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Model Reduction by  Chebyshev Polynomial Techniques 

Y. BISTRITZ AND G. LANGHOLZ, MEPWW, IEEE 

Absfmct-The  problem of reduced-order modeling of  high-order, linear, 
time-iivariant, singleinput, single-output system is considered. A method 
is proposed, based on manipulating two Chebyshev polynomial series, one 
representing  the frequency response characteristics of the bigh-order sys- 
tem and the other  representing the approximating  low-order model. 'Ibe 
method can be viewed as generalizing tbe classical Pade approximation 
problem,  with the chebyshev polynomiaJ series expansion being over a 
desired frequency internal instead of a power series about a  single 
frequency point. Two different approaches to the problem are coosidered. 
Firstly, approximation is carried out in the s-plane by a Chebyshev 
polynomial series. men, madified Chebyshev polynomials are intmduced 
and  a  mapping to a new plane is defined. It tmas ont that in the new plane 
the advantages of the generaked chebyshev-Pa& approximations are 
retained while what is actudy being solved is the dassieat Padti probkm. 

I. INTRODUCTION 

Order reduction of dynamic systems is an area of research that 
receives  considerable attention in the literature [1]-141. Among  the 
various  model reduction methods, those of the algebraic  type are com- 
putationally  more attractive. These include, for example, the Pad;  class 
of methods  like the continued fraction expansion 151, time  moments [q, 
and Pad6 approximations [7]. It was shown [SI that, under certain mild 
conditions,  these  methods  yield the same Pad6 approximants, the direct 
Pad6 approximation being  the more general  one.  Moment approximants 
[SI involve  a  time-domain  criterion of approximation and Pad6 a p  
proximation can therefore be  seen as a computational procedure for 
obtaining moment approximants in their  Laplace  transforms. 

However,  being  mostly approximations about a  single frequency point 
(s+O), the algebraic  methods  may  yield  poor  whole frequency response 
characteristics.  Modified Pade approximations at two frequency  points 
(s+O, s+m) were  suggested to deal with this problem [9], [lo]. Further- 
more,  some of the Pad& methods may produce an unstable reduced- 
order model even though the high-order  system is stable. The Routh 
approximation method [ 1 I],  [12] is a procedure for dealing  with this 
problem. 
In this paper, reduced-order  modeling of linear,  time-invariant, single- 

input, single-output  systems is obtained over a desiredfieqwncy interval. 
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The method  also enables the selection of stable and minimal phase 
models  (low-order  models can also be designed  with  prescribed  poles 
and zeros;  details  may be found in [131). All this is  being accomplished 
by manipulating two Chebyshev  polynomial  series, one representing the 
frequency  characteristics of the high-order system and the other repre- 
senting the approximating  low-order  model. The underlying idea can be 
regarded as a  generalization of the classical  Pad6  approximations,  with 
the Chebyshev  polynomial  series expansion being  over a desired 
frequenqv interval instead of a power  series about a  single  frequency 
point 

Two different approaches to the  problem are considered. In the first 
(Section II), the  problem  is dealt with in the s-plane and the squared 
amplitude of the transfer function is expanded by a  Chebyshev  poly- 
nomial  series and approximated to the desired order by Maebly's 
method [14]. In the second approach (Section 119, modified  Chebyshev 
polynomials are introduced, labeled Darlington polynomials [15], and 
used to expand the gain of the high-order transfer function and its 
reduced-order  model. By a  special transformation to a new  plane, the 
original  problem of generalized  Pad6 approximation becomes the (sim- 
ple)  classical Padk problem. 

Two  characteristics of the  Chebyshev  polynomial expansion make the 
proposed  method  very attractive. The first is that a truncated Chebyshev 
series has better convergence than a truncated power  series of the same 
length. The second is that a  Chebyshev  series has very good (near 
minimax) accuracy  over its interval of expansion in comparison  with 
other possible  choices of orthogonal polynomial  series  expansions  over 
the same interval, and with the accuracy at a  single point of the Taylor 
series  expansion. 

Thus, the two approaches proposed in this paper, which can be viewed 
as generalized  Chebyshev-Pad6 approximations, are very attractive 
model reduction procedures in the  frequency domain. Their advantage 
over  existing  methods is that they produce reduced-order  models  over a 
desired  frequency interval which can be selected to be  also stable and of 
minimal phase.  Nevertheless, the second approach turns out to be 
superior to the first since it  combines  the  superiority of Chebyshev 
polynomial  expansion  over  a  desired frequency interval  with the simplic- 
ity and flexibility of the  classical  Padk  approximation. 

Only  low-pass amplitude approximations are considered in this paper. 
However, the method  allows  extensions to bandpass and high-pass 
approximations 1161, with the second approach having the advantage 
since it requires  only minor changes in the computational algorithm. 

11. APPROXIMATIONS IN THE s-pLANE 

A. Chebyshec Polynomials 

Consider  the  following nth order Chebyshev  polynomials [ 141 

T,(x)=cos(ncos- 'x)  x ~ [ - 1 , 1 ]  (2.1) 

which are orthogonal on the interval [- 1,1]  with  weight function 
(1 - x2)-' / ' .  These  polynomials are recursively  related by 

T n + 1 ( x ) 3 2 x T n ( x ) + T , ~ ~ ( x ) ,  n=1,2..- (2.2) 

where T&)= 1 and T,(x)  =x. TJx)  is even if n is  even, 

n 
T2n(x)= x a2xz 

i=O 

andisoddifnisodd, 

(2.3a) 

(2.3b) 

Finally,  it can be shown that 
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Consider the following  Chebyshev  polynomial series expansion: 
m 

Since the polynomials are orthogonal 

If f(x) is an odd function, then 

and iff(x) is an even  function,  then 

B. Model Reduction in rhe s-Plane 

Consider  the linear, timeinvariant system  represented  by its transfer 
function 

( q s ) = K  i = l  m <n (2.9) 

II (s-s;) 
i = l  

where si' and s,!' are the ith zero and pole, respectively. In the sequel, the 
symbol ( m / n }  d l  be  used to denote a transfer function of the  form 
(2.9). 

The following  representative quantities related to (2.9) will be  referred 
to in the  sequel;  let s=& 

1) The amplitude of G(s) is denoted by IG@)l. 
2) The squared amplitude of G(s) is 

H(o2) IC(jo)l2 (2.10) 

(2.1 1) 

3) Define the gain and phase of G(s) by 

g + f i  lnC(s). (2.12) 

Hence,  the gain of G(s) is 

g = W ( s ) l = ~ ~ [ G ( s ) G ( s ) l  
1 (2.13a) 

in Neppers  (or in dB if converted to log of base lo), and the phase of 
G(4 is 

f i=f  h[G(S)/G(s)l (2.13b) 

where G(s) in (2.13) denotes the complex  conjugate of a s ) .  For s=jo, 
(2.13)  yields,  respectively, 

g=--In[G(s)G(-s)ll,,~w=TInH(02) 
1 1 
2 
1 

(2.14a) 

(2.14b) 

Assume that for a  desired  low-pass approximation the squared  ampli- 
tude of G(s) is approximated  over  the  frequency  interval [0, o J. Expand- 
ing the even  function H(02) of  (2.10) by a  Chebyshev  polynomial series 
yields 

Jv= +[G(S)/G(-s)lls-jw. 

(2.15) 

k n (s-i;) 
i = l  (2.16) 
n (s-i;) 

i =  1 

and let k(o3 be its squared amplitude function whose  Chebyshev 
polynomial series  expansion is 

(2.17) 

Thus, our problem is to find &(d) such that 

. . r  
H(o2)  H ( d )  (2.18) 

where = denotes the requirement that the first r terms in the series 
expansion of H(wz)  should  coincide  with  those of the  series  expansion of 
H(02), i.e., &= c, i = O ,  1; * .  ,r  - 1. r is related to the order of the 
desired  model, and will be determined in the sequel. 

Representing both numerator and denominator of I&*) by linear 
combinations of Chebyshev  polynomials, (2.18)  is replaced  by 

where q, ,Bi, and ci are understood to stand for a2, &, and c2i of (2.3) 
and (2.15). It is assumed that Bo=l for unique determination of the 
coefficients.  Thus, (2.19)  yields 

Using the  relation (2.4), substituting ,Bo= 1, and rearranging terms we 
have 

Comparing of the  coefficients of the Tt. polynomials  yields 

1 
q = c i + - c o p i + -  2 [ C ~ , - ~ , + C ~ + ~ ] , B , ,  i=1,2;.-,k. (2.20b) l P  

2 2 r - 1  

Comparing of the  coefficient of p further polynomials  yields 

where /3k+r=0 for k+r>p.  
Equation (2.21) is a  system of p equations in p unknowns, B,, 

&,- ,& Its solution enables the coefficients %al; .  . ,ak to be d s  
termined  by (2.20). To find a reduced-order model (k/p}, the ci 
coefficients of (2.15) are required  up to  and including c k + a -  Hence, r of 
(2.18)  is related to k andp by 

r=k+2p+I .  (2.22) 
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C. Stable Reduced-Order  Models 

If the given  system  (2.9)  has  poles and zeros in the left-hand side of 
the s-plane,  the method described so far enables the selection of the 
reduced-order  model  such that it too would have poles and zeros in the 
left-hand side of the s-plane. 

After  determining- the pi and a, coefficients, i=1,2;--  ,p; j =  
1,2, , k, we have H(w2) which could be written in s2 as 

where N(s3 and D(s2) are k andp order polynomials,  respectively.  Let 
P(s) and Q(s) be k and p order polynomials,  respectively,  whose zeros 
are the square roots of the zeros with  negative  real parts of N(s3 and 
~ ( s 3 ,  respectively. 

Hence, A'(*= P(s)P( - s) and D(s2) = Q(s)Q( - s) and the low-order 
{k/p} approximation of G(s) can be  selected to be stable and minimal 
phase,  namely 

(3s) = w /  Q(s) .  

III. APPROXIMATIONS IN THE Z-PLANE 

A. Darlington  Polynomials 

Consider  the  following nth order modified  Chebyshev  polynomials, to 
be referred to in the  sequel as Darlington polynomials  [15]: 

D,(x)=cos(nsin-'x) ,  n even (3.la) 

=jsin(nsin-'x), n odd (3.lb) 

which are orthogonal on x € [  - 1,1]  with  weight function (1 - x2)-'I2 
and can be  shown to be  related to Chebyshev  polynomials  by [17] 

D,(x) =j"T,(x), n 0, x E[ - 1,1]. ( 3 4  

Darlington polynomials are recursively related, are even for even n, and 
are odd for odd n, in complete analogy to the Chebyshev  polynomial 
equations (2.2) and (2.3). 

If (2.5) is a  Chebyshev  series expansion of a given function f(x), then 

is the function's Darlington polynomial series expansion  where,  by  (3.2), 

b, = a i / j i  Vi.  (3.4) 

Thus, in particular, i f f ( x )  is an even function and 

f(x) = a0/2 + 2 azi ~2,(x), 

W 

i = O  

then its  corresponding Darlington series  expansion is 

f ( x )  = a0/2+ 2 (- ~ ) ' a ~ ~ ~ ( x ) .  (3.5) 
m 

i s 0  

Let  [O,wO] be a  given  (low-pass)  frequency interval and let x = w / w 0  in 
(3.1). Thus, 

0, (w/wo) = cos (ng),  n even (3.6a) 

D,(o/wo) =js in(ng)  n odd (3.6b) 

where 

g=Sin-'(O/Oo). 

Let z be  a  new variable 

z 2 exp ( j w ) .  (3.7) 

Then,  with s=jw,  the relationship between s and z is obtained using 
(3.6~) as follows: 

g = s i n - ' ( ~ / w o ) = s i n - ' ( s / j w o )  

* sin$ = s/ jwo = [exp ( jg )  - exp ( - jg) ] /2 j ;  

hence., 

Thus, expressed in z, Darlington polynomials obtain a  simpler form 

D,(z)= 21 zn-( :)"I, n odd 

or, combined  together 

B. Relationship  Between s-Plane and z-Plane 

(3.9) 

Referring to Fig.  1, let sE[  -jwOJwO], then g is real and therefore 
IzI = 1. As s changes from - jwo  to jq, passing  through the origin in the 
s-plane, $ changes from - r /2  to r / 2  through 0 and,  therefore,  z 
changes  from - j  t o j  passing  through z = 1. With s changing fromjoo to 
- jw ,  z completes  the unit circle.  Circles in the z-plane  whose radii is 
not unity map into ellipses in the s-plane with  foci in +jw,. 
By (3.8), s is invariant to replacing z by - l/z; hence,  every point so 

in the s-plane maps into two points in the z-plane, za and - l/zo, such 
that one of them is inside and the other is outside the unit circle. 

To obtain a  one-to-one  mapping, let 

(3.10) 

which  is defined for every point in the s-plane outside the interval 
[ -jwO,jwO]. Note that (3.10) maintains the correspondences 

Si+Z*.FHP 

sgnRe{s)=sgnRe{z) 

where  the overbar denotes complex  conjugate. 

C. Representing  the System in  the z-Plane 

(3.1 1) 

Given the { m / n }  system (2.9) and using the mapping (3.10) it can be 
shown that every 

Hence., G(s) of (2.9) maps into 

D ( z ) =  R(z)R - - ( 3 
where 

(3.12) 

(3.13) 

(3.14) 

The following  representative quantities, related to (3.12), are of inter- 
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- Re [s] 

s - plane L - plane 
Fig. 1. The relationship between s- and r-planes. 

est and in analogy  with  those defined for G(s) by  (2.10)-(2.14); let 
111 = 1. 

1) The quantity 

II (z12-zZ) 

II (zi"'-z2) 

m 

W(z2) = R(z)R( - Z) = K, '1 I (3.15) 

i =  I 

has an analogous  form to H ( w 3  of  (2.1  1). 
2)  By  (3.12), the  gain and phase of G(s) in the z-plane  have the form 

g+jJ ,=lnR(z)+lnR(- l /~)  (3.16) 

Proposiiiom Let r,! and 5'' be the r-plane zeros and poles  correspond- 
ing to s; and $', the s-plane zeros and poles,  respectively, i =  1,2,. . . ,m;  
j =  1,2;. . ,n, under the mapping (3.10). Assume that s,!, $' are all in the 
left-hand side of the s-plane and none on the [ - jwo2 jwO]  part of the 
imaginary axis.  Then, for 1 1 1  = 1, (3.20)  implies 

(3.21a) 

(321b) 

Proving this proposition is omitted for brevity [17]. 

in the s-plane 
Thus, the problem of Darlington polynomial  series  expansion of g+fi 

lnG(s)= 2 diDi(w/wo) 
W 

(3.22a) 
i = O  

is transformed in the z-plane to a problem of  power series  expansion 

(3.22b) 

with R(z) structured analogously to G(s). Similarly,  a Darlington series 
expansion of the  gain  g of G(s), 

1 
~'nG(s)G(-s)= x ~-&;(w/o,-,) 

W 

i=O 
(3.23a) 

where  the  gain of G(s) is is a  power  series in the z-plane 

g'-InW(z2)+-ZlnW[(-l/z)2] 1 1 W 

2 (3.17a) lnR(z)R(-z)= 2 dZZZ. (323b) 
i = O  

and the  phase is And  finally,  a  Darlington  series  expansion of the phase J, in the s-plane 

~ = - I n R ( z ) / R ( - ~ ) + 2 I n R ( - l / z ) / R ( l / z ) .  2  1 1 (3.17b) 

For IzI = 1, I =  1/z and therefore (3.17)  yields, respectively, is a power  series  expansion in the z-plane 

j+= ~ l n R ( r ) / R ( - z )  1 

m n 

1 rI(z-z;)II(-z-z;) 

II(z-z;)II(-z-z;) 
= ~ l n  m 

m 

InR(z)/R(-z)= E d2i+Izz+l .  
i=O 

(324b) 

(3.18a) Remarks: i) Whilst  (3.19) and (3.20) hold for every s and  z, (3.21)  is 
valid  for IzI= 1  only. Equations (322a), (3.23a), and (324a) hold for 
s = j w  while (322b), (3.23b), and (3.24b) hold for 1z1=1. 

ii) in  (3.23) and in (3.24) are the even and odd terms, 
respectively, of the  coefficients  series ( 4 )  of  (3.19)-(3.21). 

2) AIgori!hm for series expansion of transfer funciions: Given  the 
{m/n} system  (2.9), assume that its  zeros and poles, s,! and s;, respec- 

(3.18b)  tively, are known. Map them into the r-plane by the  inverse transforma- 
tion of (3.10) 

2 1/2 

D. Darlingion  Polynomial Series Expansion of Transfer Funciions Z ' = I - ? [  I + ( $ )  ] , 

be its gain and phase,  respectively [see (2.12)], 

w0 
(3.25) 

I )  Expanding in the r-plane: Given the { m/n} system  (2.9), let g and J, 

the  sign (+) or (-) being  selected  such that lzil > 1. Equation (3.25) 
g+jJ,=lnG(s). maps  real, si = ui (complex  conjugate pair, si = ui *ioi) s-plane points into 

real, zi = x j  (complex conjugate pair, zi = x, ?hi) r-plane points. 
A Darlington P0bomial series expansion desired Over the low-PaSs  Consider  (3.21a) and substitute (3.13) and (3.14) into it to yield 
frequency  interval [O,wo] such that 

m n 
W InK'/2+ x ln(-w0/2r~)'~2(z-r*)- E ln(-w,/2z")(z-z") 

g + j + =  X 4 ~ ~ ( w / w o ) ,  (3.19) i- 1 
i = O  

i= 1 

I r n  
2 ;=o Di(o/oo) beiig defied by  (3.6). 

side and (3.9) for  its  right-hand  side,  Since  the  terms on the left-hand side form a s u m  of logarithms, we can 

= - x d#. (3.26) 

Mapping into the  z-plane, (3.19) yields,  using (3.16) for its left-hand 

consider  expansion of single  terms of the form 
InA(z)+hR(-l/z)=- x <.zi+- x 4. ( -1 /~) '  (3.20) I W  I r n  

2 i=o 2 ;=o In( - wo/2zi)'/2(z - zj) (3.27) 

where R(z) is given  by  (3.13). and add the results of the  expansion of all terms. 
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A typical  term for a real pole (or zero) zi = x yields an expansion W 

E?= z & 0 2 i ( 0 / 0 0 )  

In( -oo/2x)'/2+In(z - x )  = - z Pit'. I W  i=O 

2 i =o  (328) or, in the z-plane 

To find the  sequence (pi)? using (3.28): 

i) z=0=3p0=ln(-0,,x/2) (3.29a) 

(note that - 0+/2 > 0); 

tiOnS 
hi differentiating (3.28)  with respect to z yields after some  &pula- 

P I  = -2/x (3.29b) 
pi+I=ip,/(i+l)x,  i=1,2... . (3.29~) 

Assume  now that zi=x+& and its complex conjugate is A 
typical  term of  (3.26) corresponding to this pair is 

ln (w~/4A)1 /2+In(z2 -2xz+A)=  - l W  x qizi (3.30) 
2 i z o  

where A = x2+y2. To find the sequence ( qi)z using  (3.30): 

i) z=(hq0=hw$4/2; (3.31a) 

Ini(z)RI(-z)= z iZiZ2', 
W 

i =O 

&z) being  a {k/p} r a t i 0 ~ 1  function, structyred analogously to &s). 
Hence, we  have to find a (k/p) rational R(z) such that 

I n i ( z ) i (  -2) & InR(z)R( -z) (3.36) 
r 

where denotes the requirement that the first r terms in the series 
expansions of the left-hand and right-hand sides of  (3.36) be identical. r 
is related to the order of the desired  model and will be determined in the 
sequel.  Substituting  (3.34) into (3.36) yields the equivalent problem 

r W  

I n i ( z ) R I ( - z )  = 2 d.&f. (3.37) 
i =O 

Let &)? be  a set of coefficients  such that 

2 d2,z2'=In x f uZi. 
i = O  i - 0  

W W 

2.i (3.38) 

ii) differentiating (3.30)  with respect to z  yields after some  manipula- k a i n g  =o in (3.38)  yields 
tiOll.5 

fo=ew(do). (3.39a) 
q1= -4x/A (3.31b) 

q2=(2+b,~)A (3.31c) Differentiating (3.38) with  respect to z  yields after some manipulations 

q i+ l=[2 ib ix - ( i - I )b i - l ] / ( i+1 )A .  (3.31d) 

Using the relations (329) and (311) yields  the  sequence {4)$ and, 
f2i=7 x ~ ~ f ~ ( 1 - I )  i = 1 , 2 - . - .  (3.39b) 

therefore, the desired Darlington POlYnOmial series ewansion of transfer using (3.39, the howledge of coefficients  dZi, i=o, 1,. . . ,p - 1, 
function. enables the determination of the p coefficients f2? 

E. Model Reduction  in  the z-Plane Substituting (3.38) into (3.37) yields the requirement 

1 '  
1 1 - 1  

Given the {m/n} system 

m 

II ( s - 4 )  

II (s-6) 
G(s)=K ' = I  m <n (3.32) 

i = l  

assume that it is stable and minimum  phase. For a  desired  low-pass 
approximation, its gain 

g=-InG(~)G(-s)l~,jo=-InH(o~) 1 1 
2 2 (3.33) 

is approximated over the frequency interval [O,wO]. 

(3.23a) we have 
Expanding the  gain  using Darlington polynomial  series  expansion 

(334) 

i(z)RI( -2) = 'c ft.z2'. 
r W  

(3.40) 
i = O  

Or, expressing the left-hand side of  (3.40) as a ratio of two power  series 
in I, we have 

(3.41) 

assuming So= 1  for unique determination of the coefficients. 

in 2'. 
Notice that (3.41) represents the classicul Pudi upproximation  problem 

Equating the first  k + 1  powers in (3.41) yields 

(3.42a) 

where the coefficients  d2i can be derived  using the z-plane algorithm of 
Section 111-D2). To find thep coefficients Si, i =  1,2,- . ,p (recall that So= l), further p 

In the 2-plane, (3.34) is of the form (3.23b)  powers are equated to yield 

InR(z)R(-z)=  dzz2 
W P 

(3.35) E f 2 ( k + j - - i ) $ = f 2 ( k + ~ )  j =  l,2,. '. #- 
i = O  

(3.42b) 

where C(z)  is defined by  (3.13) and (3.14). Equation (3.42b) is a  system of p equations in p unknowns, SI, 
Let G(s) be the (k/p}, p <n, required  reduced-order  model  of G(s) 4, . . , Sp. Solving for these unknowns, the k + 1 coefficients, 

over  the  frequency interval [O,oO] an! assume that it is stable and y,,,y,.-.- ,yk can be calculated using  (3.42a). Hence, to determine the 
minimum phase. Let i be the gain of G(s) (k/p) Pad6  approximation (3.41)  we  see that 

i- 1 

E ? = I ~ G ( ~ ) G ( - ~ ) I , , ~ , = ~ I ~ H ( ~ ~ )  1 . .  1 r = k + p + l  (3.43) 

coefficients f2i are required, or alternatively, dz, i = O ,  1,. . . , k  +p, 
whose  Darlington  polynomial  series expansion over [O,oO] is Darlington coefficients are needed. 
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Remark: Operating  in the s-plane a { k / p }  reduced-order  model of 
the { m / n )  transfer function required ( k  + 2p + 1) terms  in  the 
Chebyshev  polynomial  series expansion (221). In contrast, using  the 
z-plane  method,  only k + p  + 1 terms in the Darlington  polynomial  series 
expansion are required. 

E Stable Reduced-Order Models 

Consider (3.10) squared 

(3.44) 

Now, the derived approximation i(z)R^( - z )  is a { k / p }  rational func- 
tion in z2. Substituting its (squared) zeros and poles ,i2 in (3.44)  yields the 
corresponding s-plane (squared)  zeros and poles ?. Thus, s^ can be 
selected  such that Re{i) < 0. 
G. Summary of Conrputationaf Steps 

The computational procedure that has to be  followed  basically in- 
volves two subroutines. 

1) For computing Darlington coefficients  using  (3.36) and (3.28)- 
(3.31), and from these, using (3.39), thefii coefficients. 

2) For deriving  Pad6 approximations using (3.41). 
i)  Solve  the  system of p equations in p @ o v p  (3.42b) to yield 

the p coefficients, S,, of the denominator of R(z)R(  -z), the  desired 
rational approximant in z2 (the leading coefficient, 60, is  assumed 1). 

ii) Use  the G’sAto solve for the k + 1 coefficients, yi. using  (3.42a), of 
the numerator of R(z)R( - z). 

The numerator and denominator of k(z)R^( - z )  must  be  factorized 
and, using (3.44), the corresponding s-plane squared zeros and poles i2 
can thus be obtained. These finally  yield the zeros and poles of the 
desired rational approximant in s, &). 

N. NUERICALEXAMPLE 

A rather celebrated  example is the  following  (see  [2], [18D: 

A 
1.2 - 

0 
5 IO I5  20 25 

Tlme ( s e d  

Fig. 2. Time response to a unit step input of the system (4.1) and some of its reduced- 
order models over  the frequency interval [0,0.5]. 

4) Optimal projection method (in [IS]): 

0.5648( 1 - 0.0282s) 
G(I/2J(S)= s2+4.0488s+5.0277. 

5) Fellows  et al. [ 181 : 

0.2098 
G‘0/2) (S)=  sz+ 1.6904s+ 1.8879 (4.9) 

G(s) = 
375 ooO(s + 0.08333) 

s7+83.64s6+4o97s5+7O342s4+8537O3s3+281427ls2+331O875s+28125O ’ 

2) Chen and Shieh [5]: 

As can be seen, the method proposed in this paper  favorably  compares 

Figs.  2 and 3  show  time and frequency responses,  respectively, of the 
given  high-order { 1/7} system  (4.1) and three of its reduced-order 
models  (by our second approach) over the frequency  interval  [0,0.5]: 

G{0/2J(S)= 
0.4924 

(~+0.4193)~+0.5627 
2.1514(s+0.0854) 

G(1/2)(S)= (s+O.O943)(s+ 1.9497)  (4.3) 

6(2/3)(s) = 
0.3679(~+0.0833)(s+ 15.0771) 

[(s+2.0244)2+o.9646](s+o.0919) . (4.4) 

In order to compare the results of our approximations to order 
reduction by  other  methods,  Figs.  4 and 5 depict  time and frequency 
responses,  respectively, of the high-order { 1/7) system  (4.1), our (1/2) 
model  (4.3), and the  following  second-order approximations. 

I )  Dauison [ 191: 

0.5557( 1 -0.0909s) 
G{l/z)(s)= s2+4.1176s+5.0296 ‘ 

4 1 / 2 , ( 4 =  
0.1299s  +0.01105 

s2+ 1.1464s+O.O994 ‘ 

3) Anderson [20]: 

0.3096 
G(0 /2 ) (S )  = s2 + 1.9026s + 2.6879 ’ 

(4.5) 

(4.7) 

with  various  accepted  procedures for model reduction. Many other 
results [ 171 equally demonstrate the usefulness and wide  applicability of 
the  method and enable its comparison  with  existing  model reduction 
methods. 

V. CONCLUSIONS 

Two  methods  for  reduced-order  modeling  were  presented.  Both  were 
based on expanding the transfer function of a  given  system into orthogo- 
nal polynomial  series  over  a given frequency interval [O,oo]. 

By the first  method,  the system’s squared amplitude was  expressed  by 
a  Chebyshev polynomial series. The series  was  then approximated in the 
frequency domain by a  lower order rational expression in (a/oo,’. 
Operating  with  a squared variable enables the selection of poles and 
zeros of the reduced-order  model to be in the left-hand s-plane. The 
Chebyshev  polynomial  series approximation can be  viewed as a  gener- 
alized Pad6  method. 

In the  second  method,  modified  Chebyshev  polynomials,  labeled 
Darlington  polynomials,  were  used to expand the system’s gain. A new 
variable  z  was  defined and the problem  transformed into the resulting 
z-plane. In this plane, the Darlington series  expansion  became  a  power 
series (in 12, and the problem of model  reduction thus became an 
ordinary Pad6  approximation  problem  in  z2. Transforming back into the 
r-plane, a  degree  of freedom  was once more obtained enabling the 
selection of stable and minimal  phase  reduced-order  models. 

The present  paper reported of approximations over  a  low-pass 
frequency band only. Further results [ 161 show that bandpass, high-pass, 
and phase approximations can be obtained, with  the  second approach 
having  the advantage in that it requires only minor  changes in the 
computational algorithm. 
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_---- - eqn. 0.31 
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-80  
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u ( r o d / ~ ~ l  

Fig. 3. Frequency  response  of the system (4.1) and some of its reduced-order models 

0’ I 
5 IO 15 20 25 ’ 

Time (sed 

Fig. 4. Comparison of time responses to a unit step input of the  system (4.1), its (1/2) 
rcdd-order model (4.3). and various approximations by other methods. 

-501 ,’\’ al 02 0.4 0.6 OB I 2 4 6 8 IO 20 
w (radlsecl 

Fig. 5. Comparison of frequency  responses of the system (4.1), its (1/2) reduced-xder 
model (43). and various other approximations by other methods. 
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