence replacing symbol P with symbol N and vice versa. This result is derived from the
respective transition and transient probabilities, as P(P) ≈ P(N) and P(N|A) ≈ P(P|A).

Evidently, the nonlinear dependencies in the process that are well represented by the transition probability
matrix in Table II cannot be captured by linear correlation measures. The correlation coefficient, which is often
implemented in practice to identify autocorrelation in the data, does not reveal any such relation in this case.
In fact, had a practitioner used the correlation coefficient as a measure of association, he would have concluded
that the data are independent. For lag 1 (dependency between two consecutive observations) the empirical
correlation coefficient is 0.0164, for lag 2 the empirical correlation coefficient is 0.0153 and for lag 3 the
empirical correlation coefficient is 0.0152. It should not be surprising that the correlation coefficient does not
reveal the dependencies that exist in the string, because these are not of a linear form.

Once the reference model has been estimated the SPC procedure can be implemented. The remaining task is
to distinguish between insignificant changes that result from the process stochasticity versus significant changes
that imply a change in the generating process. The next section addresses this task by deriving the appropriate
MSPC control limits.

Copyright c© 2007 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. (in press)
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5.2. Calculation of the MSPC control limits

In this section, we used the well-known Chi-squared statistic to compare the observed frequencies with their
respective model-based expected frequencies. The observed frequencies represent the transition probabilities at
different monitoring periods. The expected frequencies are either based on a known reference Markov model
that represents the ‘in-control’ behavior of the system or on an estimated reference model that is constructed by
using a string of ‘in-control’ data as seen in Section 5.1. Practically, it is recommended that the string length
adheres to the Chi-squared sampling principle as suggested by Cochran46. This principle requires that at least
80% of the sampling bins, corresponding in this case to the cells in the transition probabilities matrix, contain at
least four data points (further principles for estimating the ‘in-control’ model can be found in Ben-Gal et al.26).

Under the null hypothesis that the same underlying Markov process generates the data at different periods,
the Pearson’s Chi-squared statistic is approximately Chi-squared distributed, i.e.

χ2 =
∑

x∈{N,A,P}

(n̂(xt+1|xt) − n(xt+1|xt ))
2

n(xt+1|xt )
� χ2

d(d−1),α (2)

where n̂(xt+1|xt ) are the observed frequencies, n(xt+1|xt ) are the expected frequencies, d is the size of the
symbol set (in this case d = 3) and α is the Type-I error value determining the confidence level, which is
commonly equal to 0.95 (α = 0.05). Thus, the UCL is obtained by the 95th percentile of the Chi-squared
distribution and depends only on the alphabet size. In this case UCL is equal to χ2

d(d−1),α = χ2
6,0.05 = 12.59,

while the LCL, which represents a total identity between the observed and the expected frequencies, is equal to
zero (a single-sided control chart).

The value of the Chi-squared statistic between the observed frequencies in Table II and the expected
frequencies (calculated by multiplying the transitions probability parameters in Figure 2 by a sample size of
5000) is equal to χ2 = 3.31. As it is much smaller than the UCL it ensures that there is no significant difference
between the observed and the expected frequencies or, in other words, that the observed frequencies in Table II
represents the reference model in Figure 2 well.

Once the upper bound is established, the SPC scheme is obtained by plotting the Pearson’s Chi-square
statistics on the control chart with respect to the UCL. Following the minimum discrimination information
principle14,47, at each monitoring period we use a new sequence to construct a frequency table in a similar
manner to Table II and computes the new Chi-squared statistics.

5.3. Identifying a change point by the MSPC method

In order to complete the numerical study, a set of 100 sequences of the reference hit process is generated.
Each sequence consists of 5000 data points that are generated by implementing the numerical procedure
described in Appendix A based on q = 0.5. For the purposes of illustration, another set of 100 ‘out-of-control’
sequences is generated by repeating the same numerical procedure based on a modified generating parameter
q = 0.8. The Chi-squared statistics between the monitored models and the reference model are computed by
using Equation (2) for both the ‘in-control’ and ‘out-of-control’ samples. All of the Chi-squared statistics are
then plotted against the UCL.

Figure 6 presents the Chi-squared statistics of the ‘in-control’ samples, while Figure 7 presents Chi-squared
statistics of the ‘out-of-control’ samples (the processes are not plotted in the same graph due to their large-scale
differences). Note that most of the Chi-squared statistics in the first 100 samples fall within the control limits.
As expected from the 95% confidence level, 4 out of 100 runs are erroneously indicated as ‘out-of-control’ runs,
resulting in an estimated ARL of 17. The Chi-squared statistics of the second set of sequences are distinctively
confirmed to be generated from an ‘out-of-control’ process. In summary, note that the proposed monitoring
approach performs well with respect to both statistical errors: 96% of the ‘in-control’ runs adhere to the control
limit rule, while 100% of the ‘out-of-control’ runs are clearly identified to be generated from a modified process.
The change point is clearly evident by a sharp jump in the Chi-squared values approximately from 4 to 1900.
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Figure 6. Control chart of the CSPC for ‘in-control’ sample data
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Figure 7. Control chart of the CSPC for ‘out-of-control’ sample data

6. CONCLUSIONS

In his classical funnel experiment, Deming1 used four feedback rules to illustrate the difficulties in implementing
SPC when the data points are dependent. However, the funnel example did not show how to handle the
autocorrelated data that result from the used feedback rules. We find the classic framework of the funnel
experiment to be practically convenient to illustrate the effects of complex dynamics that are created by feedback
rules, and to promote new monitoring methodologies for such cases. In particular, we have applied a simple
‘fifth’ feedback rule to the funnel example, called the AF rule, which extends Deming’s second rule by using
two observations for compensation instead of a single one. The discretized values of the AF rule follow a
nonlinear Markovian hit process to which traditional SPC methods cannot be applied successfully. We have
shown that the proposed MSPC procedure enables to model the dependence in the controlled hit process and
accurately monitor it. Moreover, the principles of the MSPC are simpler with respect to the previously proposed
CSPC method and rely on commonly used statistical principles.

A main disadvantage of the MSPC method is the relatively large amount of discrete data that it requires for
the monitoring, restricting its online analysis capabilities. Further research is required to optimize the MSPC
procedure to various types of data. As suggested by the anonymous referee, one possible research direction is
to look at the literature of wavelet-based control charts, which also involve hidden trees48.
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APPENDIX A

In the following we present the procedure for the generation of the hit process resulting from the AF rule.
Then we present the procedure to construct the analytical reference Markov model of this process.

I. Generating a sequence of uniformly distributed values

Generate a string of n data points from a uniform distribution ut ∈ [0, 1], t = 1, 2, . . . , n.

II. Discretizing the string

Obtain a string of n data points zt ∈ {−1, 0, 1}, t = 1, . . . , n, by using an inverse transform method based on
a discrete and symmetric distribution, which is fully determined by a single parameter q ,

zt (q) =




−1 if ut � q/2

0 if q/2 < ut � 1 − q/2

+1 if 1 − q/2 < ut � 1

(A1)
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Table AI. Numerical generation of a controlled hit process with 10 data points

Step I: ut

Uniformly Step II: zt (q = 0.5) Step III: z′
t Step IV: xt

Number random Inverse transform Apply the AF rule Discretization

1 0.620 0 0 A
2 0.828 1 1 P
3 0.716 0 −0.5 A
4 0.218 −1 −1.5 N
5 0.202 −1 −0.5 A
6 0.725 0 1 P
7 0.530 0 0.5 A
8 0.244 −1 −1 N
9 0.269 0 0.5 A

10 0.749 0 0.5 A

where 0 � q � 1 and E(zt ) = 0. The zt points represent the distance from the target (the errors) on the x-axis
at time t for the ‘no compensation’ rule (rule 1). Assume that the errors on both axes are independent, and thus
focus on the x-axis process.

III. Implementing the AF rule

Implement the AF rule by reducing from each observation the average of the last two hits. The controlled hit
process is given by

z′
t =




zt t = 1, 2

zt − (zt−1 + zt−2)

2
t = 3, . . . , n

(A2)

Note that although certain dynamics are introduced to the zt process by the AF rule, the mean of the controlled
hit process remains centered on the target, i.e. E(z′

t ) = 0.

IV. Discretizing the controlled hit process

Discretize the z′
t values to obtain a final symbol set xt ∈ {P, A, N}, t = 1, . . . , n, representing either a Positive

deviation from the target, an Accurate hit on the target or a Negative deviation from the target, respectively,
where

xt =




N if z′
t < −0.5 with probability1

8 (q3 − 2q2 + 4q)

A if − 0.5 � z′
t � 0.5 with probability − 1

4 (q3 − 2q2 + 4q − 4)

P if z′
t > 0.5 with probability 1

8 (q3 − 2q2 + 4q)

(A3)

The probabilities for the discretized controlled xt values depend only on q (the parameter of the generating
process) and can be obtained by summing up the relevant manipulated outputs. For example, the probability of
N is equal to P(N) = P(z′

t = −2) + P(z′
t = −1.5) + P(z′

t = −1). Table AI exemplifies the generation of n=
10 data points for a selected value of q = 0.5.

Generating a representative Markov chain model

Let us illustrate a three-step procedure for the construction of the analytic Markov model which is given in
Figure 2 for the process defined by q = 0.5. First, we obtain the transition probabilities between tuples of three
uncontrolled hits, (zt−2, zt−1, zt ) → (zt−1, zt , zt+1). These tuples are defined as the states of the uncontrolled
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hit process. Second, we calculate the steady-state probabilities of the controlled and discretized hit process, i.e.
P(xt = P), P(xt = A) and P(xt = N). Finally, we calculate the transition probabilities between consecutive
discretized hits (N, A, P) that are shown in Figure 2.

Let us consider the feasible states of the uncontrolled hit process. Each state is characterized by three
consequent observations, (zt−2, zt−1, zt ). This uncontrolled hit process has 33 = 27 different states that are
denoted, respectively, by si , i = 1, . . . , 27, where s1 = (−1, −1, −1), s2 = (−1, −1, 0), s3 = (−1, −1, 1),
s4 = (−1, 0, −1), s5 = (−1, 0, 0), s6 = (−1, 0, 1), s7 = (−1, 1, −1), s8 = (−1, 1, 0), s9 = (−1, 1, 1), s10 =
(0, −1, −1), . . . , s27 = (1, 1, 1). An example for a feasible transition between the tuples (zt−2, zt−1, zt ) →
(zt−1, zt , zt+1) is (−1, −1, −1) → (−1, −1, 1), i.e. observing a positive error at time t + 1. The transition
probability equations are as follows:

0.25Pi + 0.5Pi+9 + 0.25Pi+18 = P3i−2 i = 1, . . . , 9

0.5Pi + 0.5Pi+9 + 0.25Pi+18 = P3i−1 i = 1, . . . , 9

0.25Pi + 0.5Pi+9 + 0.25Pi+18 = P3i i = 1, . . . , 9 (A4)

where Pi denotes the stationary probability of the state si .
Solving the above set of transition probability equations, one can calculate the stationary probabilities of

the uncontrolled hit process: P1 = P3 = P7 = P9 = P19 = P21 = P25 = P27 = 1
64 ; P2 = P4 = P6 = P8 = P10 =

P12 = P16 = P18 = P20 = P22 = P24 = P26 = 1
32 ; P5 = P11 = P13 = P15 = P17 = P23 = 1

16 ; P14 = 1
8 . In order

to obtain the stationary probabilities of Negative, Accurate and Positive hits, one has to sum up the appropriate
probabilities based on (A4):

P(N) = P(z′
t = −2) + P(z′

t = −1.5) + P(z′
t = −1) = P25 + (P16 + P22) + (P7 + P13 + P19 + P26) = 0.2

P(P) = P(z′
t = 2) + P(z′

t = 1.5) + P(z′
t = 1) = P19 + (P12 + P6) + (P9 + P2 + P15 + P21) = 0.2

P(A) = P(z′
t = −0.5) + P(z′

t = 0) + P(z′
t = 0.5) = (P4 + P10 + P17 + P23)

+ (P1 + P8 + P14 + P20 + P27) + (P5 + P11 + P18 + P23) = 0.6

Now one can estimate the expected frequencies of each symbol, denoted by n(·), in a sequence of 5000
observations:

(n(N), n(A), n(P)) = (5000 × 0.2, 5000 × 0.6, 5000 × 0.2) = (1016, 2968, 1016)

Transition probabilities between hits (N, A, P)

Following the above steps, one can calculate the transition probabilities between the controlled and the
discretized hit process. For example, the probability of observing two consequent Negative hits is calculated
as follows:

P(N|N) = P7

P(N)
· P(N|s7) + P13

P(N)
· P(N|s13) + P16

P(N)
· P(N|s16) + P19

P(N)
· P(N|s19) + P22

P(N)
· P(N|s22)

+ P25

P(N)
· P(N|s25) + P26

P(N)
· P(N|s26) = 0.115

In a similar manner, one can find the other transition probabilities, for example

P(A|N) = 0.635, P (P|N) = 0.25, P (N|P) = 0.25, P (A|P) = 0.635, P (P|P) = 0.115

The corresponding expected frequencies in a sequence with 5000 observations are

n(N|N) = 254, n(A|N) = 645, n(P|N) = 117, n(N|P) = 117, n(A|P) = 645, n(P|P) = 254
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